# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn class LSTMCellWithZoneOut(nn.Module): """ Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations https://arxiv.org/abs/1606.01305 """ def __init__( self, prob: float, input_size: int, hidden_size: int, bias: bool = True ): super(LSTMCellWithZoneOut, self).__init__() self.lstm_cell = nn.LSTMCell(input_size, hidden_size, bias=bias) self.prob = prob if prob > 1.0 or prob < 0.0: raise ValueError( "zoneout probability must be in the range from " "0.0 to 1.0." ) def zoneout(self, h, next_h, prob): if isinstance(h, tuple): return tuple([self.zoneout(h[i], next_h[i], prob) for i in range(len(h))]) if self.training: mask = h.new_zeros(*h.size()).bernoulli_(prob) return mask * h + (1 - mask) * next_h return prob * h + (1 - prob) * next_h def forward(self, x, h): return self.zoneout(h, self.lstm_cell(x, h), self.prob)