import streamlit as st from langchain.agents import initialize_agent, AgentType from langchain.callbacks import StreamlitCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.agents.format_scratchpad import format_to_openai_function_messages from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from llm_helper import get_agent_chain, get_lc_oai_tools, convert_message from langchain.agents import AgentExecutor with st.sidebar: openai_api_key = st.secrets["OPENAI_API_KEY"] "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" "[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)" "[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)" st.title("🔎 LangChain - Chat with search") """ In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() if "messages" in st.session_state: chat_history = [convert_message(m) for m in st.session_state.messages[:-1]] else: chat_history = [] with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) agent = get_agent_chain(st_cb=st_cb) response = agent.invoke({ "input": prompt, "chat_history": chat_history, }) response = response["output"] st.session_state.messages.append({"role": "assistant", "content": response}) st.write(response)