import pandas as pd import torch from transformers import AutoTokenizer, AutoModel, set_seed from tqdm import tqdm from utils import clean_text from model import MimicTransformer set_seed(42) def read_model(model, path): model.load_state_dict(torch.load(path, map_location=torch.device('cuda')), strict=False) return model model_path = 'checkpoint_0_9113.bin' mimic = MimicTransformer(cutoff=512) mimic = read_model(model=mimic, path=model_path) mimic.eval() mimic.cuda() tokenizer = mimic.tokenizer summaries = pd.read_csv('all_summaries_backup.csv')['SUMMARIES'] def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def get_model_outputs(text): inputs = tokenizer(text, return_tensors='pt', padding='max_length', max_length=512, truncation=True).to('cuda') outputs = mimic(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, drg_labels=None) # pooled = mean_pooling(outputs[0][0], inputs['attention_mask']) pooled = outputs[0][0] normalized = pooled/pooled.norm(dim=1)[:,None] return normalized return_tensors = torch.zeros(size=(10000, 738)) non_defunct_summaries = [] for i, summary in tqdm(enumerate(summaries[:50000])): cleaned = clean_text(summary) if len(non_defunct_summaries) == 10000: break if len(cleaned) > 100: non_defunct_summaries.append(cleaned) for i, summary in tqdm(enumerate(non_defunct_summaries)): res = get_model_outputs(text=summary) return_tensors[i, :] = res.detach().cpu() # sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # sentence_embeddings = sentence_embeddings/sentence_embeddings.norm(dim=1)[:,None] pd.DataFrame(data={'SUMMARIES':non_defunct_summaries}).to_csv('all_summaries.csv', index=False) torch.save(return_tensors, f='discharge_embeddings.pt')