import streamlit as st import os.path import pathlib import pandas as pd import numpy as np import PyPDF2 from PyPDF2 import PdfReader from os import walk import nltk import glob import plotly.express as px from wordcloud import WordCloud import plotly.io as pio from plotly.subplots import make_subplots import plotly.graph_objs as go import pandas as pd import plotly.offline as pyo @st.cache_resource() def get_nl(): return nltk.download('punkt') get_nl() from nltk.tokenize import sent_tokenize from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline # if os.path.exists("report.html"): # os.remove("report.html") @st.cache_resource() def get_model(): tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert") model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert") return tokenizer,model tokenizer,model = get_model() def extract_text_from_pdf(path): text='' reader = PdfReader(path) number_of_pages = len(reader.pages) print(number_of_pages) for i in range(number_of_pages): page=reader.pages[i] text = text + page.extract_text() return text # Create a button to download the HTML file def download_html(): with st.spinner('Downloading HTML file...'): # Get the HTML content with open('report.html', "r") as f: html = f.read() f.close() # Set the file name and content type file_name = "report.html" mime_type = "text/html" # Use st.download_button() to create a download button print('download button') st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type) st.stop() st.write(""" # Sentiment Analysis Tool """) #uploaded_file = st.file_uploader("Choose a PDF file") #uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf']) uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf']) #if uploaded_file is not None: if len(uploaded_file)>0: import time # Wait for 5 seconds time.sleep(5) #print('gone') pdf_reader = PyPDF2.PdfReader(uploaded_file[0]) # Get the number of pages in the PDF file num_pages = len(pdf_reader.pages) if num_pages > 20: st.error("Pages in PDF file should be less than 20.") # Check that only one file was uploaded #elif isinstance(uploaded_file, list): elif len(uploaded_file) > 1: st.error("Please upload only one PDF file at a time.") else: #uploaded_file = uploaded_file[0] # Check that the file is a PDF if uploaded_file[0].type != 'application/pdf': st.error("Please upload a PDF file.") else: ############################ 1. Extract text from PDF ############################ text='' # return text from pdf pdf_reader = PyPDF2.PdfReader(uploaded_file[0]) # Get the number of pages in the PDF file num_pages = len(pdf_reader.pages) # Display the number of pages in the PDF file st.write(f"Number of pages in PDF file: {num_pages}") for i in range(num_pages): page=pdf_reader.pages[i] text = text + page.extract_text() ############################ 2. Sentiment Analysis ############################ text = text.replace("\n", " " ) sentences = sent_tokenize(text) title = sentences[0] long_sentence=[] small_sentence=[] useful_sentence=[] for i in sentences: if len(i) > 510: long_sentence.append(i) elif len(i) < 50: small_sentence.append(i) else: useful_sentence.append(i) del sentences with st.spinner('Processing please wait...'): pipe = pipeline(model="ProsusAI/finbert") classifier = pipeline(model="ProsusAI/finbert") output = classifier(useful_sentence) df = pd.DataFrame.from_dict(output) df['Sentence']= pd.Series(useful_sentence) labels = ['neutral', 'positive', 'negative'] values = df.label.value_counts().to_list() # removing words words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt', "customer", "business", "last year", "year", 'lat', 'well', 'jut', 'thi', 'cutomer', "will", "think", "higher", "question", "going"] for word in words_to_remove: text = text.replace(word, "") wordcloud = WordCloud(background_color='white', width=800, height=400).generate(text) image = wordcloud.to_image() pos_df = df[df['label']=='positive'] pos_df = pos_df[['score', 'Sentence']] pos_df = pos_df.sort_values('score', ascending=False) pos_df_mean = pos_df.score.mean() pos_df['score'] = pos_df['score'].round(4) pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True) neg_df = df[df['label']=='negative'] neg_df = neg_df[['score', 'Sentence']] neg_df = neg_df.sort_values('score', ascending=False) neg_df_mean = neg_df.score.mean() neg_df['score'] = neg_df['score'].round(4) neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True) neu_df = df[df['label']=='neutral'] neu_df = neu_df[['score', 'Sentence']] neu_df = neu_df.sort_values('score', ascending=False) #neu_df_mean = neu_df.score.mean() neu_df['score'] = neu_df['score'].round(4) neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True) df_temp = neg_df df_temp = df_temp['score'] * -1 df_temp = pd.concat([df_temp, pos_df]) fig = make_subplots( rows=26, cols=6, specs=[ [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [{"type": "image", "rowspan": 15, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], [None, None, None, None, None, None], ], ) colors = px.colors.diverging.Portland#RdBu fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5, title = 'Count by label', marker=dict(colors=colors, line=dict(width=2, color='white'))), row=6, col=1) fig.add_trace(go.Indicator( mode = "number", value = len(df.label.values.tolist()), title = {"text": "Count of Sentence"}), row=6, col=3) fig.add_trace(go.Indicator( mode = "gauge+number", value = df_temp.score.mean(), domain = {'x': [0, 1], 'y': [0, 1]}, title = {'text': "Average of Score", 'font': {'size': 16}}, gauge = { 'axis': {'range': [-1, 1], 'tickwidth': 1, 'tickcolor': "darkblue"}, 'bar': {'color': "darkblue"}, 'steps': [ {'range': [-0.29, 0.29], 'color': 'white'}, {'range': [0.3, 1], 'color': 'green'}, {'range': [-1, -0.3], 'color': 'red'} ], 'threshold': { 'line': {'color': "black", 'width': 4}, 'thickness': 0.75, 'value': abs((pos_df_mean - neg_df_mean)) } } ), row=6, col=5) if df_temp.score.mean() < -0.29: fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5) elif df_temp.score.mean() < 0.29: fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5) else: fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5) fig.add_trace(go.Image(z=image), row=12, col=1) fig.update_xaxes(visible=False, row=12, col=1) fig.update_yaxes(visible=False, row=12, col=1) table_trace1 = go.Table( header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'), cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'), columnwidth=[1, 4] ) fig.add_trace(table_trace1, row=12, col=4) table_trace2 = go.Table( header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'), cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'), columnwidth=[1, 4] ) fig.add_trace(table_trace2, row=17, col=4) table_trace2 = go.Table( header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'), cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'), columnwidth=[1, 4] ) fig.add_trace(table_trace2, row=22, col=4) import textwrap wrapped_title = "\n".join(textwrap.wrap(title, width=50)) # Add HTML tags to force line breaks in the title text wrapped_title = "
".join(wrapped_title.split("\n")) fig.update_layout(height=700, showlegend=False, title={'text': f"{wrapped_title} - Sentiment Analysis Report", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}}) pyo.plot(fig, filename='report.html') import base64 # Convert the figure to HTML format fig_html = pio.to_html(fig, full_html=False) b64 = base64.b64encode(fig_html.encode()).decode() # Generate a download link filename = "figure.html" href = f'Download Report' # Display the link st.markdown(href, unsafe_allow_html=True)