Spaces:
Sleeping
Sleeping
Audio-Deepfake-Detection
/
fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1
/fairseq
/modules
/gumbel_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class GumbelVectorQuantizer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_vars, | |
temp, | |
groups, | |
combine_groups, | |
vq_dim, | |
time_first, | |
activation=nn.GELU(), | |
weight_proj_depth=1, | |
weight_proj_factor=1, | |
): | |
"""Vector quantization using gumbel softmax | |
Args: | |
dim: input dimension (channels) | |
num_vars: number of quantized vectors per group | |
temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) | |
groups: number of groups for vector quantization | |
combine_groups: whether to use the vectors for all groups | |
vq_dim: dimensionality of the resulting quantized vector | |
time_first: if true, expect input in BxTxC format, otherwise in BxCxT | |
activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 | |
weight_proj_depth: number of layers (with activation in between) to project input before computing logits | |
weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of | |
projections by this factor | |
""" | |
super().__init__() | |
self.groups = groups | |
self.combine_groups = combine_groups | |
self.input_dim = dim | |
self.num_vars = num_vars | |
self.time_first = time_first | |
assert ( | |
vq_dim % groups == 0 | |
), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" | |
var_dim = vq_dim // groups | |
num_groups = groups if not combine_groups else 1 | |
self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) | |
nn.init.uniform_(self.vars) | |
if weight_proj_depth > 1: | |
def block(input_dim, output_dim): | |
return nn.Sequential(nn.Linear(input_dim, output_dim), activation) | |
inner_dim = self.input_dim * weight_proj_factor | |
self.weight_proj = nn.Sequential( | |
*[ | |
block(self.input_dim if i == 0 else inner_dim, inner_dim) | |
for i in range(weight_proj_depth - 1) | |
], | |
nn.Linear(inner_dim, groups * num_vars), | |
) | |
else: | |
self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) | |
nn.init.normal_(self.weight_proj.weight, mean=0, std=1) | |
nn.init.zeros_(self.weight_proj.bias) | |
if isinstance(temp, str): | |
import ast | |
temp = ast.literal_eval(temp) | |
assert len(temp) == 3, f"{temp}, {len(temp)}" | |
self.max_temp, self.min_temp, self.temp_decay = temp | |
self.curr_temp = self.max_temp | |
self.codebook_indices = None | |
def set_num_updates(self, num_updates): | |
self.curr_temp = max( | |
self.max_temp * self.temp_decay ** num_updates, self.min_temp | |
) | |
def get_codebook_indices(self): | |
if self.codebook_indices is None: | |
from itertools import product | |
p = [range(self.num_vars)] * self.groups | |
inds = list(product(*p)) | |
self.codebook_indices = torch.tensor( | |
inds, dtype=torch.long, device=self.vars.device | |
).flatten() | |
if not self.combine_groups: | |
self.codebook_indices = self.codebook_indices.view( | |
self.num_vars ** self.groups, -1 | |
) | |
for b in range(1, self.groups): | |
self.codebook_indices[:, b] += self.num_vars * b | |
self.codebook_indices = self.codebook_indices.flatten() | |
return self.codebook_indices | |
def codebook(self): | |
indices = self.get_codebook_indices() | |
return ( | |
self.vars.squeeze(0) | |
.index_select(0, indices) | |
.view(self.num_vars ** self.groups, -1) | |
) | |
def sample_from_codebook(self, b, n): | |
indices = self.get_codebook_indices() | |
indices = indices.view(-1, self.groups) | |
cb_size = indices.size(0) | |
assert ( | |
n < cb_size | |
), f"sample size {n} is greater than size of codebook {cb_size}" | |
sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) | |
indices = indices[sample_idx] | |
z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) | |
return z | |
def to_codebook_index(self, indices): | |
res = indices.new_full(indices.shape[:-1], 0) | |
for i in range(self.groups): | |
exponent = self.groups - i - 1 | |
res += indices[..., i] * (self.num_vars ** exponent) | |
return res | |
def forward_idx(self, x): | |
res = self.forward(x, produce_targets=True) | |
return res["x"], res["targets"] | |
def forward(self, x, produce_targets=False): | |
result = {"num_vars": self.num_vars * self.groups} | |
if not self.time_first: | |
x = x.transpose(1, 2) | |
bsz, tsz, fsz = x.shape | |
x = x.reshape(-1, fsz) | |
x = self.weight_proj(x) | |
x = x.view(bsz * tsz * self.groups, -1) | |
_, k = x.max(-1) | |
hard_x = ( | |
x.new_zeros(*x.shape) | |
.scatter_(-1, k.view(-1, 1), 1.0) | |
.view(bsz * tsz, self.groups, -1) | |
) | |
hard_probs = torch.mean(hard_x.float(), dim=0) | |
result["code_perplexity"] = torch.exp( | |
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) | |
).sum() | |
avg_probs = torch.softmax( | |
x.view(bsz * tsz, self.groups, -1).float(), dim=-1 | |
).mean(dim=0) | |
result["prob_perplexity"] = torch.exp( | |
-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) | |
).sum() | |
result["temp"] = self.curr_temp | |
if self.training: | |
x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) | |
else: | |
x = hard_x | |
x = x.view(bsz * tsz, -1) | |
vars = self.vars | |
if self.combine_groups: | |
vars = vars.repeat(1, self.groups, 1) | |
if produce_targets: | |
result["targets"] = ( | |
x.view(bsz * tsz * self.groups, -1) | |
.argmax(dim=-1) | |
.view(bsz, tsz, self.groups) | |
.detach() | |
) | |
x = x.unsqueeze(-1) * vars | |
x = x.view(bsz * tsz, self.groups, self.num_vars, -1) | |
x = x.sum(-2) | |
x = x.view(bsz, tsz, -1) | |
if not self.time_first: | |
x = x.transpose(1, 2) # BTC -> BCT | |
result["x"] = x | |
return result | |