Spaces:
Sleeping
Sleeping
import logging | |
import time | |
import numpy as np | |
import rembg | |
import torch | |
from PIL import Image | |
from rotate import rotate | |
import streamlit as st | |
import sys | |
import os | |
from tsr.system import TSR | |
from x3D_utils import remove_background, resize_foreground | |
import logging | |
import time | |
import streamlit as st | |
import torch | |
from datetime import datetime | |
# Hàm tùy chỉnh để hiển thị thông báo kèm thời gian tương tự logging | |
def st_info_with_logging_format(message): | |
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S:%f')[:-3] # Định dạng thời gian giống logging | |
formatted_message = f"{current_time} - INFO - {message}" | |
st.info(formatted_message) | |
def st_success_with_logging_format(message): | |
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S:%f')[:-3] # Định dạng thời gian giống logging | |
formatted_message = f"{current_time} - INFO - {message}" | |
st.success(formatted_message) | |
# Thay thế các thông báo st.info bằng hàm mới | |
def convert_to_3d(image_path, output_filename='', isHuman=False, isCloth=False, cloth_cat=''): | |
with st.expander("ImageTo3D Extract Infomation"): | |
class Timer: | |
def __init__(self): | |
self.items = {} | |
self.time_scale = 1000.0 # ms | |
self.time_unit = "seconds" | |
def start(self, name: str) -> None: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.items[name] = time.time() | |
st_info_with_logging_format(f"{name} ...") | |
def end(self, name: str) -> float: | |
if name not in self.items: | |
return | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
start_time = self.items.pop(name) | |
delta = time.time() - start_time | |
t = delta * self.time_scale | |
st_success_with_logging_format(f"{name} finished in {(t / 1000):.2f} {self.time_unit}.") | |
timer = Timer() | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO | |
) | |
if not torch.cuda.is_available(): | |
device = "cpu" | |
else: | |
device = "cuda:0" | |
timer.start("Initializing model") | |
model = TSR.from_pretrained( | |
config_path=r"config.yaml", | |
weight_path=r"model.ckpt" | |
) | |
model.renderer.set_chunk_size(10_000) # 0 for no chunking; default is 8192 | |
model.to(device) | |
timer.end("Initializing model") | |
timer.start("Removing background") | |
if isHuman: | |
rembg_session = rembg.new_session(model_name="u2net_human_seg") | |
elif isCloth: | |
rembg_session = rembg.new_session(model_name="u2net_cloth_seg") | |
else: | |
rembg_session = rembg.new_session() | |
if isCloth and cloth_cat != '': | |
image = remove_background(Image.open(image_path), rembg_session, cloth_category=cloth_cat) | |
else: | |
image = remove_background(Image.open(image_path), rembg_session) | |
image = resize_foreground(image, 0.85) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 | |
image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
timer.end("Removing background") | |
timer.start("Running model on image") | |
with torch.no_grad(): | |
scene_codes = model([image], device=device) | |
timer.end("Running model on image") | |
timer.start("Extracting mesh") | |
mesh = model.extract_mesh(scene_codes, resolution=256)[0] | |
timer.end("Extracting mesh") | |
timer.start("Rotating object") | |
mesh = rotate(mesh) | |
timer.end("Rotating object") | |
timer.start("Saving generated object") | |
if output_filename == '': | |
output_filename = f"{image_path.split('.')[-2]}_out" | |
output_filepath = f"{output_filename}.glb" | |
mesh.export(output_filepath) | |
timer.end("Saving generated object") | |
return output_filepath | |