import streamlit as st import pandas as pd import numpy as np import pickle import json def run(): #Load model with open('list_cat_cols.txt', 'r') as file_1: list_cat_col = json.load(file_1) with open('list_num_cols.txt', 'r') as file_2: list_num_col = json.load(file_2) with open('encoder.pkl', 'rb') as file_3: model_encoder = pickle.load(file_3) with open('scaler.pkl', 'rb') as file_4: model_scaler = pickle.load(file_4) with open('model_lin_reg.pkl', 'rb') as file_5: model_lin_reg = pickle.load(file_5) with st.form('form_input'): st.subheader('Personal Info', divider='orange') name = st.text_input('Name', value='') age = st.number_input('Age', min_value=15, max_value=50, value=20, step=1, help='Usia Pemain') weight = st.number_input('Weight', min_value=50, max_value=150, step=1, help='Berat Pemain') height = st.slider('Height', 150, 250, 180) price = st.number_input('Harga', min_value=0, max_value=1000000000, value=0) st.markdown('---') st.subheader('Work Rate', divider='orange') attacking = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index=0) defensive = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index=1) st.markdown('---') st.subheader('Skills', divider='orange') pace = st.number_input('Pace', min_value=0, max_value=100, value=50) shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50) passing = st.number_input('Passing', min_value=0, max_value=100, value=50) dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50) defending = st.number_input('Defending', min_value=0, max_value=100, value=50) physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50) submitted = st.form_submit_button('Predict !') data_inf = { 'Name': name, 'Age': age, 'Height': height, 'Weight': weight, 'Price': price, 'AttackingWorkRate': attacking, 'DefensiveWorkRate': defensive, 'PaceTotal': pace, 'ShootingTotal': shooting, 'PassingTotal': passing, 'DribblingTotal': dribbling, 'DefendingTotal': defending, 'PhysicalityTotal': physicality } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) if submitted: # Menghitung nilai rating #split between numerical and categorical columns data_inf_num = data_inf[list_num_col] data_inf_cat = data_inf[list_cat_col] #feature scaling and encoding data_inf_num_scaled = model_scaler.transform(data_inf_num) data_inf_cat_encoded = model_encoder.transform(data_inf_cat) data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) #predict using linear reg model y_pred_inf = model_lin_reg.predict(data_inf_final) st.write('# Rating : ', str(int(y_pred_inf)))