import os import librosa import re import numpy as np import torch import xml.etree.ElementTree as ET import config import soundfile as sf from io import BytesIO from graiax import silkcoder from utils import utils from logger import logger # torch.set_num_threads(1) # 设置torch线程为1 class TTS: def __init__(self, voice_obj, voice_speakers, w2v2_emotion_count=0, device=torch.device("cpu")): self._voice_obj = voice_obj self._voice_speakers = voice_speakers self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25} self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers]) self._vits_speakers_count = len(self._voice_speakers["VITS"]) self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"]) self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"]) self._w2v2_emotion_count = w2v2_emotion_count self._bert_vits2_speakers_count = len(self._voice_speakers["BERT-VITS2"]) self.dem = None # Initialization information self.logger = logger self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}") self.logger.info(f'device:{device} device.type:{device.type}') if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None: try: import audonnx root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL) model_file = config.DIMENSIONAL_EMOTION_MODEL self.dem = audonnx.load(root=root, model_file=model_file) except Exception as e: self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}") if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers") if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers") if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers") if self._bert_vits2_speakers_count != 0: self.logger.info(f"[Bert-VITS2] {self._bert_vits2_speakers_count} speakers") self.logger.info(f"{self._speakers_count} speakers in total.") if self._speakers_count == 0: self.logger.warning(f"No model was loaded.") @property def voice_speakers(self): return self._voice_speakers @property def speakers_count(self): return self._speakers_count @property def vits_speakers_count(self): return self._vits_speakers_count @property def hubert_speakers_count(self): return self._hubert_speakers_count @property def w2v2_speakers_count(self): return self._w2v2_speakers_count @property def w2v2_emotion_count(self): return self._w2v2_emotion_count @property def bert_vits2_speakers_count(self): return self._bert_vits2_speakers_count def encode(self, sampling_rate, audio, format): with BytesIO() as f: if format.upper() == 'OGG': sf.write(f, audio, sampling_rate, format="ogg") return BytesIO(f.getvalue()) elif format.upper() == 'SILK': sf.write(f, audio, sampling_rate, format="wav") return BytesIO(silkcoder.encode(f)) elif format.upper() == 'MP3': sf.write(f, audio, sampling_rate, format="mp3") return BytesIO(f.getvalue()) elif format.upper() == 'WAV': sf.write(f, audio, sampling_rate, format="wav") return BytesIO(f.getvalue()) elif format.upper() == 'FLAC': sf.write(f, audio, sampling_rate, format="flac") return BytesIO(f.getvalue()) else: raise ValueError(f"Unsupported format:{format}") def convert_time_string(self, time_string): time_value = float(re.findall(r'\d+\.?\d*', time_string)[0]) time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower() if time_unit.upper() == 'MS': return time_value / 1000 elif time_unit.upper() == 'S': return time_value elif time_unit.upper() == 'MIN': return time_value * 60 elif time_unit.upper() == 'H': return time_value * 3600 elif time_unit.upper() == 'D': return time_value * 24 * 3600 # 不会有人真写D吧? else: raise ValueError("Unsupported time unit: {}".format(time_unit)) def generate_audio_chunks(self, audio): chunk_size = 4096 while True: chunk = audio.read(chunk_size) if not chunk: break yield chunk def parse_ssml(self, ssml): root = ET.fromstring(ssml) format = root.attrib.get("format", "wav") voice_tasks = [] brk_count = 0 strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25} for element in root.iter(): if element.tag == "voice": id = int(element.attrib.get("id", root.attrib.get("id", config.ID))) lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG)) length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH))) noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE))) noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW))) max = int(element.attrib.get("max", root.attrib.get("max", "0"))) # 不填写默认就是vits model = element.attrib.get("model", root.attrib.get("model", "vits")) # w2v2-vits/emotion-vits才有emotion emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0))) voice_element = ET.tostring(element, encoding='unicode') pattern_voice = r'(.