import numpy as np import torch import os from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512', model_version=None): gan = LightweightGAN.from_pretrained(model_name, version=model_version, token=os.environ["access_token"]) gan.eval() return gan def generate(gan, batch_size=1): with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255 ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8) return ims