d22cs051's picture
retriying pushing the code
8273cb9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq import options, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import (
DEFAULT_MIN_PARAMS_TO_WRAP,
Embedding,
TransformerDecoder,
)
from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder
from fairseq.utils import safe_getattr, safe_hasattr
from omegaconf import II
DEFAULT_MAX_TARGET_POSITIONS = 1024
@dataclass
class TransformerLanguageModelConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
relu_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
decoder_embed_dim: int = field(
default=512, metadata={"help": "decoder embedding dimension"}
)
decoder_output_dim: int = field(
default=512, metadata={"help": "decoder output dimension"}
)
decoder_input_dim: int = field(
default=512, metadata={"help": "decoder input dimension"}
)
decoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
decoder_attention_heads: int = field(
default=8, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_decoder_final_norm: bool = field(
default=False,
metadata={"help": "don't add an extra layernorm after the last decoder block"},
)
adaptive_softmax_cutoff: Optional[str] = field(
default=None,
metadata={
"help": "comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion"
},
)
adaptive_softmax_dropout: float = field(
default=0,
metadata={"help": "sets adaptive softmax dropout for the tail projections"},
)
adaptive_softmax_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
character_embeddings: bool = field(
default=False,
metadata={
"help": "if set, uses character embedding convolutions to produce token embeddings"
},
)
character_filters: str = field(
default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]",
metadata={"help": "size of character embeddings"},
)
character_embedding_dim: int = field(
default=4, metadata={"help": "size of character embeddings"}
)
char_embedder_highway_layers: int = field(
default=2,
metadata={"help": "number of highway layers for character token embeddder"},
)
adaptive_input: bool = field(
default=False, metadata={"help": "if set, uses adaptive input"}
)
adaptive_input_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
adaptive_input_cutoff: Optional[str] = field(
default=None,
metadata={"help": "comma separated list of adaptive input cutoff points."},
)
tie_adaptive_weights: bool = field(
default=False,
metadata={
"help": "if set, ties the weights of adaptive softmax and adaptive input"
},
)
tie_adaptive_proj: bool = field(
default=False,
metadata={
"help": "if set, ties the projection weights of adaptive softmax and adaptive input"
},
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
offload_activations: bool = field(
default=False,
metadata={"help": "move checkpointed activations to CPU after they are used."},
)
# config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "LayerDrop probability for decoder"}
)
decoder_layers_to_keep: Optional[str] = field(
default=None,
metadata={
"help": "which layers to *keep* when pruning as a comma-separated list"
},
)
# config for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
quant_noise_pq: float = field(
default=0.0,
metadata={"help": "iterative PQ quantization noise at training time"},
)
quant_noise_pq_block_size: int = field(
default=8,
metadata={"help": "block size of quantization noise at training time"},
)
quant_noise_scalar: float = field(
default=0.0,
metadata={
"help": "scalar quantization noise and scalar quantization at training time"
},
)
# config for Fully Sharded Data Parallel (FSDP) training
min_params_to_wrap: int = field(
default=DEFAULT_MIN_PARAMS_TO_WRAP,
metadata={
"help": (
"minimum number of params for a layer to be wrapped with FSDP() when "
"training with --ddp-backend=fully_sharded. Smaller values will "
"improve memory efficiency, but may make torch.distributed "
"communication less efficient due to smaller input sizes. This option "
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
"--offload-activations are passed."
