import gradio as gr import cv2 import numpy as np # Function to process the image and extract contours def extract_contours(image, min_contour_area=100): # Convert the uploaded image from RGB to BGR format for OpenCV processing image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Step 1: Convert to grayscale gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY) # Step 2: Apply Gaussian blur to reduce noise blurred = cv2.GaussianBlur(gray, (5, 5), 0) # Step 3: Apply Canny edge detection with low thresholds for finer edges edges = cv2.Canny(blurred, 30, 100) # Adjust thresholds as needed # Step 4: Apply morphological operations to refine edges kernel = np.ones((3, 3), np.uint8) edges_dilated = cv2.dilate(edges, kernel, iterations=1) # Dilation to emphasize edges edges_eroded = cv2.erode(edges_dilated, kernel, iterations=1) # Erosion to refine # Step 5: Find contours contours, _ = cv2.findContours(edges_eroded, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Step 6: Create a blank white background white_background = np.ones_like(image_bgr) * 255 # White background # Step 7: Draw contours on the white background, excluding small contours for contour in contours: if cv2.contourArea(contour) > min_contour_area: cv2.drawContours(white_background, [contour], -1, (0, 0, 0), thickness=1) # Thinner lines # Convert the result back to RGB for displaying result_rgb = cv2.cvtColor(white_background, cv2.COLOR_BGR2RGB) return result_rgb # Gradio interface interface = gr.Interface( fn=extract_contours, inputs=[ gr.Image(type="numpy", label="Upload Image"), gr.Slider(50, 500, step=10, value=100, label="Minimum Contour Area") # Use 'value' instead of 'default' ], outputs=gr.Image(type="numpy", label="Processed Image"), title="Edge Detection and Contour Extraction", description="Upload an image to extract contours, excluding small areas like text labels. Adjust the minimum contour area using the slider." ) # Launch the Gradio app interface.launch()