import gradio as gr import pandas as pd import plotly.express as px import plotly.graph_objects as go import json import os import numpy as np # Load the dataset def load_data(): """Load the GVFD dataset from local JSON file""" try: json_path = os.path.join(os.path.dirname(__file__), 'data.json') with open(json_path, 'r') as f: data = json.load(f) # Extract records from the JSON structure records = data.get('records', []) df = pd.DataFrame(records) return df except Exception as e: print(f"Error loading dataset: {e}") # Return empty dataframe if loading fails return pd.DataFrame() # Initialize data df = load_data() def get_countries(): """Get sorted list of unique countries from the dataset""" if df.empty: return [] # The column is named 'country' in the JSON data if 'country' in df.columns: return sorted(df['country'].dropna().unique().tolist()) return [] def get_categories(): """Get available categories from the dataset""" if df.empty: return [] # Get unique topics from the data (topic column contains the categories) if 'topic' in df.columns: return sorted(df['topic'].dropna().unique().tolist()) return [] def get_specific_categories(): """Get unique specific categories (e.g., PM2.5, NOx, etc.)""" if df.empty: return [] if 'category' in df.columns: return sorted(df['category'].dropna().unique().tolist()) return [] def get_locations(): """Get unique locations (e.g., Urban, Rural, etc.)""" if df.empty: return [] if 'location' in df.columns: return sorted(df['location'].dropna().unique().tolist()) return [] def get_impacts(): """Get unique impact types (e.g., Primary Health, etc.)""" if df.empty: return [] if 'impact' in df.columns: return sorted(df['impact'].dropna().unique().tolist()) return [] def get_regions(): """Get unique regions""" if df.empty: return [] if 'region' in df.columns: return sorted(df['region'].dropna().unique().tolist()) return [] def filter_data(countries=None, topics=None, categories=None, locations=None, impacts=None, regions=None, min_value=None, max_value=None, search_text=None): """Filter dataset based on user selections""" if df.empty: return pd.DataFrame() filtered_df = df.copy() # Filter by countries if countries and len(countries) > 0: filtered_df = filtered_df[filtered_df['country'].isin(countries)] # Filter by topics (Air Pollution, Water Pollution, etc.) if topics and len(topics) > 0: filtered_df = filtered_df[filtered_df['topic'].isin(topics)] # Filter by specific categories (PM2.5, NOx, etc.) if categories and len(categories) > 0: filtered_df = filtered_df[filtered_df['category'].isin(categories)] # Filter by locations (Urban, Rural, etc.) if locations and len(locations) > 0: filtered_df = filtered_df[filtered_df['location'].isin(locations)] # Filter by impacts (Primary Health, etc.) if impacts and len(impacts) > 0: filtered_df = filtered_df[filtered_df['impact'].isin(impacts)] # Filter by regions if regions and len(regions) > 0: filtered_df = filtered_df[filtered_df['region'].isin(regions)] # Filter by value range if min_value is not None or max_value is not None: if min_value is not None: filtered_df = filtered_df[filtered_df['value'] >= min_value] if max_value is not None: filtered_df = filtered_df[filtered_df['value'] <= max_value] # Search filter - search across multiple text columns if search_text and search_text.strip(): search_text = search_text.strip().lower() mask = ( filtered_df['country'].str.lower().str.contains(search_text, na=False) | filtered_df['topic'].str.lower().str.contains(search_text, na=False) | filtered_df['category'].str.lower().str.contains(search_text, na=False) | filtered_df['location'].str.lower().str.contains(search_text, na=False) | filtered_df['impact'].str.lower().str.contains(search_text, na=False) | filtered_df['region'].str.lower().str.contains(search_text, na=False) ) filtered_df = filtered_df[mask] return filtered_df def create_bar_chart(filtered_df): """Create a bar chart showing value factors by country and specific impact category""" if filtered_df.empty: fig = go.Figure() fig.add_annotation( text="No data available for the selected filters", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig # Create a composite key for proper comparison level: category + location + impact filtered_df['impact_category'] = ( filtered_df['category'].astype(str) + ' (' + filtered_df['location'].astype(str) + ', ' + filtered_df['impact'].astype(str) + ')' ) # Group