File size: 8,540 Bytes
8273cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from fairseq.modules.layer_norm import LayerNorm

from .adaptive_span_attention import AdaptiveSpan

# Size notations:
# B = batch_size, H = d_model, M = block_size, L = attn_span


def _skew(X, pad_value):
    """shift every row 1 step to right"""
    # X = B x M x L
    B, M, L = X.size()
    X = F.pad(X, (0, M + 1), value=pad_value)  # B x M x (L+M+1)
    X = X.view(B, -1)  # B x ML+MM+M
    X = X[:, :-M]  # B x ML+MM
    X = X.view(B, M, M + L)  # B x M x L+M
    return X


def _unskew(X):
    """reverse _skew operation"""
    # X = B x M x L+M
    B, M, L = X.size()
    L -= M
    X = X.view(B, -1)  # B x ML+MM
    X = F.pad(X, (0, M))  # B x ML+MM+M
    X = X.view(B, M, M + L + 1)  # B x M x L+M+1
    X = X[:, :, :L]  # B x M x L
    return X


class SeqAttention(nn.Module):
    """Sequential self-attention layer.
    Each token will attend to its previous fixed number of steps.
    Note that attention doesn't include the current step itself.
    """

    def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs):
        nn.Module.__init__(self)
        self.dropout = nn.Dropout(dropout)
        self.d_model = d_model  # size of a single head
        self.attn_span = attn_span
        self.adaptive_span = AdaptiveSpan(
            attn_span=attn_span,
            n_head=n_head,
            adapt_span_layer=adapt_span_layer,
            **kargs
        )

    def forward(self, query, key, value, key_pe):
        # query size = B x M x H
        # key, value sizes = B x (M+L) x H

        key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe)

        # compute attention from context
        # B x M (dest) x (M+L) (src)
        attn_cont = torch.matmul(query, key.transpose(-1, -2))
        attn_cont = _unskew(attn_cont)  # B x M x L

        # compute the effect of position embedding
        attn_pos = torch.matmul(query, key_pe)  # B x M x L_pos
        attn = attn_cont + attn_pos

        attn = attn / math.sqrt(self.d_model)  # B x M X L_pos

        attn = F.softmax(attn.float(), dim=-1).type_as(attn)

        # trim attention lengths according to the learned span
        attn = self.adaptive_span(attn)

        attn = self.dropout(attn)  # B x M X L_pos

        attn_cont = _skew(attn, 0)  # B x M X (L+M)
        out = torch.matmul(attn_cont, value)  # B x M x H
        return out

    def get_cache_size(self):
        return self.adaptive_span.get_cache_size()


class MultiHeadSeqAttention(nn.Module):
    def __init__(self, d_model, n_head, **kargs):
        nn.Module.__init__(self)
        assert d_model % n_head == 0
        self.n_head = n_head
        self.head_dim = d_model // n_head
        self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs)
        self.proj_query = nn.Linear(d_model, d_model, bias=False)
        nn.init.xavier_normal_(self.proj_query.weight)
        self.proj_out = nn.Linear(d_model, d_model, bias=False)
        nn.init.xavier_normal_(self.proj_out.weight)
        self.proj_val = nn.Linear(d_model, d_model, bias=False)
        nn.init.xavier_normal_(self.proj_val.weight)
        self.proj_key = nn.Linear(d_model, d_model, bias=False)
        nn.init.xavier_normal_(self.proj_key.weight)

    def head_reshape(self, x):
        K = self.n_head
        D = self.head_dim
        x = x.view(x.size()[:-1] + (K, D))  # B x (M+L) x K x D
        x = x.transpose(1, 2).contiguous()  # B x K x (M+L) x D
        x = x.view(-1, x.size(-2), x.size(-1))  # B_K x (M+L) x D
        return x

    def forward(self, query, key, value, key_pe):
        B = query.size(0)
        K = self.n_head
        D = self.head_dim
        M = query.size(1)

        query = self.proj_query(query)
        query = self.head_reshape(query)
        value = self.proj_val(value)
        value = self.head_reshape(value)
        key = self.proj_key(key)
        key = self.head_reshape(key)

