# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dynamicconv_cuda import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.unfold import unfold1d from torch import nn from torch.autograd import Function class dynamicconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = dynamicconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = dynamicconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors ) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class DynamicconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0.0, bias=False, renorm_padding=False, conv_bias=False, query_size=None, ): super(DynamicconvLayer, self).__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.renorm_padding = renorm_padding self.bias = bias self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_linear.weight) if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) nn.init.constant_(self.weight_linaer.bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): T, B, C = x.size() K, H = self.kernel_size, self.num_heads # R = C // H # during inference time, incremental BMM is faster if incremental_state is not None: unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output # during training time, use CUDA kernel else: weight = self.weight_linear(x).view(T, B, H, K) if self.weight_softmax: weight = F.softmax(weight, dim=-1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) weight = weight.permute(1, 2, 3, 0).contiguous() self.filters = weight x = x.permute(1, 2, 0).contiguous() output = dynamicconvFunction.apply(x, weight, self.padding_l).permute( 2, 0, 1 ) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output