# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN import torch import torch.nn as nn import torch.nn.functional as F import torchaudio.transforms as trans from .utils import UpstreamExpert ''' Res2Conv1d + BatchNorm1d + ReLU ''' class Res2Conv1dReluBn(nn.Module): ''' in_channels == out_channels == channels ''' def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): super().__init__() assert channels % scale == 0, "{} % {} != 0".format(channels, scale) self.scale = scale self.width = channels // scale self.nums = scale if scale == 1 else scale - 1 self.convs = [] self.bns = [] for i in range(self.nums): self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) self.bns.append(nn.BatchNorm1d(self.width)) self.convs = nn.ModuleList(self.convs) self.bns = nn.ModuleList(self.bns) def forward(self, x): out = [] spx = torch.split(x, self.width, 1) for i in range(self.nums): if i == 0: sp = spx[i] else: sp = sp + spx[i] # Order: conv -> relu -> bn sp = self.convs[i](sp) sp = self.bns[i](F.relu(sp)) out.append(sp) if self.scale != 1: out.append(spx[self.nums]) out = torch.cat(out, dim=1) return out ''' Conv1d + BatchNorm1d + ReLU ''' class Conv1dReluBn(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): super().__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) self.bn = nn.BatchNorm1d(out_channels) def forward(self, x): return self.bn(F.relu(self.conv(x))) ''' The SE connection of 1D case. ''' class SE_Connect(nn.Module): def __init__(self, channels, se_bottleneck_dim=128): super().__init__() self.linear1 = nn.Linear(channels, se_bottleneck_dim) self.linear2 = nn.Linear(se_bottleneck_dim, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out ''' SE-Res2Block of the ECAPA-TDNN architecture. ''' # def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale): # return nn.Sequential( # Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0), # Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale), # Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0), # SE_Connect(channels) # ) class SE_Res2Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): super().__init__() self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) self.shortcut = None if in_channels != out_channels: self.shortcut = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, ) def forward(self, x): residual = x if self.shortcut: residual = self.shortcut(x) x = self.Conv1dReluBn1(x) x = self.Res2Conv1dReluBn(x) x = self.Conv1dReluBn2(x) x = self.SE_Connect(x) return x + residual ''' Attentive weighted mean and standard deviation pooling. ''' class AttentiveStatsPool(nn.Module): def __init__(self, in_dim, attention_channels=128, global_context_att=False): super().__init__() self.global_context_att = global_context_att # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. if global_context_att: self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper else: self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper def forward(self, x): if self.global_context_att: context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) x_in = torch.cat((x, context_mean, context_std), dim=1) else: x_in = x # DON'T use ReLU here! In experiments, I find ReLU hard to converge. alpha = torch.tanh(self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2 std = torch.sqrt(residuals.clamp(min=1e-9)) return torch.cat([mean, std], dim=1) class ECAPA_TDNN(nn.Module): def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False, feat_type='fbank', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None): super().__init__() self.feat_type = feat_type self.feature_selection = feature_selection self.update_extract = update_extract self.sr = sr if feat_type == "fbank" or feat_type == "mfcc": self.update_extract = False win_len = int(sr * 0.025) hop_len = int(sr * 0.01) if feat_type == 'fbank': self.feature_extract = trans.MelSpectrogram(sample_rate=sr, n_fft=512, win_length=win_len, hop_length=hop_len, f_min=0.0, f_max=sr // 2, pad=0, n_mels=feat_dim) elif feat_type == 'mfcc': melkwargs = { 'n_fft': 512, 'win_length': win_len, 'hop_length': hop_len, 'f_min': 0.0, 'f_max': sr // 2, 'pad': 0 } self.feature_extract = trans.MFCC(sample_rate=sr, n_mfcc=feat_dim, log_mels=False, melkwargs=melkwargs) else: if config_path is None: self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type) else: self.feature_extract = UpstreamExpert(config_path) if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"): self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"): self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False self.feat_num = self.get_feat_num() self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) if feat_type != 'fbank' and feat_type != 'mfcc': freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer'] for name, param in self.feature_extract.named_parameters(): for freeze_val in freeze_list: if freeze_val in name: param.requires_grad = False break if not self.update_extract: for param in self.feature_extract.parameters(): param.requires_grad = False self.instance_norm = nn.InstanceNorm1d(feat_dim) # self.channels = [channels] * 4 + [channels * 3] self.channels = [channels] * 4 + [1536] self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128) self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128) self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128) # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) cat_channels = channels * 3 self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att) self.bn = nn.BatchNorm1d(self.channels[-1] * 2) self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) def get_feat_num(self): self.feature_extract.eval() wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] with torch.no_grad(): features = self.feature_extract(wav) select_feature = features[self.feature_selection] if isinstance(select_feature, (list, tuple)): return len(select_feature) else: return 1 def get_feat(self, x): if self.update_extract: x = self.feature_extract([sample for sample in x]) else: with torch.no_grad(): if self.feat_type == 'fbank' or self.feat_type == 'mfcc': x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len else: x = self.feature_extract([sample for sample in x]) if self.feat_type == 'fbank': x = x.log() if self.feat_type != "fbank" and self.feat_type != "mfcc": x = x[self.feature_selection] if isinstance(x, (list, tuple)): x = torch.stack(x, dim=0) else: x = x.unsqueeze(0) norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) x = (norm_weights * x).sum(dim=0) x = torch.transpose(x, 1, 2) + 1e-6 x = self.instance_norm(x) return x def forward(self, x): x = self.get_feat(x) out1 = self.layer1(x) out2 = self.layer2(out1) out3 = self.layer3(out2) out4 = self.layer4(out3) out = torch.cat([out2, out3, out4], dim=1) out = F.relu(self.conv(out)) out = self.bn(self.pooling(out)) out = self.linear(out) return out def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='fbank', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None): return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim, feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path) if __name__ == '__main__': x = torch.zeros(2, 32000) model = ECAPA_TDNN_SMALL(feat_dim=768, emb_dim=256, feat_type='hubert_base', feature_selection="hidden_states", update_extract=False) out = model(x) # print(model) print(out.shape)