Spaces:
Sleeping
Sleeping
Audio-Deepfake-Detection
/
fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1
/fairseq
/models
/fairseq_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, List, NamedTuple, Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
EncoderOut = NamedTuple( | |
"EncoderOut", | |
[ | |
("encoder_out", Tensor), # T x B x C | |
("encoder_padding_mask", Optional[Tensor]), # B x T | |
("encoder_embedding", Optional[Tensor]), # B x T x C | |
("encoder_states", Optional[List[Tensor]]), # List[T x B x C] | |
("src_tokens", Optional[Tensor]), # B x T | |
("src_lengths", Optional[Tensor]), # B x 1 | |
], | |
) | |
class FairseqEncoder(nn.Module): | |
"""Base class for encoders.""" | |
def __init__(self, dictionary): | |
super().__init__() | |
self.dictionary = dictionary | |
def forward(self, src_tokens, src_lengths=None, **kwargs): | |
""" | |
Args: | |
src_tokens (LongTensor): tokens in the source language of shape | |
`(batch, src_len)` | |
src_lengths (LongTensor): lengths of each source sentence of shape | |
`(batch)` | |
""" | |
raise NotImplementedError | |
def forward_torchscript(self, net_input: Dict[str, Tensor]): | |
"""A TorchScript-compatible version of forward. | |
Encoders which use additional arguments may want to override | |
this method for TorchScript compatibility. | |
""" | |
if torch.jit.is_scripting(): | |
return self.forward( | |
src_tokens=net_input["src_tokens"], | |
src_lengths=net_input["src_lengths"], | |
) | |
else: | |
return self.forward_non_torchscript(net_input) | |
def forward_non_torchscript(self, net_input: Dict[str, Tensor]): | |
encoder_input = { | |
k: v for k, v in net_input.items() if k != "prev_output_tokens" | |
} | |
return self.forward(**encoder_input) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
""" | |
Reorder encoder output according to `new_order`. | |
Args: | |
encoder_out: output from the ``forward()`` method | |
new_order (LongTensor): desired order | |
Returns: | |
`encoder_out` rearranged according to `new_order` | |
""" | |
raise NotImplementedError | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return 1e6 # an arbitrary large number | |
def upgrade_state_dict_named(self, state_dict, name): | |
"""Upgrade old state dicts to work with newer code.""" | |
return state_dict | |
def set_num_updates(self, num_updates): | |
"""State from trainer to pass along to model at every update.""" | |
def _apply(m): | |
if hasattr(m, "set_num_updates") and m != self: | |
m.set_num_updates(num_updates) | |
self.apply(_apply) | |