import torch import gradio as gr import pytube as pt from transformers import pipeline from huggingface_hub import model_info MODEL_NAME = "openai/whisper-small" #this always needs to stay in line 8 :D sorry for the hackiness lang = "en" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text demo = gr.Blocks() css = """ footer {display:none !important} .output-markdown{display:none !important} button.primary { z-index: 14; left: 0px; top: 0px; cursor: pointer !important; background: none rgb(17, 20, 45) !important; border: none !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 12px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: none !important; } button.primary:hover{ z-index: 14; left: 0px; top: 0px; cursor: pointer !important; background: none rgb(37, 56, 133) !important; border: none !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 12px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; } .hover\:bg-orange-50:hover { --tw-bg-opacity: 1 !important; background-color: rgb(229,225,255) !important; } .to-orange-200 { --tw-gradient-to: rgb(37 56 133 / 37%) !important; } .from-orange-400 { --tw-gradient-from: rgb(17, 20, 45) !important; --tw-gradient-to: rgb(255 150 51 / 0); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; } .group-hover\:from-orange-500{ --tw-gradient-from:rgb(17, 20, 45) !important; --tw-gradient-to: rgb(37 56 133 / 37%); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; } .group:hover .group-hover\:text-orange-500{ --tw-text-opacity: 1 !important; color:rgb(37 56 133 / var(--tw-text-opacity)) !important; } """ examples = [ ['TestAudio1.mp3'], ['TestAudio2.wav'], ['TestAudio3.wav'], ['TestAudio4.wav'], ['TestAudio5.wav'], ['TestAudio6.wav'], ['TestAudio7.wav'], ['TestAudio8.wav'], ['TestAudio9.wav'], ['TestAudio10.wav'] ] mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True) ], outputs="text", layout="horizontal", theme="huggingface", allow_flagging="never", examples = examples, css = css ).launch(enable_queue=True) #used openai/whisper model