import requests import logging import duckdb import numpy as np from gradio_huggingfacehub_search import HuggingfaceHubSearch from bertopic import BERTopic from bertopic.representation import ( KeyBERTInspired, TextGeneration, ) from umap import UMAP from torch import cuda, bfloat16 from transformers import ( BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM, pipeline, ) from prompts import REPRESENTATION_PROMPT from hdbscan import HDBSCAN from sklearn.feature_extraction.text import CountVectorizer from sentence_transformers import SentenceTransformer from dotenv import load_dotenv import os # import spaces import gradio as gr load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) session = requests.Session() sentence_model = SentenceTransformer("all-MiniLM-L6-v2") keybert = KeyBERTInspired() vectorizer_model = CountVectorizer(stop_words="english") model_id = "meta-llama/Llama-2-7b-chat-hf" device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu" logging.info(device) bnb_config = BitsAndBytesConfig( load_in_4bit=True, # 4-bit quantization bnb_4bit_quant_type="nf4", # Normalized float 4 bnb_4bit_use_double_quant=True, # Second quantization after the first bnb_4bit_compute_dtype=bfloat16, # Computation type ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, quantization_config=bnb_config, device_map="auto", offload_folder="offload", # Offloading part of the model to CPU to save GPU memory ) # Enable gradient checkpointing for memory efficiency during backprop? model.gradient_checkpointing_enable() generator = pipeline( model=model, tokenizer=tokenizer, task="text-generation", temperature=0.1, max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption repetition_penalty=1.1, ) llama2 = TextGeneration(generator, prompt=REPRESENTATION_PROMPT) representation_model = { "KeyBERT": keybert, "Llama2": llama2, } # TODO: It should be proporcional to the number of rows # For small datasets (1-200 rows) it worked fine with 2 neighbors N_NEIGHBORS = 15 umap_model = UMAP( n_neighbors=N_NEIGHBORS, n_components=5, min_dist=0.0, metric="cosine", random_state=42, ) hdbscan_model = HDBSCAN( min_cluster_size=N_NEIGHBORS, metric="euclidean", cluster_selection_method="eom", prediction_data=True, ) reduce_umap_model = UMAP( n_neighbors=N_NEIGHBORS, n_components=2, min_dist=0.0, metric="cosine", random_state=42, ) global_topic_model = None def get_parquet_urls(dataset, config, split): parquet_files = session.get( f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}", timeout=20, ).json() if "error" in parquet_files: raise Exception(f"Error fetching parquet files: {parquet_files['error']}") parquet_urls = [file["url"] for file in parquet_files["parquet_files"]] logging.debug(f"Parquet files: {parquet_urls}") return ",".join(f"'{url}'" for url in parquet_urls) def get_docs_from_parquet(parquet_urls, column, offset, limit): SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};" df = duckdb.sql(SQL_QUERY).to_df() logging.debug(f"Dataframe: {df.head(5)}") return df[column].tolist() # @spaces.GPU # TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better? def calculate_embeddings(docs): return sentence_model.encode(docs, show_progress_bar=True, batch_size=32) # @spaces.GPU def fit_model(docs, embeddings): global global_topic_model new_model = BERTopic( "english", # Sub-models embedding_model=sentence_model, umap_model=umap_model, hdbscan_model=hdbscan_model, representation_model=representation_model, vectorizer_model=vectorizer_model, # Hyperparameters top_n_words=10, verbose=True, min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS? ) logging.info("Fitting new model") new_model.fit(docs, embeddings) logging.info("End fitting new model") global_topic_model = new_model logging.info("Global model updated") def generate_topics(dataset, config, split, column, nested_column): logging.info( f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}" ) parquet_urls = get_parquet_urls(dataset, config, split) limit = 1_000 chunk_size = 300 offset = 0 base_model = None all_docs = [] reduced_embeddings_list = [] topics_info, topic_plot = None, None yield ( gr.DataFrame(interactive=False, visible=True), gr.Plot(visible=True), gr.Label({f"⚙️ Generating topics {dataset}": 0.0}, visible=True), ) while offset < limit: docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size) if not docs: break logging.info( f"----> Processing chunk: {offset=} {chunk_size=} with {len(docs)} docs" ) embeddings = calculate_embeddings(docs) fit_model(docs, embeddings) if base_model is None: base_model = global_topic_model else: updated_model = BERTopic.merge_models([base_model, global_topic_model]) nr_new_topics = len(set(updated_model.topics_)) - len( set(base_model.topics_) ) new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:] logging.info(f"The following topics are newly found: {new_topics}") base_model = updated_model repr_model_topics = { key: label[0][0].split("\n")[0] for key, label in base_model.get_topics(full=True)["Llama2"].items() } base_model.set_topic_labels(repr_model_topics) reduced_embeddings = reduce_umap_model.fit_transform(embeddings) reduced_embeddings_list.append(reduced_embeddings) all_docs.extend(docs) topics_info = base_model.get_topic_info() topic_plot = base_model.visualize_documents( all_docs, reduced_embeddings=np.vstack(reduced_embeddings_list), custom_labels=True, ) logging.info(f"Topics: {repr_model_topics}") progress = min(offset / limit, 1.0) yield ( topics_info, topic_plot, gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True), ) offset += chunk_size logging.info("Finished processing all