""" This module provides an interface for translation using the MADLAD-400 models. The interface allows users to enter English text, select the target language, and choose a model. The user will receive the translated text. """ import gradio as gr import spaces import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from LangMap.langid_mapping import langid_to_language DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize the tokenizer TOKENIZER_3B_MT = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True) # Retrieve the language codes LANGUAGE_CODES = [token for token in TOKENIZER_3B_MT.get_vocab().keys() if token in langid_to_language.keys()] # Mapping language codes to human readable language names LANGUAGE_MAP = {k: v for k, v in langid_to_language.items() if k in LANGUAGE_CODES} # Invert the language mapping for reverse lookup (from language name to language code) NAME_TO_CODE_MAP = {name: code for code, name in LANGUAGE_MAP.items()} # Extract the language names for the dropdown in the Gradio interface LANGUAGE_NAMES = list(LANGUAGE_MAP.values()) # Model choices MODEL_CHOICES = [ "google/madlad400-3b-mt", "google/madlad400-7b-mt", "google/madlad400-10b-mt", "google/madlad400-7b-mt-bt" ] MODEL_RESOURCES = {} def load_tokenizer_model(model_name: str): """ Load tokenizer and model for a chosen model name. Args: model_name (str): The name of the model to load. Returns: tuple: The tokenizer and model for the specified model. """ if model_name not in MODEL_RESOURCES: # Load tokenizer and model for the first time tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) model.to(DEVICE) MODEL_RESOURCES[model_name] = (tokenizer, model) return MODEL_RESOURCES[model_name] @spaces.GPU def translate(text: str, target_language_name: str, model_name: str) -> str: """ Translate the input text from English to another language. Args: text (str): The input text to be translated. target_language_name (str): The human readable target language name. model_name (str): The model name for translation. Returns: str: The translated text. """ # Convert the selected language name back to its corresponding language code target_language_code = NAME_TO_CODE_MAP.get(target_language_name) if target_language_code is None: raise ValueError(f"Unsupported language: {target_language_name}") # Load tokenizer and model if not already loaded tokenizer, model = load_tokenizer_model(model_name) text = target_language_code + text input_ids = tokenizer(text, return_tensors="pt").input_ids.to(DEVICE) outputs = model.generate(input_ids=input_ids, max_new_tokens=128000) text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True) return text_translated[0] TITLE = "MADLAD-400 Translation" DESCRIPTION = """ Translation from English to (almost) 400 languages based on [research](https://arxiv.org/pdf/2309.04662) by Google DeepMind and Google Research. """ # Gradio components input_text = gr.Textbox( label="Text", placeholder="Enter text here" ) target_language = gr.Dropdown( choices=LANGUAGE_NAMES, # Use language names instead of codes value="Hawaiian", # Default human readable language name label="Target language" ) model_choice = gr.Dropdown( choices=MODEL_CHOICES, value="google/madlad400-3b-mt", label="Model" ) output_text = gr.Textbox(label="Translation") # Define the Gradio interface demo = gr.Interface( fn=translate, inputs=[input_text, target_language, model_choice], outputs=output_text, title=TITLE, description=DESCRIPTION ) # Launch the Gradio interface demo.launch()