*?)' pattern_break = r'' matches_voice = re.findall(pattern_voice, voice_element)[0] matches_break = re.split(pattern_break, matches_voice) for match in matches_break: strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match) time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match) # break标签 strength属性 if strength: brk = strength_dict[strength.group(1)] voice_tasks.append({"break": brk}) brk_count += 1 # break标签 time属性 elif time: brk = self.convert_time_string(time.group(1)) voice_tasks.append({"break": brk}) brk_count += 1 # break标签 为空说明只写了break,默认停顿0.75s elif match == "": voice_tasks.append({"break": 0.75}) brk_count += 1 # voice标签中除了break剩下的就是文本 else: voice_tasks.append({"id": id, "text": match, "lang": lang, "length": length, "noise": noise, "noisew": noisew, "max": max, "model": model, "emotion": emotion }) # 分段末尾停顿0.75s voice_tasks.append({"break": 0.75}) elif element.tag == "break": # brk_count大于0说明voice标签中有break if brk_count > 0: brk_count -= 1 continue brk = strength_dict.get(element.attrib.get("strength"), self.convert_time_string(element.attrib.get("time", "750ms"))) voice_tasks.append({"break": brk}) for i in voice_tasks: self.logger.debug(i) return voice_tasks, format def create_ssml_infer_task(self, voice_tasks, format, fname): audios = [] for voice in voice_tasks: if voice.get("break"): audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16)) else: model = voice.get("model").upper() if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS": raise ValueError(f"Unsupported model: {voice.get('model')}") voice_obj = self._voice_obj[model][voice.get("id")][1] voice["id"] = self._voice_obj[model][voice.get("id")][0] audio = voice_obj.get_audio(voice) audios.append(audio) audio = np.concatenate(audios, axis=0) encoded_audio = self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio def vits_infer(self, voice, fname): format = voice.get("format", "wav") voice_obj = self._voice_obj["VITS"][voice.get("id")][1] voice["id"] = self._voice_obj["VITS"][voice.get("id")][0] sampling_rate = voice_obj.hps_ms.data.sampling_rate audio = voice_obj.get_audio(voice, auto_break=True) encoded_audio = self.encode(sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio def stream_vits_infer(self, voice, fname): format = voice.get("format", "wav") voice_obj = self._voice_obj["VITS"][voice.get("id")][1] voice["id"] = self._voice_obj["VITS"][voice.get("id")][0] sampling_rate = voice_obj.hps_ms.data.sampling_rate genertator = voice_obj.get_stream_audio(voice, auto_break=True) audio = BytesIO() for chunk in genertator: encoded_audio = self.encode(sampling_rate, chunk, format) for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio): yield encoded_audio_chunk if getattr(config, "SAVE_AUDIO", False): audio.write(encoded_audio.getvalue()) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(audio.getvalue(), path) def hubert_vits_infer(self, voice, fname): format = voice.get("format", "wav") voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1] voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0] sampling_rate = voice_obj.hps_ms.data.sampling_rate audio = voice_obj.get_audio(voice) encoded_audio = self.encode(sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio def w2v2_vits_infer(self, voice, fname): format = voice.get("format", "wav") voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1] voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0] sampling_rate = voice_obj.hps_ms.data.sampling_rate audio = voice_obj.get_audio(voice, auto_break=True) encoded_audio = self.encode(sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio def vits_voice_conversion(self, voice, fname): original_id = voice.get("original_id") target_id = voice.get("target_id") format = voice.get("format") original_id_obj = int(self._voice_obj["VITS"][original_id][2]) target_id_obj = int(self._voice_obj["VITS"][target_id][2]) if original_id_obj != target_id_obj: raise ValueError(f"speakers are in diffrent VITS Model") voice["original_id"] = int(self._voice_obj["VITS"][original_id][0]) voice["target_id"] = int(self._voice_obj["VITS"][target_id][0]) voice_obj = self._voice_obj["VITS"][original_id][1] sampling_rate = voice_obj.hps_ms.data.sampling_rate audio = voice_obj.voice_conversion(voice) encoded_audio = self.encode(sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio def get_dimensional_emotion_npy(self, audio): if self.dem is None: raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py") audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True) emotion = self.dem(audio16000, sampling_rate)['hidden_states'] emotion_npy = BytesIO() np.save(emotion_npy, emotion.squeeze(0)) emotion_npy.seek(0) return emotion_npy def bert_vits2_infer(self, voice, fname): format = voice.get("format", "wav") voice_obj = self._voice_obj["BERT-VITS2"][voice.get("id")][1] voice["id"] = self._voice_obj["BERT-VITS2"][voice.get("id")][0] sampling_rate = voice_obj.hps_ms.data.sampling_rate audio = voice_obj.get_audio(voice, auto_break=True) encoded_audio = self.encode(sampling_rate, audio, format) if getattr(config, "SAVE_AUDIO", False): path = f"{config.CACHE_PATH}/{fname}" utils.save_audio(encoded_audio.getvalue(), path) return encoded_audio