data") cuda.empty_cache() # Clear cache at the end of each chunk return ( topics_info, topic_plot, gr.Label({f"⚙️ Generating topics {dataset}": 1.0}, visible=True), ) with gr.Blocks() as demo: gr.Markdown("# 💠 Dataset Topic Discovery 🔭") gr.Markdown("## Select dataset and text column") with gr.Accordion("Data details", open=True): with gr.Row(): with gr.Column(scale=3): dataset_name = HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Search for dataset id on Huggingface", search_type="dataset", ) subset_dropdown = gr.Dropdown(label="Subset", visible=False) split_dropdown = gr.Dropdown(label="Split", visible=False) with gr.Accordion("Dataset preview", open=False): @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown]) def embed(name, subset, split): html_code = f""" """ return gr.HTML(value=html_code) with gr.Row(): text_column_dropdown = gr.Dropdown(label="Text column name") nested_text_column_dropdown = gr.Dropdown( label="Nested text column name", visible=False ) generate_button = gr.Button("Generate Topics", variant="primary") gr.Markdown("## Datamap") full_topics_generation_label = gr.Label(visible=False, show_label=False) topics_plot = gr.Plot() with gr.Accordion("Topics Info", open=False): topics_df = gr.DataFrame(interactive=False, visible=True) generate_button.click( generate_topics, inputs=[ dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, ], outputs=[topics_df, topics_plot, full_topics_generation_label], ) def _resolve_dataset_selection( dataset: str, default_subset: str, default_split: str, text_feature ): if "/" not in dataset.strip().strip("/"): return { subset_dropdown: gr.Dropdown(visible=False), split_dropdown: gr.Dropdown(visible=False), text_column_dropdown: gr.Dropdown(label="Text column name"), nested_text_column_dropdown: gr.Dropdown(visible=False), } info_resp = session.get( f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20 ).json() if "error" in info_resp: return { subset_dropdown: gr.Dropdown(visible=False), split_dropdown: gr.Dropdown(visible=False), text_column_dropdown: gr.Dropdown(label="Text column name"), nested_text_column_dropdown: gr.Dropdown(visible=False), } subsets: list[str] = list(info_resp["dataset_info"]) subset = default_subset if default_subset in subsets else subsets[0] splits: list[str] = list(info_resp["dataset_info"][subset]["splits"]) split = default_split if default_split in splits else splits[0] features = info_resp["dataset_info"][subset]["features"] def _is_string_feature(feature): return isinstance(feature, dict) and feature.get("dtype") == "string" text_features = [ feature_name for feature_name, feature in features.items() if _is_string_feature(feature) ] nested_features = [ feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and isinstance(next(iter(feature.values())), dict) ] nested_text_features = [ feature_name for feature_name in nested_features if any( _is_string_feature(nested_feature) for nested_feature in features[feature_name].values() ) ] if not text_feature: return { subset_dropdown: gr.Dropdown( value=subset, choices=subsets, visible=len(subsets) > 1 ), split_dropdown: gr.Dropdown( value=split, choices=splits, visible=len(splits) > 1 ), text_column_dropdown: gr.Dropdown( choices=text_features + nested_text_features, label="Text column name", ), nested_text_column_dropdown: gr.Dropdown(visible=False), } if text_feature in nested_text_features: nested_keys = [ feature_name for feature_name, feature in features[text_feature].items() if _is_string_feature(feature) ] return { subset_dropdown: gr.Dropdown( value=subset, choices=subsets, visible=len(subsets) > 1 ), split_dropdown: gr.Dropdown( value=split, choices=splits, visible=len(splits) > 1 ), text_column_dropdown: gr.Dropdown( choices=text_features + nested_text_features, label="Text column name", ), nested_text_column_dropdown: gr.Dropdown( value=nested_keys[0], choices=nested_keys, label="Nested text column name", visible=True, ), } return { subset_dropdown: gr.Dropdown( value=subset, choices=subsets, visible=len(subsets) > 1 ), split_dropdown: gr.Dropdown( value=split, choices=splits, visible=len(splits) > 1 ), text_column_dropdown: gr.Dropdown( choices=text_features + nested_text_features, label="Text column name" ), nested_text_column_dropdown: gr.Dropdown(visible=False), } @dataset_name.change( inputs=[dataset_name], outputs=[ subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, ], ) def show_input_from_subset_dropdown(dataset: str) -> dict: return _resolve_dataset_selection( dataset, default_subset="default", default_split="train", text_feature=None ) @subset_dropdown.change( inputs=[dataset_name, subset_dropdown], outputs=[ subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, ], ) def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict: return _resolve_dataset_selection( dataset, default_subset=subset, default_split="train", text_feature=None ) @split_dropdown.change( inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[ subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, ], ) def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict: return _resolve_dataset_selection( dataset, default_subset=subset, default_split=split, text_feature=None ) @text_column_dropdown.change( inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown], outputs=[ subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, ], ) def show_input_from_text_column_dropdown( dataset: str, subset: str, split: str, text_column ) -> dict: return _resolve_dataset_selection( dataset, default_subset=subset, default_split=split, text_feature=text_column, ) demo.launch()