Spaces:
Sleeping
Sleeping
Audio-Deepfake-Detection
/
fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1
/examples
/adaptive_span
/adaptive_span_model.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq.modules.layer_norm import LayerNorm | |
from .adaptive_span_attention import AdaptiveSpan | |
# Size notations: | |
# B = batch_size, H = d_model, M = block_size, L = attn_span | |
def _skew(X, pad_value): | |
"""shift every row 1 step to right""" | |
# X = B x M x L | |
B, M, L = X.size() | |
X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1) | |
X = X.view(B, -1) # B x ML+MM+M | |
X = X[:, :-M] # B x ML+MM | |
X = X.view(B, M, M + L) # B x M x L+M | |
return X | |
def _unskew(X): | |
"""reverse _skew operation""" | |
# X = B x M x L+M | |
B, M, L = X.size() | |
L -= M | |
X = X.view(B, -1) # B x ML+MM | |
X = F.pad(X, (0, M)) # B x ML+MM+M | |
X = X.view(B, M, M + L + 1) # B x M x L+M+1 | |
X = X[:, :, :L] # B x M x L | |
return X | |
class SeqAttention(nn.Module): | |
"""Sequential self-attention layer. | |
Each token will attend to its previous fixed number of steps. | |
Note that attention doesn't include the current step itself. | |
""" | |
def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs): | |
nn.Module.__init__(self) | |
self.dropout = nn.Dropout(dropout) | |
self.d_model = d_model # size of a single head | |
self.attn_span = attn_span | |
self.adaptive_span = AdaptiveSpan( | |
attn_span=attn_span, | |
n_head=n_head, | |
adapt_span_layer=adapt_span_layer, | |
**kargs | |
) | |
def forward(self, query, key, value, key_pe): | |
# query size = B x M x H | |
# key, value sizes = B x (M+L) x H | |
key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe) | |
# compute attention from context | |
# B x M (dest) x (M+L) (src) | |
attn_cont = torch.matmul(query, key.transpose(-1, -2)) | |
attn_cont = _unskew(attn_cont) # B x M x L | |
# compute the effect of position embedding | |
attn_pos = torch.matmul(query, key_pe) # B x M x L_pos | |
attn = attn_cont + attn_pos | |
attn = attn / math.sqrt(self.d_model) # B x M X L_pos | |
attn = F.softmax(attn.float(), dim=-1).type_as(attn) | |
# trim attention lengths according to the learned span | |
attn = self.adaptive_span(attn) | |
attn = self.dropout(attn) # B x M X L_pos | |
attn_cont = _skew(attn, 0) # B x M X (L+M) | |
out = torch.matmul(attn_cont, value) # B x M x H | |
return out | |
def get_cache_size(self): | |
return self.adaptive_span.get_cache_size() | |
class MultiHeadSeqAttention(nn.Module): | |
def __init__(self, d_model, n_head, **kargs): | |
nn.Module.__init__(self) | |
assert d_model % n_head == 0 | |
self.n_head = n_head | |
self.head_dim = d_model // n_head | |
self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs) | |
self.proj_query = nn.Linear(d_model, d_model, bias=False) | |
nn.init.xavier_normal_(self.proj_query.weight) | |
self.proj_out = nn.Linear(d_model, d_model, bias=False) | |
nn.init.xavier_normal_(self.proj_out.weight) | |
self.proj_val = nn.Linear(d_model, d_model, bias=False) | |
nn.init.xavier_normal_(self.proj_val.weight) | |
self.proj_key = nn.Linear(d_model, d_model, bias=False) | |
nn.init.xavier_normal_(self.proj_key.weight) | |
def head_reshape(self, x): | |
K = self.n_head | |
D = self.head_dim | |
x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D | |
x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D | |
x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D | |
return x | |
def forward(self, query, key, value, key_pe): | |
B = query.size(0) | |
K = self.n_head | |
D = self.head_dim | |
M = query.size(1) | |
query = self.proj_query(query) | |
query = self.head_reshape(query) | |
value = self.proj_val(value) | |
value = self.head_reshape(value) | |
key = self.proj_key(key) | |