by country and the composite impact category grouped = filtered_df.groupby(['country', 'impact_category', 'topic'])['value'].mean().reset_index() fig = px.bar( grouped, x='country', y='value', color='impact_category', title="Value Factors by Country and Specific Impact Category", labels={'value': "Value Factor (USD)", 'country': "Country", 'impact_category': "Impact Category"}, barmode='group', hover_data=['topic'] ) fig.update_layout(xaxis_tickangle=-45, height=600) return fig def create_map_visualization(filtered_df): """Create a choropleth map showing value factors by country""" if filtered_df.empty: fig = go.Figure() fig.add_annotation( text="No data available for the selected filters", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig # Aggregate by country country_data = filtered_df.groupby('country')['value'].mean().reset_index() # Get ISO codes for the map iso_data = filtered_df.groupby('country')['iso_code'].first().reset_index() country_data = country_data.merge(iso_data, on='country') fig = px.choropleth( country_data, locations='iso_code', locationmode='ISO-3', color='value', hover_name='country', title="Global Value Factors by Country", labels={'value': "Avg Value Factor (USD)"}, color_continuous_scale="Viridis" ) fig.update_layout(height=600) return fig def create_comparison_chart(filtered_df): """Create a comparison chart showing specific impact categories across selected countries""" if filtered_df.empty: fig = go.Figure() fig.add_annotation( text="No data available for the selected filters", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig # Create a composite key for proper comparison level: category + location + impact filtered_df['impact_category'] = ( filtered_df['category'].astype(str) + ' (' + filtered_df['location'].astype(str) + ', ' + filtered_df['impact'].astype(str) + ')' ) # Group by the composite impact category and country grouped = filtered_df.groupby(['impact_category', 'country', 'topic'])['value'].mean().reset_index() fig = px.bar( grouped, x='impact_category', y='value', color='country', title="Specific Impact Category Comparison Across Countries", labels={'value': "Value Factor (USD)", 'impact_category': "Impact Category"}, barmode='group', hover_data=['topic'] ) fig.update_layout(xaxis_tickangle=-45, height=600) return fig def create_box_plot(filtered_df): """Create a box plot showing distribution of value factors by specific impact categories""" if filtered_df.empty: fig = go.Figure() fig.add_annotation( text="No data available for the selected filters", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig # Create a composite key for proper comparison level: category + location + impact filtered_df['impact_category'] = ( filtered_df['category'].astype(str) + ' (' + filtered_df['location'].astype(str) + ', ' + filtered_df['impact'].astype(str) + ')' ) fig = px.box( filtered_df, x='impact_category', y='value', color='country', title="Distribution of Value Factors by Specific Impact Category", labels={'value': "Value Factor (USD)", 'impact_category': "Impact Category"}, hover_data=['topic'] ) fig.update_layout(xaxis_tickangle=-45, height=600) return fig def get_summary_stats(filtered_df): """Generate summary statistics for filtered data""" if filtered_df.empty: return "No data available for the selected filters" stats = filtered_df['value'].describe() summary = f""" ### Summary Statistics - **Count**: {stats['count']:.0f} data points - **Mean**: ${stats['mean']:.4f} - **Median**: ${stats['50%']:.4f} - **Std Dev**: ${stats['std']:.4f} - **Min**: ${stats['min']:.4f} - **Max**: ${stats['max']:.4f} - **25th Percentile**: ${stats['25%']:.4f} - **75th Percentile**: ${stats['75%']:.4f} """ return summary def get_data_table(filtered_df, max_rows=1000): """Return filtered data as a dataframe with formatted values""" if filtered_df.empty: return pd.DataFrame({"Message": ["No data available for the selected filters"]}) # Create a copy and format the value column display_df = filtered_df.head(max_rows).copy() # Format the value column with dollar sign and commas if 'value' in display_df.columns: display_df['value'] = display_df['value'].apply(lambda x: f"${x:,.2f}" if pd.notna(x) else "") return display_df # Create Gradio interface with gr.Blocks(title="GVFD Navigator", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # Global