import gradio as gr import torch import torch.nn as nn from transformers import BertModel from transformers import AutoTokenizer from huggingface_hub import hf_hub_download class BiLSTMClassifier(nn.Module): def __init__(self, hidden_dim, output_dim, n_layers, dropout): super(BiLSTMClassifier, self).__init__() self.bert = BertModel.from_pretrained("bert-base-multilingual-cased") self.lstm = nn.LSTM(self.bert.config.hidden_size, hidden_dim, num_layers=n_layers, bidirectional=True, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): embedded = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0] lstm_out, _ = self.lstm(embedded) pooled = torch.mean(lstm_out, dim=1) logits = self.fc(self.dropout(pooled)) if labels is not None: loss_fn = nn.CrossEntropyLoss() loss = loss_fn(logits, labels) return {"loss": loss, "logits": logits} # Возвращаем словарь return logits # Возвращаем логиты, если метки не переданы categories = ['climate', 'conflicts', 'culture', 'economy', 'gloss', 'health', 'politics', 'science', 'society', 'sports', 'travel'] repo_id = "data-silence/lstm-news-classifier" tokenizer = AutoTokenizer.from_pretrained(repo_id) model_path = hf_hub_download(repo_id=repo_id, filename="model.pth") model = torch.load(model_path) def predict(news: str) -> str: with torch.no_grad(): inputs = tokenizer(news, return_tensors="pt") del inputs['token_type_ids'] output = model.forward(**inputs) id_best_label = torch.argmax(output[0, :], dim=-1).detach().cpu().numpy() prediction = categories[id_best_label] return prediction # Создание интерфейса Gradio iface = gr.Interface( fn=predict, inputs=gr.Textbox(lines=5, label="Enter news text | Введите текст новости"), outputs=[ gr.Label(label="Predicted category | Предсказанная категория"), gr.Label(label="Category probabilities | Вероятности категорий") ], title="News Classifier | Классификатор новостей", description="Enter the news text in any language and the model will predict its category. | Введите текст новости на любом языке, и модель предскажет её категорию" ) iface.launch()