        out = self.attn(query, key, value, key_pe)  # B_K x M x D
        out = out.view(B, K, M, D)  # B x K x M x D
        out = out.transpose(1, 2).contiguous()  # B x M x K x D
        out = out.view(B, M, -1)  # B x M x K_D
        out = self.proj_out(out)
        return out


class FeedForwardLayer(nn.Module):
    def __init__(self, d_model, d_inner, dropout, **kargs):
        nn.Module.__init__(self)
        self.fc1 = nn.Linear(d_model, d_inner)
        self.fc2 = nn.Linear(d_inner, d_model)
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.xavier_uniform_(self.fc2.weight)
        self.dropout = nn.Dropout(dropout)

    def forward(self, h):
        h1 = F.relu(self.fc1(h))
        h1 = self.dropout(h1)
        h2 = self.fc2(h1)
        return h2


class TransformerSeqLayer(nn.Module):
    def __init__(self, d_model, **kargs):
        nn.Module.__init__(self)
        self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs)
        self.norm1 = LayerNorm(d_model)
        self.ff = FeedForwardLayer(d_model=d_model, **kargs)
        self.norm2 = LayerNorm(d_model)

    def forward(self, h, h_cache, key_pe):
        # h = B x M x H
        # h_cache = B x L x H
        h_all = torch.cat([h_cache, h], dim=1)  # B x (M+L) x H
        attn_out = self.attn(h, h_all, h_all, key_pe)
        h = self.norm1(h + attn_out)  # B x M x H
        if self.ff is not None:
            ff_out = self.ff(h)
            out = self.norm2(h + ff_out)  # B x M x H
        else:
            out = h
        return out

    def get_cache_size(self):
        return self.attn.attn.get_cache_size()


class TransformerSeq(nn.Module):
    def __init__(
        self,
        vocab_size,
        d_model,
        n_head,
        n_layer,
        attn_span,
        emb_dropout,
        aux_loss_scaler,
        adapt_span_layer,
        **kargs
    ):
        nn.Module.__init__(self)
        # token embeddings
        self.in_emb = nn.Embedding(vocab_size, d_model)
        nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5)
        self.out_emb = nn.Linear(d_model, vocab_size)
        self.aux_loss_scaler = aux_loss_scaler
        if emb_dropout > 0:
            self.emb_dropout = nn.Dropout(emb_dropout)
        else:
            self.emb_dropout = None
        # position embeddings
        self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span))

        self.layers = nn.ModuleList()
        self.layers.extend(
            TransformerSeqLayer(
                d_model=d_model,
                n_head=n_head,
                attn_span=attn_span,
                adapt_span_layer=adapt_span_layer,
                **kargs
            )
            for _ in range(n_layer)
        )

    def forward(self, x, h_cache, target=None):
        # x size = B x M
        block_size = x.size(1)
        h = self.in_emb(x)  # B x M x H
        if self.emb_dropout is not None:
            h = self.emb_dropout(h)

        h_cache_next = []
        for l, layer in enumerate(self.layers):
            cache_size = layer.attn.attn.get_cache_size()
            if cache_size > block_size:
                h_cache_next_l = torch.cat(
                    [h_cache[l][:, -cache_size + block_size :, :], h], dim=1
                ).detach()
            else:
                h_cache_next_l = h[:, -cache_size:, :].detach()
            h_cache_next.append(h_cache_next_l)
            h = layer(h, h_cache[l], self.key_pe)  # B x M x H

        if self.emb_dropout is not None:
            h = self.emb_dropout(h)

        out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h)
        dummy_loss = None

        return out, h_cache_next, dummy_loss

    def get_aux_loss(self):
        loss = 0.0
        for layer in self.layers:
            loss += layer.attn.attn.adaptive_span.get_loss()
        return self.aux_loss_scaler * loss

    def get_current_max_span(self):
        max_span = 0.0
        for layer in self.layers:
            max_span = max(
                max_span, layer.attn.attn.adaptive_span.get_current_max_span()
            )
        return max_span

    def get_current_avg_span(self):
        avg_span = 0.0
        for layer in self.layers:
            avg_span += layer.attn.attn.adaptive_span.get_current_avg_span()
        return avg_span / len(self.layers)