import streamlit as st
import os.path
import pathlib
import pandas as pd
import numpy as np
import PyPDF2
from PyPDF2 import PdfReader
from os import walk
import nltk
import glob
import plotly.express as px
from wordcloud import WordCloud
import plotly.io as pio
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import pandas as pd
import plotly.offline as pyo
@st.cache_resource()
def get_nl():
return nltk.download('punkt')
get_nl()
from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
# if os.path.exists("report.html"):
# os.remove("report.html")
@st.cache_resource()
def get_model():
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
return tokenizer,model
tokenizer,model = get_model()
def extract_text_from_pdf(path):
text=''
reader = PdfReader(path)
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page=reader.pages[i]
text = text + page.extract_text()
return text
# Create a button to download the HTML file
def download_html():
with st.spinner('Downloading HTML file...'):
# Get the HTML content
with open('report.html', "r") as f:
html = f.read()
f.close()
# Set the file name and content type
file_name = "report.html"
mime_type = "text/html"
# Use st.download_button() to create a download button
print('download button')
st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
st.stop()
st.write("""
# Sentiment Analysis Tool
""")
#uploaded_file = st.file_uploader("Choose a PDF file")
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
#if uploaded_file is not None:
if len(uploaded_file)>0:
import time
# Wait for 5 seconds
time.sleep(5)
#print('gone')
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
# Get the number of pages in the PDF file
num_pages = len(pdf_reader.pages)
if num_pages > 20:
st.error("Pages in PDF file should be less than 20.")
# Check that only one file was uploaded
#elif isinstance(uploaded_file, list):
elif len(uploaded_file) > 1:
st.error("Please upload only one PDF file at a time.")
else:
#uploaded_file = uploaded_file[0]
# Check that the file is a PDF
if uploaded_file[0].type != 'application/pdf':
st.error("Please upload a PDF file.")
else:
############################ 1. Extract text from PDF ############################
text=''
# return text from pdf
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
# Get the number of pages in the PDF file
num_pages = len(pdf_reader.pages)
# Display the number of pages in the PDF file
st.write(f"Number of pages in PDF file: {num_pages}")
for i in range(num_pages):
page=pdf_reader.pages[i]
text = text + page.extract_text()
############################ 2. Sentiment Analysis ############################
text = text.replace("\n", " " )
sentences = sent_tokenize(text)
title = sentences[0]
long_sentence=[]
small_sentence=[]
useful_sentence=[]
for i in sentences:
if len(i) > 510:
long_sentence.append(i)
elif len(i) < 50:
small_sentence.append(i)
else:
useful_sentence.append(i)
del sentences
with st.spinner('Processing please wait...'):
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
output = classifier(useful_sentence)
df = pd.DataFrame.from_dict(output)
df['Sentence']= pd.Series(useful_sentence)
labels = ['neutral', 'positive', 'negative']
values = df.label.value_counts().to_list()
# removing words
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
"customer", "business", "last year", "year", 'lat', 'well', 'jut', 'thi', 'cutomer',
"will", "think", "higher", "question", "going"]
for word in words_to_remove:
text = text.replace(word, "")
wordcloud = WordCloud(background_color='white', width=800, height=400).generate(text)
image = wordcloud.to_image()
pos_df = df[df['label']=='positive']
pos_df = pos_df[['score', 'Sentence']]
pos_df = pos_df.sort_values('score', ascending=False)
pos_df_mean = pos_df.score.mean()
pos_df['score'] = pos_df['score'].round(4)
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
neg_df = df[df['label']=='negative']
neg_df = neg_df[['score', 'Sentence']]
neg_df = neg_df.sort_values('score', ascending=False)
neg_df_mean = neg_df.score.mean()
neg_df['score'] = neg_df['score'].round(4)
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
neu_df = df[df['label']=='neutral']
neu_df = neu_df[['score', 'Sentence']]
neu_df = neu_df.sort_values('score', ascending=False)
#neu_df_mean = neu_df.score.mean()
neu_df['score'] = neu_df['score'].round(4)
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
df_temp = neg_df
df_temp = df_temp['score'] * -1
df_temp = pd.concat([df_temp, pos_df])
fig = make_subplots(
rows=26, cols=6,
specs=[ [None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "image", "rowspan": 15, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
],
)
colors = px.colors.diverging.Portland#RdBu
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
title = 'Count by label',
marker=dict(colors=colors,
line=dict(width=2, color='white'))),
row=6, col=1)
fig.add_trace(go.Indicator(
mode = "number",
value = len(df.label.values.tolist()),
title = {"text": "Count of Sentence"}), row=6, col=3)
fig.add_trace(go.Indicator(
mode = "gauge+number",
value = df_temp.score.mean(),
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Average of Score", 'font': {'size': 16}},
gauge = {
'axis': {'range': [-1, 1], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "darkblue"},
'steps': [
{'range': [-0.29, 0.29], 'color': 'white'},
{'range': [0.3, 1], 'color': 'green'},
{'range': [-1, -0.3], 'color': 'red'}
],
'threshold': {
'line': {'color': "black", 'width': 4},
'thickness': 0.75,
'value': abs((pos_df_mean - neg_df_mean))
}
}
), row=6, col=5)
if df_temp.score.mean() < -0.29:
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
elif df_temp.score.mean() < 0.29:
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
else:
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
fig.add_trace(go.Image(z=image), row=12, col=1)
fig.update_xaxes(visible=False, row=12, col=1)
fig.update_yaxes(visible=False, row=12, col=1)
table_trace1 = go.Table(
header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace1, row=12, col=4)
table_trace2 = go.Table(
header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=17, col=4)
table_trace2 = go.Table(
header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=22, col=4)
import textwrap
wrapped_title = "\n".join(textwrap.wrap(title, width=50))
# Add HTML tags to force line breaks in the title text
wrapped_title = "
".join(wrapped_title.split("\n"))
fig.update_layout(height=700, showlegend=False, title={'text': f"{wrapped_title} - Sentiment Analysis Report", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
pyo.plot(fig, filename='report.html')
import base64
# Convert the figure to HTML format
fig_html = pio.to_html(fig, full_html=False)
b64 = base64.b64encode(fig_html.encode()).decode()
# Generate a download link
filename = "figure.html"
href = f'Download Report'
# Display the link
st.markdown(href, unsafe_allow_html=True)