import streamlit as st from langchain.agents import initialize_agent, AgentType from langchain.callbacks import StreamlitCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from llm_helper import get_agent_chain, get_lc_oai_tools with st.sidebar: openai_api_key = st.secrets["OPENAI_API_KEY"] "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" "[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)" "[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)" st.title("🔎 LangChain - Chat with search") """ In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", openai_api_key=openai_api_key, streaming=True) lc_tools, _ = get_lc_oai_tools() search_agent = initialize_agent(lc_tools, llm, agent=AgentType.OPENAI_FUNCTIONS, handle_parsing_errors=True, verbose=True) agent_prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant, use the search tool to answer the user's question and cite only the page number when you use information coming (like [p1]) from the source document. Always use the content from the source document to answer the user's question. If you need to compare multiple subjects, search them one by one."), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) search_agent.agent.prompt = agent_prompt with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) response = search_agent.run(prompt, callbacks=[st_cb]) # search_agent = get_agent_chain(callbacks=[st_cb]) # response = search_agent.invoke({"input": prompt}) # response = response["output"] st.session_state.messages.append({"role": "assistant", "content": response}) st.write(response)