File size: 5,015 Bytes
8273cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from fairseq import utils
from fairseq.models import (
    FairseqLanguageModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.fconv import FConvDecoder
from fairseq.utils import safe_hasattr


@register_model("fconv_lm")
class FConvLanguageModel(FairseqLanguageModel):
    def __init__(self, decoder):
        super().__init__(decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--decoder-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension",
        )
        parser.add_argument(
            "--decoder-layers",
            type=str,
            metavar="EXPR",
            help="decoder layers [(dim, kernel_size), ...]",
        )
        parser.add_argument(
            "--decoder-out-embed-dim",
            type=int,
            metavar="N",
            help="decoder output embedding dimension",
        )
        parser.add_argument(
            "--adaptive-softmax-cutoff",
            metavar="EXPR",
            help="comma separated list of adaptive softmax cutoff points. "
            "Must be used with adaptive_loss criterion",
        )
        parser.add_argument(
            "--adaptive-softmax-dropout",
            type=float,
            metavar="D",
            help="sets adaptive softmax dropout for the tail projections",
        )
        parser.add_argument(
            "--decoder-attention",
            type=str,
            metavar="EXPR",
            help="decoder attention [True, ...]",
        )

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        # make sure all arguments are present in older models
        base_lm_architecture(args)

        if safe_hasattr(args, "max_target_positions") and not safe_hasattr(
            args, "tokens_per_sample"
        ):
            args.tokens_per_sample = args.max_target_positions

        decoder = FConvDecoder(
            dictionary=task.target_dictionary,
            embed_dim=args.decoder_embed_dim,
            convolutions=eval(args.decoder_layers),
            out_embed_dim=args.decoder_embed_dim,
            attention=eval(args.decoder_attention),
            dropout=args.dropout,
            max_positions=args.tokens_per_sample,
            share_embed=False,
            positional_embeddings=False,
            adaptive_softmax_cutoff=(
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
                if args.criterion == "adaptive_loss"
                else None
            ),
            adaptive_softmax_dropout=args.adaptive_softmax_dropout,
        )
        return FConvLanguageModel(decoder)


@register_model_architecture("fconv_lm", "fconv_lm")
def base_lm_architecture(args):
    args.dropout = getattr(args, "dropout", 0.1)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128)
    args.decoder_layers = getattr(args, "decoder_layers", "[(1268, 4)] * 13")
    args.decoder_attention = getattr(args, "decoder_attention", "False")
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)


@register_model_architecture("fconv_lm", "fconv_lm_dauphin_wikitext103")
def fconv_lm_dauphin_wikitext103(args):
    layers = "[(850, 6)] * 3"
    layers += " + [(850, 1)] * 1"
    layers += " + [(850, 5)] * 4"
    layers += " + [(850, 1)] * 1"
    layers += " + [(850, 4)] * 3"
    layers += " + [(1024, 4)] * 1"
    layers += " + [(2048, 4)] * 1"
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 280)
    args.decoder_layers = getattr(args, "decoder_layers", layers)
    args.decoder_attention = getattr(args, "decoder_attention", "False")
    args.adaptive_softmax_cutoff = getattr(
        args, "adaptive_softmax_cutoff", "10000,20000,200000"
    )
    base_lm_architecture(args)


@register_model_architecture("fconv_lm", "fconv_lm_dauphin_gbw")
def fconv_lm_dauphin_gbw(args):
    layers = "[(512, 5)]"
    layers += " + [(128, 1, 0), (128, 5, 0), (512, 1, 3)] * 3"
    layers += " + [(512, 1, 0), (512, 5, 0), (1024, 1, 3)] * 3"
    layers += " + [(1024, 1, 0), (1024, 5, 0), (2048, 1, 3)] * 6"
    layers += " + [(1024, 1, 0), (1024, 5, 0), (4096, 1, 3)]"
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128)
    args.decoder_layers = getattr(args, "decoder_layers", layers)
    args.decoder_attention = getattr(args, "decoder_attention", "False")
    args.adaptive_softmax_cutoff = getattr(
        args, "adaptive_softmax_cutoff", "10000,50000,200000"
    )
    base_lm_architecture(args)