from PIL import Image import matplotlib.pyplot as plt import numpy as np import pandas as pd from datetime import datetime from glob import glob import os import utm import rasterio from tqdm import tqdm #from xml.etree import ElementTree as et import xmltodict ## def cloud_masking(image,cld): cloud_mask = cld > 30 band_mean = image.mean() image[cloud_mask] = band_mean return image ## def load_file(fp): """Takes a PosixPath object or string filepath and returns np array""" return np.array(Image.open(fp.__str__())) def paths (name): fold_band_10 = glob(name+"/GRANULE/*/IMG_DATA/R10m")[0] fold_band_20 = glob(name+"/GRANULE/*/IMG_DATA/R20m")[0] fold_band_60 = glob(name+"/GRANULE/*/IMG_DATA/R60m")[0] path = name+"/GRANULE/*/IMG_DATA/R10m"+"/*.jp2" x = glob(path) lists = x[0].split("/")[-1].split("_") fixe = lists[0]+'_'+lists[1] band_10 = ['B02', 'B03', 'B04','B08'] band_20 = ['B05', 'B06', 'B07','B8A','B11', 'B12'] band_60 = ['B01','B09'] images_name_10m = [fixe+"_"+band+"_10m.jp2" for band in band_10 ] images_name_20m = [fixe+"_"+band+"_20m.jp2" for band in band_20 ] images_name_60m = [fixe+"_"+band+"_60m.jp2" for band in band_60 ] # bandes_path_10 = [os.path.join(fold_band_10,img) for img in images_name_10m] bandes_path_20 = [os.path.join(fold_band_20,img) for img in images_name_20m] bandes_path_60 = [os.path.join(fold_band_60,img) for img in images_name_60m] # tile_path = name+"/INSPIRE.xml" path_cld_20 = glob(name+"/GRANULE/*/QI_DATA/MSK_CLDPRB_20m.jp2")[0] path_cld_60 = glob(name+"/GRANULE/*/QI_DATA/MSK_CLDPRB_60m.jp2")[0] return bandes_path_10,bandes_path_20,bandes_path_60,tile_path,path_cld_20,path_cld_60 ## def coords_to_pixels(ref, utm, m=10): """ Convert UTM coordinates to pixel coordinates""" x = int((utm[0] - ref[0])/m) y = int((ref[1] - utm[1])/m) return x, y ## def timer(message,start_time=None): if not start_time: start_time = datetime.now() return start_time elif start_time: thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3600) tmin, tsec = divmod(temp_sec, 60) print('\n'+message+' Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2))) ## def extract_sub_image(bandes_path,tile_path,area,resolution=10, d= 3, cld_path = None): xml_file=open(tile_path,"r") xml_string=xml_file.read() python_dict=xmltodict.parse(xml_string) tile_coordonnates = python_dict["gmd:MD_Metadata"]["gmd:identificationInfo"]["gmd:MD_DataIdentification"]["gmd:abstract"]["gco:CharacterString"].split() # S2 tile coordonnates lat,lon = float(tile_coordonnates[0]),float(tile_coordonnates[1]) tile_coordonnate = [lat,lon] refx, refy, _, _ = utm.from_latlon(tile_coordonnate[0], tile_coordonnate[1]) ax,ay,_,_ = utm.from_latlon(area[1],area[0]) # lat,lon ref = [refx, refy] utm_cord = [ax,ay] x,y = coords_to_pixels(ref,utm_cord,resolution) images = [] # sub_image_extraction for band_path in tqdm(bandes_path, total=len(bandes_path)): start_time_loading = timer('load image',start_time=None) image = load_file(band_path).astype(np.float32) start_time_loading = timer('load image',start_time_loading) if resolution==60: sub_image = image[y,x] images.append(sub_image) else: sub_image = image[y-d:y+d,x-d:x+d] images.append(sub_image) images = np.array(images) # verify if the study are is cloudy if cld_path is not None: cld_mask = load_file(cld_path).astype(np.float32) cld = cld_mask[y-d:y+d,x-d:x+d] # cloud removing images = cloud_masking(images,cld) if resolution==60: return images else: return images.mean((1,2)) def ndvi(area, tile_name): """ polygone: (lon,lat) format tile_name: name of tile with the most low cloud coverage """ #Extract tile coordonnates (lat,long) tile_path = tile_name+"/INSPIRE.xml" xml_file=open(tile_path,"r") xml_string=xml_file.read() python_dict=xmltodict.parse(xml_string) tile_coordonnates = python_dict["gmd:MD_Metadata"]["gmd:identificationInfo"]["gmd:MD_DataIdentification"]["gmd:abstract"]["gco:CharacterString"].split() # S2 tile coordonnates lat,lon = float(tile_coordonnates[0]),float(tile_coordonnates[1]) tile_coordonnate = [lat,lon] refx, refy, _, _ = utm.from_latlon(tile_coordonnate[0], tile_coordonnate[1]) ax,ay,_,_ = utm.from_latlon(area[1],area[0]) # lat,lon ref = [refx, refy] utm_cord = [ax,ay] x,y = coords_to_pixels(ref,utm_cord) # read images path_4 = tile_name+"/GRANULE/*/IMG_DATA/R10m/*_B04_10m.jp2" path_8 = tile_name+"/GRANULE/*/IMG_DATA/R10m/*_B08_10m.jp2" red_object = rasterio.open(glob(path_4)[0]) nir_object = rasterio.open(glob(path_8)[0]) red = red_object.read() nir = nir_object.read() red,nir = red[0],nir[0] # extract area and remove unsigne sub_red = red[y-3:y+3,x-3:x+3].astype(np.float16) sub_nir = nir[y-3:y+3,x-3:x+3].astype(np.float16) # NDVI ndvi_image = ((sub_nir - sub_red)/(sub_nir+sub_red)) ndvi_mean_value = ndvi_image.mean() return ndvi_mean_value