Value Factor Database Navigator Explore environmental and social impact value factors by country from the IFVI Global Value Factor Database. This visualization tool allows you to: - Filter by country and impact topic (Air Pollution, Water Pollution, etc.) - Compare **specific impact categories** (e.g., PM2.5 in Urban areas for Primary Health) - View interactive data table as primary visualization - Explore charts, maps, and statistical distributions **Important**: Value factors are comparable at the **category + location + impact** level within each topic. For example, within "Air Pollution", individual measurements like "PM2.5 (Urban, Primary Health)" are comparable across countries. **Data Source**: [IFVI Global Value Factor Database V2](https://huggingface.co/datasets/danielrosehill/Global-Value-Factor-Database-Refactor-V2) """) # Filters section at the top gr.Markdown("## 🔍 Filters") with gr.Row(): with gr.Column(scale=2): country_selector = gr.Dropdown( choices=get_countries(), multiselect=True, label="Select Country/Countries", info="Start typing to search...", value=None ) with gr.Column(scale=2): category_selector = gr.Dropdown( choices=get_categories(), multiselect=True, label="Select Impact Categories", info="Air Pollution, Water Pollution, Land Use, etc.", value=None ) with gr.Column(scale=1): refresh_btn = gr.Button("Apply Filters", variant="primary", size="lg") # Data table as primary visualization gr.Markdown("## 📊 Data Table") data_table = gr.Dataframe( label="Filtered Value Factors", wrap=True, interactive=False, value=df.head(100) # Show initial data ) with gr.Row(): with gr.Column(): gr.Markdown("### Summary Statistics") stats_output = gr.Markdown() # Additional visualizations below the table gr.Markdown("## 📈 Additional Visualizations") with gr.Tabs(): with gr.Tab("Bar Chart"): bar_chart = gr.Plot(label="Value Factors by Country") with gr.Tab("World Map"): map_chart = gr.Plot(label="Global Value Factor Distribution") with gr.Tab("Category Comparison"): comparison_chart = gr.Plot(label="Category Comparison") with gr.Tab("Distribution"): box_plot = gr.Plot(label="Value Factor Distribution") with gr.Tab("About"): gr.Markdown(""" # About GVFD Navigator ## Purpose of This Tool The **GVFD Navigator** is an interactive visualization tool designed to help researchers, analysts, policymakers, and sustainability professionals explore the Global Value Factor Database (GVFD). This navigator enables you to: - **Filter and explore** environmental and social impact value factors by country and category - **Visualize patterns** in how different countries value environmental impacts - **Compare regions** to identify global trends and outliers - **Export and analyze** filtered data for your own research or reporting needs - **Understand monetary valuations** of environmental impacts across 229 countries This tool transforms the raw GVFD dataset into accessible, interactive visualizations that make it easier to understand how environmental and social impacts translate into economic terms across different regions. --- ## About the Global Value Factor Database (GVFD) ### What is the GVFD? The **Global Value Factor Database** is a pioneering dataset developed by the [International Foundation for Valuing Impacts (IFVI)](https://www.ifvi.org/) that converts non-financial environmental and social impacts into standardized monetary values (US Dollars). The database represents a groundbreaking framework for evaluating global value creation by translating companies' environmental and social impacts into financial equivalents, enabling a more holistic assessment of corporate and organizational performance. ### Methodology The GVFD uses a rigorous methodology to: - Convert non-financial environmental and social impacts into standardized monetary values - Provide value factors as multipliers to calculate monetary equivalents of impacts - Standardize impact accounting across different domains and geographies - Enable currency conversion for non-USD jurisdictions - Support integration into financial reporting and impact accounting systems ### Coverage - **229 countries and territories** worldwide - **205 countries with ISO codes** (89.5% coverage) - **~115,000 individual measurements** across all categories - **7 major world regions** represented - **50 US states** included for detailed US analysis ### Impact