import scipy import scipy.sparse import scipy.sparse.linalg from scipy.io import loadmat import sys import os import os.path as osp import math import numpy as np import open3d as o3d import potpourri3d as pp3d import torch from pathlib import Path class CorrLoader(object): def __init__(self, root_dir, data_type='mat'): self.root_dir = root_dir self.data_type = data_type def get_by_names(self, sname0, sname1): if self.data_type.endswith('mat'): pmap10 = self._load_mat(osp.join(self.root_dir, f'{sname0}-{sname1}.mat')) return np.stack((pmap10, np.arange(len(pmap10))), axis=1) else: raise RuntimeError(f'Data type {self.data_type} is not supported.') def _load_mat(self, filepath): data = loadmat(filepath) pmap10 = np.squeeze(np.asarray(data['pmap10'], dtype=np.int32)) return pmap10 # https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/HKS_functions.py def HKS(evals, evects, time_list, scaled=False): evals_s = np.asarray(evals).flatten() t_list = np.asarray(time_list).flatten() coefs = np.exp(-np.outer(t_list, evals_s)) weighted_evects = evects[None, :, :] * coefs[:, None, :] natural_HKS = np.einsum('tnk,nk->nt', weighted_evects, evects) if scaled: inv_scaling = coefs.sum(1) return (1 / inv_scaling)[None, :] * natural_HKS else: return natural_HKS def lm_HKS(evals, evects, landmarks, time_list, scaled=False): evals_s = np.asarray(evals).flatten() t_list = np.asarray(time_list).flatten() coefs = np.exp(-np.outer(t_list, evals_s)) weighted_evects = evects[None, landmarks, :] * coefs[:, None, :] landmarks_HKS = np.einsum('tpk,nk->ptn', weighted_evects, evects) if scaled: inv_scaling = coefs.sum(1) landmarks_HKS = (1 / inv_scaling)[None, :, None] * landmarks_HKS return landmarks_HKS.reshape(-1, evects.shape[0]).T def auto_HKS(evals, evects, num_T, landmarks=None, scaled=True): abs_ev = sorted(np.abs(evals)) t_list = np.geomspace(4 * np.log(10) / abs_ev[-1], 4 * np.log(10) / abs_ev[1], num_T) if landmarks is None: return HKS(abs_ev, evects, t_list, scaled=scaled) else: return lm_HKS(abs_ev, evects, landmarks, t_list, scaled=scaled) # https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/WKS_functions.py def WKS(evals, evects, energy_list, sigma, scaled=False): assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}" evals = np.asarray(evals).flatten() indices = np.where(evals > 1e-5)[0].flatten() evals = evals[indices] evects = evects[:, indices] e_list = np.asarray(energy_list) coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2)) weighted_evects = evects[None, :, :] * coefs[:, None, :] natural_WKS = np.einsum('tnk,nk->nt', weighted_evects, evects) if scaled: inv_scaling = coefs.sum(1) return (1 / inv_scaling)[None, :] * natural_WKS else: return natural_WKS def lm_WKS(evals, evects, landmarks, energy_list, sigma, scaled=False): assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}" evals = np.asarray(evals).flatten() indices = np.where(evals > 1e-2)[0].flatten() evals = evals[indices] evects = evects[:, indices] e_list = np.asarray(energy_list) coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2)) weighted_evects = evects[None, landmarks, :] * coefs[:, None, :] landmarks_WKS = np.einsum('tpk,nk->ptn', weighted_evects, evects) if scaled: inv_scaling = coefs.sum(1) landmarks_WKS = ((1 / inv_scaling)[None, :, None] * landmarks_WKS) return landmarks_WKS.reshape(-1, evects.shape[0]).T def auto_WKS(evals, evects, num_E, landmarks=None, scaled=True): abs_ev = sorted(np.abs(evals)) e_min, e_max = np.log(abs_ev[1]), np.log(abs_ev[-1]) sigma = 7 * (e_max - e_min) / num_E e_min += 2 * sigma e_max -= 2 * sigma energy_list = np.linspace(e_min, e_max, num_E) if landmarks is None: return WKS(abs_ev, evects, energy_list, sigma, scaled=scaled) else: return lm_WKS(abs_ev, evects, landmarks, energy_list, sigma, scaled=scaled) def compute_hks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35): feats = auto_HKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True) feats = feats[:, np.arange(0, feats.shape[1], subsample_step)] feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten() feats /= np.expand_dims(np.sqrt(feats_norm2), 0) return feats.astype(np.float32) def compute_wks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35): feats = auto_WKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True) feats = feats[:, np.arange(0, feats.shape[1], subsample_step)] feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten() feats /= np.expand_dims(np.sqrt(feats_norm2), 0) return feats.astype(np.float32) def compute_geodesic_distance(V, F, vindices): solver = pp3d.MeshHeatMethodDistanceSolver(np.asarray(V, dtype=np.float32), np.asarray(F, dtype=np.int32)) dists = [solver.compute_distance(vid)[vindices] for vid in vindices] dists = np.stack(dists, axis=0) assert dists.ndim == 2 return dists.astype(np.float32) def compute_vertex_normals(vertices, faces): mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces)) mesh.compute_vertex_normals() return np.asarray(mesh.vertex_normals, dtype=np.float32) def compute_surface_area(vertices, faces): mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces)) return mesh.get_surface_area() def numpy_to_open3d_mesh(V, F): # Create an empty TriangleMesh object mesh = o3d.geometry.TriangleMesh() # Set vertices mesh.vertices = o3d.utility.Vector3dVector(V) # Set triangles mesh.triangles = o3d.utility.Vector3iVector(F) return mesh def load_mesh(filepath, scale=True, return_vnormals=False): if os.path.splitext(filepath)[1] == ".obj": #Avoid pre process from open3d V, F = pp3d.read_mesh(filepath) mesh = numpy_to_open3d_mesh(V, F) else: mesh = o3d.io.read_triangle_mesh(filepath) tmat = np.identity(4, dtype=np.float32) center = mesh.get_center() tmat[:3, 3] = -center if scale: smat = np.identity(4, dtype=np.float32) area = mesh.get_surface_area() smat[:3, :3] = np.identity(3, dtype=np.float32) / math.sqrt(area) tmat = smat @ tmat mesh.transform(tmat) vertices = np.asarray(mesh.vertices, dtype=np.float32) faces = np.asarray(mesh.triangles, dtype=np.int32) if return_vnormals: mesh.compute_vertex_normals() vnormals = np.asarray(mesh.vertex_normals, dtype=np.float32) return vertices, faces, vnormals else: return vertices, faces def save_mesh(filepath, vertices, faces): mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces)) o3d.io.write_triangle_mesh(filepath, mesh) def load_geodist(filepath): data = loadmat(filepath) if 'geodist' in data and 'sqrt_area' in data: geodist = np.asarray(data['geodist'], dtype=np.float32) sqrt_area = data['sqrt_area'].toarray().flatten()[0] elif 'G' in data and 'SQRarea' in data: geodist = np.asarray(data['G'], dtype=np.float32) sqrt_area = data['SQRarea'].flatten()[0] else: raise RuntimeError(f'File {filepath} does not have geodesics data.') return geodist, sqrt_area def farthest_point_sampling(points, max_points, random_start=True): import torch_cluster if torch.is_tensor(points): device = points.device is_batch = points.dim() == 3 if not is_batch: points = torch.unsqueeze(points, dim=0) assert points.dim() == 3 B, N, D = points.size() assert N >= max_points bindices = torch.flatten(torch.unsqueeze(torch.arange(B), 1).repeat(1, N)).long().to(device) points = torch.reshape(points, (B * N, D)).float() sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start) if is_batch: sindices = torch.reshape(sindices, (B, max_points)) - torch.unsqueeze(torch.arange(B), 1).long().to(device) * N elif isinstance(points, np.ndarray): device = torch.device('cpu') is_batch = points.ndim == 3 if not is_batch: points = np.expand_dims(points, axis=0) assert points.ndim == 3 B, N, D = points.shape assert N >= max_points bindices = np.tile(np.expand_dims(np.arange(B), 1), (1, N)).flatten() bindices = torch.as_tensor(bindices, device=device).long() points = torch.as_tensor(np.reshape(points, (B * N, D)), device=device).float() sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start) sindices = sindices.cpu().numpy() if is_batch: sindices = np.reshape(sindices, (B, max_points)) - np.expand_dims(np.arange(B), 1) * N else: raise NotImplementedError return sindices def lstsq(A, B): assert A.ndim == B.ndim == 2 sols = scipy.linalg.lstsq(A, B)[0] return sols