)
},
)
# config for "BASE Layers: Simplifying Training of Large, Sparse Models"
base_layers: Optional[int] = field(
default=0, metadata={"help": "number of BASE layers in total"}
)
base_sublayers: Optional[int] = field(
default=1, metadata={"help": "number of sublayers in each BASE layer"}
)
base_shuffle: Optional[int] = field(
default=1,
metadata={"help": "shuffle tokens between workers before computing assignment"},
)
# NormFormer
scale_fc: Optional[bool] = field(
default=False,
metadata={"help": "Insert LayerNorm between fully connected layers"},
)
scale_attn: Optional[bool] = field(
default=False, metadata={"help": "Insert LayerNorm after attention"}
)
scale_heads: Optional[bool] = field(
default=False,
metadata={"help": "Learn a scale coefficient for each attention head"},
)
scale_resids: Optional[bool] = field(
default=False,
metadata={"help": "Learn a scale coefficient for each residual connection"},
)
# options from other parts of the config
add_bos_token: bool = II("task.add_bos_token")
tokens_per_sample: int = II("task.tokens_per_sample")
max_target_positions: Optional[int] = II("task.max_target_positions")
tpu: bool = II("common.tpu")
@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
class TransformerLanguageModel(FairseqLanguageModel):
@classmethod
def hub_models(cls):
def moses_fastbpe(path):
return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"}
def spm(path):
return {"path": path, "tokenizer": "space", "bpe": "sentencepiece"}
return {
"transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2",
"transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2",
"transformer_lm.wmt19.en": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2"
),
"transformer_lm.wmt19.de": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2"
),
"transformer_lm.wmt19.ru": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2"
),
"transformer_lm.wmt20.en": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.en.tar.gz"
),
"transformer_lm.wmt20.ta": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.ta.tar.gz"
),
"transformer_lm.wmt20.iu.news": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.news.tar.gz"
),
"transformer_lm.wmt20.iu.nh": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.nh.tar.gz"
),
}
def __init__(self, decoder):
super().__init__(decoder)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if safe_getattr(args, "max_target_positions", None) is None:
args.max_target_positions = safe_getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
if args.character_embeddings:
embed_tokens = CharacterTokenEmbedder(
task.source_dictionary,
eval(args.character_filters),
args.character_embedding_dim,
args.decoder_embed_dim,
args.char_embedder_highway_layers,
)
elif args.adaptive_input:
embed_tokens = AdaptiveInput(
len(task.source_dictionary),
task.source_dictionary.pad(),
args.decoder_input_dim,
args.adaptive_input_factor,
args.decoder_embed_dim,
options.eval_str_list(args.adaptive_input_cutoff, type=int),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
embed_tokens = cls.build_embedding(
args, task.source_dictionary, args.decoder_input_dim
)
if args.tie_adaptive_weights:
assert args.adaptive_input
assert args.adaptive_input_factor == args.adaptive_softmax_factor
assert (
args.adaptive_softmax_cutoff == args.adaptive_input_cutoff
), "{} != {}".format(
args.adaptive_softmax_cutoff, args.adaptive_input_cutoff
)
assert args.decoder_input_dim == args.decoder_output_dim
decoder = TransformerDecoder(
args, task.target_dictionary, embed_tokens, no_encoder_attn=True
)
return cls(decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
return embed_tokens
def base_lm_architecture(args):
# backward compatibility for older model checkpoints
if safe_hasattr(args, "no_tie_adaptive_proj"):
# previous models defined --no-tie-adaptive-proj, so use the existence of
# that option to determine if this is an "old" model checkpoint
args.no_decoder_final_norm = True # old models always set this to True
if args.no_tie_adaptive_proj is False:
args.tie_adaptive_proj = True
if safe_hasattr(args, "decoder_final_norm"):
args.no_decoder_final_norm = not args.decoder_final_norm
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.0)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 2048)
args.decoder_layers = safe_getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 8)
args.adaptive_softmax_cutoff = safe_getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = safe_getattr(args, "adaptive_softmax_dropout", 0)
args.adaptive_softmax_factor = safe_getattr(args, "adaptive_softmax_factor", 4)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.activation_fn = safe_getattr(args, "activation_fn", "relu")
args.decoder_layerdrop = safe_getattr(args, "decoder_layerdrop", 0)
args.decoder_layers_to_keep = safe_getattr(args, "decoder_layers_to_keep", None)
args.quant_noise_pq = safe_getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = safe_getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = safe_getattr(args, "quant_noise_scalar", 0)
args.base_layers = safe_getattr(args, "base_layers", 0)
args.base_sublayers = safe_getattr(args, "base_sublayers", 1)
args.base_shuffle = safe_getattr(args, "base_shuffle", False)
args.add_bos_token = safe_getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = safe_getattr(
args, "no_token_positional_embeddings", False
)
args.share_decoder_input_output_embed = safe_getattr(
args, "share_decoder_input_output_embed", False
)
args.character_embeddings = safe_getattr(args, "character_embeddings", False)
args.decoder_output_dim = safe_getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = safe_getattr(
args, "decoder_input_dim", args.decoder_embed_dim
)
# Model training is not stable without this
args.decoder_normalize_before = True
