import streamlit as st from PIL import Image import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array def run(): st.title("Rice Classifier") st.write("Upload a picture of rice to predict its type..") # File upload uploaded_file = st.file_uploader("Select the rice image...", type=["jpg", "jpeg", "png"]) # Mendefinisikan dimensi gambar img_height, img_width = 220, 220 # Function to preprocess the uploaded image def preprocess_image(image): img = image.resize((img_height, img_width)) img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array /= 255.0 return img_array # Mapping numerical predictions to class labels class_labels = {0: "Arborio", 1: "Basmati", 2: "Ipsala", 3: "Jasmine", 4: "Karacadag"} if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Gambar yang diunggah", use_column_width=True) # Load the model (once the image is uploaded) model = load_model("cnn_model.keras") # Preprocess and predict img_array = preprocess_image(image) prediction = model.predict(img_array) predicted_class = np.argmax(prediction, axis=1)[0] # Display prediction st.write(f'Prediksi: {class_labels[predicted_class]}') else: st.text("Please upload an image file") if __name__ == "__main__": main()