key = self.head_reshape(key) | |
out = self.attn(query, key, value, key_pe) # B_K x M x D | |
out = out.view(B, K, M, D) # B x K x M x D | |
out = out.transpose(1, 2).contiguous() # B x M x K x D | |
out = out.view(B, M, -1) # B x M x K_D | |
out = self.proj_out(out) | |
return out | |
class FeedForwardLayer(nn.Module): | |
def __init__(self, d_model, d_inner, dropout, **kargs): | |
nn.Module.__init__(self) | |
self.fc1 = nn.Linear(d_model, d_inner) | |
self.fc2 = nn.Linear(d_inner, d_model) | |
nn.init.xavier_uniform_(self.fc1.weight) | |
nn.init.xavier_uniform_(self.fc2.weight) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, h): | |
h1 = F.relu(self.fc1(h)) | |
h1 = self.dropout(h1) | |
h2 = self.fc2(h1) | |
return h2 | |
class TransformerSeqLayer(nn.Module): | |
def __init__(self, d_model, **kargs): | |
nn.Module.__init__(self) | |
self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs) | |
self.norm1 = LayerNorm(d_model) | |
self.ff = FeedForwardLayer(d_model=d_model, **kargs) | |
self.norm2 = LayerNorm(d_model) | |
def forward(self, h, h_cache, key_pe): | |
# h = B x M x H | |
# h_cache = B x L x H | |
h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H | |
attn_out = self.attn(h, h_all, h_all, key_pe) | |
h = self.norm1(h + attn_out) # B x M x H | |
if self.ff is not None: | |
ff_out = self.ff(h) | |
out = self.norm2(h + ff_out) # B x M x H | |
else: | |
out = h | |
return out | |
def get_cache_size(self): | |
return self.attn.attn.get_cache_size() | |
class TransformerSeq(nn.Module): | |
def __init__( | |
self, | |
vocab_size, | |
d_model, | |
n_head, | |
n_layer, | |
attn_span, | |
emb_dropout, | |
aux_loss_scaler, | |
adapt_span_layer, | |
**kargs | |
): | |
nn.Module.__init__(self) | |
# token embeddings | |
self.in_emb = nn.Embedding(vocab_size, d_model) | |
nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5) | |
self.out_emb = nn.Linear(d_model, vocab_size) | |
self.aux_loss_scaler = aux_loss_scaler | |
if emb_dropout > 0: | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
else: | |
self.emb_dropout = None | |
# position embeddings | |
self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span)) | |
self.layers = nn.ModuleList() | |
self.layers.extend( | |
TransformerSeqLayer( | |
d_model=d_model, | |
n_head=n_head, | |
attn_span=attn_span, | |
adapt_span_layer=adapt_span_layer, | |
**kargs | |
) | |
for _ in range(n_layer) | |
) | |
def forward(self, x, h_cache, target=None): | |
# x size = B x M | |
block_size = x.size(1) | |
h = self.in_emb(x) # B x M x H | |
if self.emb_dropout is not None: | |
h = self.emb_dropout(h) | |
h_cache_next = [] | |
for l, layer in enumerate(self.layers): | |
cache_size = layer.attn.attn.get_cache_size() | |
if cache_size > block_size: | |
h_cache_next_l = torch.cat( | |
[h_cache[l][:, -cache_size + block_size :, :], h], dim=1 | |
).detach() | |
else: | |
h_cache_next_l = h[:, -cache_size:, :].detach() | |
h_cache_next.append(h_cache_next_l) | |
h = layer(h, h_cache[l], self.key_pe) # B x M x H | |
if self.emb_dropout is not None: | |
h = self.emb_dropout(h) | |
out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h) | |
dummy_loss = None | |
return out, h_cache_next, dummy_loss | |
def get_aux_loss(self): | |
loss = 0.0 | |
for layer in self.layers: | |
loss += layer.attn.attn.adaptive_span.get_loss() | |
return self.aux_loss_scaler * loss | |
def get_current_max_span(self): | |
max_span = 0.0 | |
for layer in self.layers: | |
max_span = max( | |
max_span, layer.attn.attn.adaptive_span.get_current_max_span() | |
) | |
return max_span | |
def get_current_avg_span(self): | |
avg_span = 0.0 | |
for layer in self.layers: | |
avg_span += layer.attn.attn.adaptive_span.get_current_avg_span() | |
return avg_span / len(self.layers) | |