import os import pandas as pd import numpy as np import easyocr import streamlit as st from annotated_text import annotated_text from streamlit_option_menu import option_menu from sentiment_analysis import SentimentAnalysis from keyword_extraction import KeywordExtractor from part_of_speech_tagging import POSTagging from emotion_detection import EmotionDetection from named_entity_recognition import NamedEntityRecognition from Object_Detector import ObjectDetector from OCR_Detector import OCRDetector import PIL from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont import time # Imports de Object Detection import tensorflow as tf import tensorflow_hub as hub # Load compressed models from tensorflow_hub os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import matplotlib.pyplot as plt import matplotlib as mpl # For drawing onto the image. import numpy as np from tensorflow.python.ops.numpy_ops import np_config np_config.enable_numpy_behavior() import torch import librosa from models import infere_speech_emotion, infere_text_emotion, infere_voice2text st.set_page_config(layout="wide") hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) @st.cache_resource def load_sentiment_model(): return SentimentAnalysis() @st.cache_resource def load_keyword_model(): return KeywordExtractor() @st.cache_resource def load_pos_model(): return POSTagging() @st.cache_resource def load_emotion_model(): return EmotionDetection() @st.cache_resource def load_ner_model(): return NamedEntityRecognition() @st.cache_resource def load_objectdetector_model(): return ObjectDetector() @st.cache_resource def load_ocrdetector_model(): return OCRDetector() sentiment_analyzer = load_sentiment_model() keyword_extractor = load_keyword_model() pos_tagger = load_pos_model() emotion_detector = load_emotion_model() ner = load_ner_model() objectdetector1 = load_objectdetector_model() ocrdetector1 = load_ocrdetector_model() def rectangle(image, result): draw = ImageDraw.Draw(image) for res in result: top_left = tuple(res[0][0]) # top left coordinates as tuple bottom_right = tuple(res[0][2]) # bottom right coordinates as tuple draw.rectangle((top_left, bottom_right), outline="blue", width=2) st.image(image) example_text = "My name is Daniel: The attention to detail, swift resolution, and accuracy demonstrated by ITACA Insurance Company in Spain in handling my claim were truly impressive. This undoubtedly reflects their commitment to being a customer-centric insurance provider." with st.sidebar: image = Image.open('./itaca_logo.png') st.image(image,width=150) #use_column_width=True) page = option_menu(menu_title='Menu', menu_icon="robot", options=["Sentiment Analysis", "Keyword Extraction", "Part of Speech Tagging", "Emotion Detection", "Named Entity Recognition", "Speech & Text Emotion", "Object Detector", "OCR Detector"], icons=["chat-dots", "key", "tag", "emoji-heart-eyes", "building", "book", "camera", "list-task"], default_index=0 ) st.title('ITACA Insurance Core AI Module') # Replace '20px' with your desired font size font_size = '20px' if page == "Sentiment Analysis": st.header('Sentiment Analysis') # st.markdown("![Alt Text](https://media.giphy.com/media/XIqCQx02E1U9W/giphy.gif)") st.write( """ """ ) text = st.text_area("Paste text here", value=example_text) if st.button('🔥 Run!'): with st.spinner("Loading..."): preds, html = sentiment_analyzer.run(text) st.success('All done!') st.write("") st.subheader("Sentiment Predictions") st.bar_chart(data=preds, width=0, height=0, use_container_width=True) st.write("") st.subheader("Sentiment Justification") raw_html = html._repr_html_() st.components.v1.html(raw_html, height=500) elif page == "Keyword Extraction": st.header('Keyword Extraction') # st.markdown("![Alt Text](https://media.giphy.com/media/xT9C25UNTwfZuk85WP/giphy-downsized-large.gif)") st.write( """ """ ) text = st.text_area("Paste text here", value=example_text) max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1) if st.button('🔥 Run!'): with st.spinner("Loading..."): annotation, keywords = keyword_extractor.generate(text, max_keywords) st.success('All done!') if annotation: st.subheader("Keyword Annotation") st.write("") annotated_text(*annotation) st.text("") st.subheader("Extracted Keywords") st.write("") df = pd.DataFrame(keywords, columns=['Extracted Keywords']) csv = df.to_csv(index=False).encode('utf-8') st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv') data_table = st.table(df) elif page == "Part of Speech Tagging": st.header('Part of Speech Tagging') # st.markdown("![Alt Text](https://media.giphy.com/media/WoWm8YzFQJg5i/giphy.gif)") st.write( """ """ ) text = st.text_area("Paste text here", value=example_text) if st.button('🔥 Run!'): with st.spinner("Loading..."): preds = pos_tagger.classify(text) st.success('All done!') st.write("") st.subheader("Part of Speech tags") annotated_text(*preds) st.write("") st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000) elif page == "Emotion Detection": st.header('Emotion Detection') # st.markdown("![Alt Text](https://media.giphy.com/media/fU8X6ozSszyEw/giphy.gif)") st.write( """ """ ) text = st.text_area("Paste text here", value=example_text) if st.button('🔥 Run!'): with st.spinner("Loading..."): preds, html = emotion_detector.run(text) st.success('All done!') st.write("") st.subheader("Emotion Predictions") st.bar_chart(data=preds, width=0, height=0, use_container_width=True) raw_html = html._repr_html_() st.write("") st.subheader("Emotion Justification") st.components.v1.html(raw_html, height=500) elif page == "Named Entity Recognition": st.header('Named Entity Recognition') # st.markdown("![Alt Text](https://media.giphy.com/media/lxO8wdWdu4tig/giphy.gif)") st.write( """ """ ) text = st.text_area("Paste text here", value=example_text) if st.button('🔥 Run!'): with st.spinner("Loading..."): preds, ner_annotation = ner.classify(text) st.success('All done!') st.write("") st.subheader("NER Predictions") annotated_text(*ner_annotation) st.write("") st.subheader("NER Prediction Metadata") st.write(preds) elif page == "Object Detector": st.header('Object Detector') st.write( """ """ ) img_file_buffer = st.file_uploader("Load an image", type=["png", "jpg", "jpeg"]) if img_file_buffer is not None: image = np.array(Image.open(img_file_buffer)) if st.button('🔥 Run!'): with st.spinner("Loading..."): img, primero = objectdetector1.run_detector(image) st.success('The first image detected is: ' + primero) st.image(img, caption="Imagen", use_column_width=True) elif page == "OCR Detector": st.header('OCR Detector') st.write( """ """ ) file = st.file_uploader("Load an image", type=["png", "jpg", "jpeg"]) #read the csv file and display the dataframe if file is not None: image = Image.open(file) # read image with PIL library if st.button('🔥 Run!'): with st.spinner("Loading..."): result = ocrdetector1.reader.readtext(np.array(image)) # turn image to numpy array # collect the results in dictionary: textdic_easyocr = {} for idx in range(len(result)): pred_coor = result[idx][0] pred_text = result[idx][1] pred_confidence = result[idx][2] textdic_easyocr[pred_text] = {} textdic_easyocr[pred_text]['pred_confidence'] = pred_confidence # get boxes on the image rectangle(image, result) # create a dataframe which shows the predicted text and prediction confidence df = pd.DataFrame.from_dict(textdic_easyocr).T st.table(df) elif page == "Speech & Text Emotion": st.header('Speech & Text Emotion') st.write( """ """ ) uploaded_file = st.file_uploader("Choose an audio file", type=["mp3", "wav", "ogg"]) if uploaded_file is not None: st.audio(uploaded_file, format='audio/' + uploaded_file.type.split('/')[1]) st.write("Audio file uploaded and playing.") else: st.write("Please upload an audio file.") if st.button("Analysis"): with st.spinner("Loading..."): st.header('Results of the Audio & Text analysis:') samples, sample_rate = librosa.load(uploaded_file, sr=16000) p_voice2text = infere_voice2text (samples) p_speechemotion = infere_speech_emotion(samples) p_textemotion = infere_text_emotion(p_voice2text) st.subheader("Text from the Audio:") st.write(p_voice2text) st.write("---") st.subheader("Speech emotion:") st.write(p_speechemotion) st.write("---") st.subheader("Text emotion:") st.write(p_textemotion) st.write("---")