# Import libraries import cv2 from tensorflow import keras import numpy as np import matplotlib.pyplot as plt from PIL import Image import segmentation_models as sm sm.set_framework('tf.keras') def get_mask(image:Image) -> Image: """ This function generates a mask of the image that highlights all the sofas in the image. This uses a pre-trained Unet model with a resnet50 backbone. Remark: The model was trained on 640by640 images and it is therefore best that the image has the same size. Parameters: image = original image Return: mask = corresponding maks of the image """ # model_path = "model_checkpoint.h5" # CLASSES = ['sofa'] BACKBONE = 'resnet50' # define network parameters # in_classes = 1 if len(CLASSES) == 1 else (len(CLASSES) + 1) # case for binary and multiclass segmentation # actvation = 'sigmoid' if n_classes == 1 else 'softmax' preprocess_input = sm.get_preprocessing(BACKBONE) # LR=0.0001 #create model architecture # model = sm.Unet(BACKBONE, classes=n_classes, activation=activation) # # define optomizer # optim = keras.optimizers.Adam(LR) # # Segmentation models losses can be combined together by '+' and scaled by integer or float factor # dice_loss = sm.losses.DiceLoss() # focal_loss = sm.losses.BinaryFocalLoss() if n_classes == 1 else sm.losses.CategoricalFocalLoss() # total_loss = dice_loss + (1 * focal_loss) # # actulally total_loss can be imported directly from library, above example just show you how to manipulate with losses # # total_loss = sm.losses.binary_focal_dice_loss # or sm.losses.categorical_focal_dice_loss # metrics = [sm.metrics.IOUScore(threshold=0.5), sm.metrics.FScore(threshold=0.5)] # # compile keras model with defined optimozer, loss and metrics # model.compile(optim, total_loss, metrics) # #load model # model.load_weights(model_path) model = keras.models.load_model('model_final.h5', compile=False) print('loaded model') test_img = np.array(image)#cv2.imread(path, cv2.IMREAD_COLOR) test_img = cv2.resize(test_img, (640, 640)) return test_img test_img = cv2.cvtColor(test_img, cv2.COLOR_RGB2BGR) test_img = np.expand_dims(test_img, axis=0) prediction = model.predict(preprocess_input(np.array(test_img))).round() mask = Image.fromarray(prediction[...,0].squeeze()*255).convert("L") return mask def replace_sofa(image:Image, mask:Image, styled_sofa:Image) -> Image: """ This function replaces the original sofa in the image by the new styled sofa according to the mask. Remark: All images should have the same size. Input: image = Original image mask = Generated masks highlighting the sofas in the image styled_sofa = Styled image Return: new_image = Image containing the styled sofa """ image,mask,styled_sofa = np.array(image),np.array(mask),np.array(styled_sofa) _, mask = cv2.threshold(mask, 10, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) image_bg = cv2.bitwise_and(image,image,mask = mask_inv) sofa_fg = cv2.bitwise_and(styled_sofa,styled_sofa,mask = mask) new_image = cv2.add(image_bg,sofa_fg) return Image.fromarray(new_image) # image = cv2.imread('input/sofa.jpg') # mask = cv2.imread('masks/sofa.jpg') # styled_sofa = cv2.imread('output/sofa_stylized_style.jpg') # #get_mask(image) # plt.imshow(replace_sofa(image,mask,styled_sofa)) # plt.show()