# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Main class for the implementation of the global alignment # -------------------------------------------------------- import numpy as np import torch import torch.nn as nn from dust3r.cloud_opt.base_opt import BasePCOptimizer from dust3r.utils.geometry import xy_grid, geotrf from dust3r.utils.device import to_cpu, to_numpy class PointCloudOptimizer(BasePCOptimizer): """ Optimize a global scene, given a list of pairwise observations. Graph node: images Graph edges: observations = (pred1, pred2) """ def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): super().__init__(*args, **kwargs) self.has_im_poses = True # by definition of this class self.focal_break = focal_break # adding thing to optimize if not self.if_use_mono: self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) else: self.scalemaps = nn.ParameterList(torch.zeros(H, W) for H, W in self.imshapes) self.shifts = nn.ParameterList(torch.zeros((1,)) for _ in range(self.n_imgs)) self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses self.im_focals = nn.ParameterList(torch.FloatTensor( [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics self.im_pp.requires_grad_(optimize_pp) self.imshape = self.imshapes[0] im_areas = [h*w for h, w in self.imshapes] self.max_area = max(im_areas) # adding thing to optimize if not self.if_use_mono: self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) else: self.scalemaps = ParameterStack(self.scalemaps, is_param=True, fill=self.max_area) self.shifts = ParameterStack(self.shifts, is_param=True) self.im_poses = ParameterStack(self.im_poses, is_param=True) self.im_focals = ParameterStack(self.im_focals, is_param=True) self.im_pp = ParameterStack(self.im_pp, is_param=True) self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) self.register_buffer('_grid', ParameterStack( [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) # pre-compute pixel weights self.register_buffer('_weight_i', ParameterStack( [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) self.register_buffer('_weight_j', ParameterStack( [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) # precompute aa self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) self.total_area_i = sum([im_areas[i] for i, j in self.edges]) self.total_area_j = sum([im_areas[j] for i, j in self.edges]) def _check_all_imgs_are_selected(self, msk): assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' def preset_pose(self, known_poses, pose_msk=None): # cam-to-world self._check_all_imgs_are_selected(pose_msk) if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: known_poses = [known_poses] for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): if self.verbose: print(f' (setting pose #{idx} = {pose[:3,3]})') self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) # normalize scale if there's less than 1 known pose n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) self.norm_pw_scale = (n_known_poses <= 1) self.im_poses.requires_grad_(False) self.norm_pw_scale = False def preset_focal(self, known_focals, msk=None): self._check_all_imgs_are_selected(msk) for idx, focal in zip(self._get_msk_indices(msk), known_focals): if self.verbose: print(f' (setting focal #{idx} = {focal})') self._no_grad(self._set_focal(idx, focal)) self.im_focals.requires_grad_(False) def preset_principal_point(self, known_pp, msk=None): self._check_all_imgs_are_selected(msk) for idx, pp in zip(self._get_msk_indices(msk), known_pp): if self.verbose: print(f' (setting principal point #{idx} = {pp})') self._no_grad(self._set_principal_point(idx, pp)) self.im_pp.requires_grad_(False) def _get_msk_indices(self, msk): if msk is None: return range(self.n_imgs) elif isinstance(msk, int): return [msk] elif isinstance(msk, (tuple, list)): return self._get_msk_indices(np.array(msk)) elif msk.dtype in (bool, torch.bool, np.bool_): assert len(msk) == self.n_imgs return np.where(msk)[0] elif np.issubdtype(msk.dtype, np.integer): return msk else: raise ValueError(f'bad {msk=}') def _no_grad(self, tensor): assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' def _set_focal(self, idx, focal, force=False): param = self.im_focals[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = self.focal_break * np.log(focal) return param def get_focals(self): log_focals = torch.stack(list(self.im_focals), dim=0) return (log_focals / self.focal_break).exp() def get_known_focal_mask(self): return torch.tensor([not (p.requires_grad) for p in self.im_focals]) def _set_principal_point(self, idx, pp, force=False): param = self.im_pp[idx] H, W = self.imshapes[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 return param def get_principal_points(self): return self._pp + 10 * self.im_pp def get_intrinsics(self): K = torch.zeros((self.n_imgs, 3, 3), device=self.device) focals = self.get_focals().flatten() K[:, 0, 0] = K[:, 1, 1] = focals K[:, :2, 2] = self.get_principal_points() K[:, 2, 2] = 1 return K def get_im_poses(self): # cam to world cam2world = self._get_poses(self.im_poses) return cam2world def _set_depthmap(self, idx, depth, force=False): depth = _ravel_hw(depth, self.max_area) param = self.im_depthmaps[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = depth.log().nan_to_num(neginf=0) return param def get_depthmaps(self, raw=False): res = [] if not self.if_use_mono: res = self.im_depthmaps.exp() else: for idx in range(self.n_imgs): depth_i = _ravel_hw(self.mono_depths[idx], self.max_area) * self.scalemaps[idx].exp() + self.shifts[idx] res.append(depth_i) res = torch.stack(res) if not raw: res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] return res def depth_to_pts3d(self): # Get depths and projection params if not provided focals = self.get_focals() pp = self.get_principal_points() im_poses = self.get_im_poses() depth = self.get_depthmaps(raw=True) # get pointmaps in camera frame rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) # project to world frame return geotrf(im_poses, rel_ptmaps) def get_pts3d(self, raw=False): res = self.depth_to_pts3d() if not raw: res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] return res def fix_first_frame_grad(self): im_poses = [] im_poses.append(self.im_poses[0].detach().clone()) for i in range(1, self.im_poses.shape[0]): im_poses.append(self.im_poses[i]) self.im_poses = im_poses #self.im_poses[0] = self.im_poses[0].detach().clone() if self.im_focals.requires_grad: self.im_focals = self.im_focals.detach().clone() if self.im_pp.requires_grad: self.im_pp = self.im_pp.detach().clone() # self.im_poses[0].requires_grad_(False) # self.im_focals[0].requires_grad_(False) # self.im_pp[0].requires_grad_(False) def forward(self): pw_poses = self.get_pw_poses() # cam-to-world pw_adapt = self.get_adaptors().unsqueeze(1) proj_pts3d = self.get_pts3d(raw=True) # rotate pairwise prediction according to pw_poses aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) # compute the less li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j # smooth loss with phot a = self.imgs return li + lj def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): pp = pp.unsqueeze(1) focal = focal.unsqueeze(1) assert focal.shape == (len(depth), 1, 1) assert pp.shape == (len(depth), 1, 2) assert pixel_grid.shape == depth.shape + (2,) depth = depth.unsqueeze(-1) return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) def ParameterStack(params, keys=None, is_param=None, fill=0): if keys is not None: params = [params[k] for k in keys] if fill > 0: params = [_ravel_hw(p, fill) for p in params] requires_grad = params[0].requires_grad assert all(p.requires_grad == requires_grad for p in params) params = torch.stack(list(params)).float().detach() if is_param or requires_grad: params = nn.Parameter(params) params.requires_grad_(requires_grad) return params def _ravel_hw(tensor, fill=0): # ravel H,W tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) if len(tensor) < fill: tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) return tensor def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 return minf*focal_base, maxf*focal_base def apply_mask(img, msk): img = img.copy() img[msk] = 0 return img