Categories The GVFD covers five major environmental impact categories: 1. **Air Pollution** - Value factors for atmospheric emissions and air quality impacts 2. **Land Use and Conservation** - Monetary values for land use changes and conservation impacts 3. **Waste Generation** - Economic valuations of waste production and management 4. **Water Consumption** - Value factors for water use and depletion 5. **Water Pollution** - Monetary values for water quality degradation and contamination ### Unique Features - **Standardized monetary conversion** enables comparison across impact types and geographies - **Comprehensive global coverage** includes nearly all countries and territories - **Detailed methodological documentation** ensures transparency and reproducibility - **Currency flexibility** allows conversion to local currencies for regional analysis - **Integration-ready** format supports incorporation into existing impact accounting systems ### Use Cases The GVFD and this navigator can support: - **Corporate sustainability reporting** - Quantify environmental impacts in financial terms - **ESG analysis** - Evaluate environmental performance with monetary metrics - **Policy modeling** - Assess economic costs of environmental impacts for policy decisions - **Impact investing** - Evaluate and compare environmental impact of investments - **AI and machine learning** - Train models on environmental impact valuations - **Academic research** - Study relationships between environmental impacts and economic values - **Correlation analysis** - Identify patterns in how different countries value environmental impacts --- ## Data Source and Attribution **Original Data**: [IFVI Global Value Factor Database V2](https://huggingface.co/datasets/danielrosehill/Global-Value-Factor-Database-Refactor-V2) **Dataset Developer**: International Foundation for Valuing Impacts (IFVI) **Official Website**: [https://www.ifvi.org/](https://www.ifvi.org/) **Navigator Tool**: This is an **unofficial visualization tool** created to make the GVFD more accessible. For official data, methodologies, and authoritative guidance, please consult IFVI's official resources. --- ## Disclaimer This navigator is an independent visualization tool and is not officially endorsed by IFVI. While every effort has been made to accurately represent the data, users should refer to the original GVFD dataset and IFVI's official documentation for authoritative information and methodology details. The monetary values provided represent economic valuations of environmental impacts based on IFVI's methodology and should be interpreted within the context of their methodological framework. --- ## Technical Details - **Built with**: Gradio, Plotly, Pandas, Hugging Face Datasets - **Data Format**: Parquet files loaded from Hugging Face Hub - **Visualizations**: Interactive charts using Plotly for exploration and analysis - **Filtering**: Dynamic filtering by country, category, and value ranges For questions, feedback, or issues with this navigator tool, please visit the [GitHub repository](https://huggingface.co/spaces/danielrosehill/GVFD-Navigator) or contact the tool maintainer. """) gr.Markdown(""" --- ### About the Data The Global Value Factor Database (GVFD) by the International Foundation for Valuing Impacts (IFVI) provides standardized methods to convert environmental and social impacts into monetary values. **Categories**: - Air Pollution - Land Use and Conservation - Waste Generation - Water Consumption - Water Pollution **Coverage**: 229 countries and territories, 50 US states, 7 world regions **Disclaimer**: This is an unofficial visualization tool. For official data and methodology, please visit [IFVI's website](https://www.ifvi.org/). """) # Event handlers def update_all(countries, categories): """Update all views when filters are applied""" return ( get_data_table(countries, categories), get_summary_stats(countries, categories), create_bar_chart(countries, categories), create_map_visualization(countries, categories), create_comparison_chart(countries, categories), create_box_plot(countries, categories) ) # Wire up the unified filter button refresh_btn.click( fn=update_all, inputs=[country_selector, category_selector], outputs=[data_table, stats_output, bar_chart, map_chart, comparison_chart, box_plot] ) if __name__ == "__main__": demo.launch()