import torchvision import torch.nn as nn import pretrainedmodels import torch.nn.functional as F from constant import SCALE_FACTOR import math class Resnext(nn.Module): def __init__(self, variant): super(Resnext, self).__init__() assert variant in ['resnext101_32x4d', 'resnext101_64x4d'] # load retrain model model = pretrainedmodels.__dict__[variant](num_classes=1000, pretrained='imagenet') self.features = model.features num_ftrs = model.last_linear.in_features self.classifier = nn.Sequential( nn.Linear(num_ftrs, 14), nn.Sigmoid() ) # load other info self.mean = model.mean self.std = model.std self.input_size = model.input_size[1] # assume every input is a square image self.input_range = model.input_range self.input_space = model.input_space self.resize_size = int(math.floor(self.input_size / SCALE_FACTOR)) def forward(self, x): x = self.features(x) # s = x.size()[3] # 7 if input image is 224x224, 16 if input image is 512x512 x = F.avg_pool2d(x, kernel_size=(7, 7), stride=(1, 1)) # 1x1024x1x1 x = x.view(x.size(0), -1) # 1x1024 x = self.classifier(x) # 1x1000 return x def extract(self, x): return self.features(x) def build(variant): net = Resnext(variant).cuda() return net architect='resnext'