args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", False)
args.adaptive_input = safe_getattr(args, "adaptive_input", False)
args.adaptive_input_factor = safe_getattr(args, "adaptive_input_factor", 4)
args.adaptive_input_cutoff = safe_getattr(args, "adaptive_input_cutoff", None)
args.tie_adaptive_weights = safe_getattr(args, "tie_adaptive_weights", False)
args.tie_adaptive_proj = safe_getattr(args, "tie_adaptive_proj", False)
args.no_scale_embedding = safe_getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", False)
args.checkpoint_activations = safe_getattr(args, "checkpoint_activations", False)
args.offload_activations = safe_getattr(args, "offload_activations", False)
args.scale_fc = safe_getattr(args, "scale_fc", False)
args.scale_attn = safe_getattr(args, "scale_attn", False)
args.scale_heads = safe_getattr(args, "scale_heads", False)
args.scale_resids = safe_getattr(args, "scale_resids", False)
if args.offload_activations:
args.checkpoint_activations = True
@register_model_architecture("transformer_lm", "transformer_lm_big")
def transformer_lm_big(args):
args.decoder_layers = safe_getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_wiki103")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103")
def transformer_lm_baevski_wiki103(args):
args.decoder_layers = safe_getattr(args, "decoder_layers", 16)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 8)
args.dropout = safe_getattr(args, "dropout", 0.3)
args.adaptive_input = safe_getattr(args, "adaptive_input", True)
args.tie_adaptive_weights = safe_getattr(args, "tie_adaptive_weights", True)
args.adaptive_input_cutoff = safe_getattr(
args, "adaptive_input_cutoff", "20000,60000"
)
args.adaptive_softmax_cutoff = safe_getattr(
args, "adaptive_softmax_cutoff", "20000,60000"
)
args.adaptive_softmax_dropout = safe_getattr(args, "adaptive_softmax_dropout", 0.2)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_dropout = safe_getattr(args, "activation_dropout", 0.1)
args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", True)
args.tie_adaptive_proj = safe_getattr(args, "tie_adaptive_proj", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gbw")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw")
def transformer_lm_baevski_gbw(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 512)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt")
def transformer_lm_gpt(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 3072)
args.decoder_layers = safe_getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_small")
def transformer_lm_gpt2_small(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_tiny")
def transformer_lm_gpt2_tiny(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 64)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 64)
args.decoder_layers = safe_getattr(args, "decoder_layers", 2)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 1)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium")
def transformer_lm_gpt2_medium(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1280)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 5120)
args.decoder_layers = safe_getattr(args, "decoder_layers", 36)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 20)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_big")
def transformer_lm_gpt2_big(args):
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1600)
args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 6400)
args.decoder_layers = safe_getattr(args, "decoder_layers", 48)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 25)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
def base_gpt3_architecture(args):
args.decoder_input_dim = args.decoder_embed_dim
args.decoder_output_dim = args.decoder_embed_dim
args.decoder_ffn_embed_dim = safe_getattr(
args, "decoder_ffn_embed_dim", args.decoder_embed_dim * 4
)
# GPT-3 used learned positional embeddings, rather than sinusoidal
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", True)
args.dropout = safe_getattr(args, "dropout", 0.0)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.0)
args.activation_fn = safe_getattr(args, "activation_fn", "gelu")
args.share_decoder_input_output_embed = True
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_small")
def transformer_lm_gpt3_small(args):
# 125M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_medium")
def transformer_lm_gpt3_medium(args):
# 350M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_large")
def transformer_lm_gpt3_large(args):
# 760M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1536)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_xl")
def transformer_lm_gpt3_xl(args):
# 1.3B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2048)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_2_7")
def transformer_lm_gpt3_2_7(args):
# 2.7B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 32)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2560)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_6_7")
def transformer_lm_gpt3_6_7(args):
# 6.7B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 32)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 4096)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_13")
def transformer_lm_gpt3_13(args):
# 13B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 40)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 5120)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 40)
base_gpt3_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt3_175")
def transformer_lm_gpt3_175(args):
# 175B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 96)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 12288)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 96)
base_gpt3_architecture(args)