# Copyright (C) 2024 Apple Inc. All Rights Reserved. # Depth Pro: Sharp Monocular Metric Depth in Less Than a Second from __future__ import annotations from dataclasses import dataclass from typing import Mapping, Optional, Tuple, Union import sys #sys.path.append('/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/ml-depth-pro') import torch from torch import nn from torchvision.transforms import ( Compose, ConvertImageDtype, Lambda, Normalize, ToTensor, ) from .network.decoder import MultiresConvDecoder from .network.encoder import DepthProEncoder from .network.fov import FOVNetwork from .network.vit_factory import VIT_CONFIG_DICT, ViTPreset, create_vit @dataclass class DepthProConfig: """Configuration for DepthPro.""" patch_encoder_preset: ViTPreset image_encoder_preset: ViTPreset decoder_features: int checkpoint_uri: Optional[str] = None fov_encoder_preset: Optional[ViTPreset] = None use_fov_head: bool = True DEFAULT_MONODEPTH_CONFIG_DICT = DepthProConfig( patch_encoder_preset="dinov2l16_384", image_encoder_preset="dinov2l16_384", checkpoint_uri="./third_party/ml-depth-pro/checkpoints/depth_pro.pt", decoder_features=256, use_fov_head=True, fov_encoder_preset="dinov2l16_384", ) def create_backbone_model( preset: ViTPreset ) -> Tuple[nn.Module, ViTPreset]: """Create and load a backbone model given a config. Args: ---- preset: A backbone preset to load pre-defind configs. Returns: ------- A Torch module and the associated config. """ if preset in VIT_CONFIG_DICT: config = VIT_CONFIG_DICT[preset] model = create_vit(preset=preset, use_pretrained=False) else: raise KeyError(f"Preset {preset} not found.") return model, config def create_model_and_transforms( config: DepthProConfig = DEFAULT_MONODEPTH_CONFIG_DICT, device: torch.device = torch.device("cpu"), precision: torch.dtype = torch.float32, ) -> Tuple[DepthPro, Compose]: """Create a DepthPro model and load weights from `config.checkpoint_uri`. Args: ---- config: The configuration for the DPT model architecture. device: The optional Torch device to load the model onto, default runs on "cpu". precision: The optional precision used for the model, default is FP32. Returns: ------- The Torch DepthPro model and associated Transform. """ patch_encoder, patch_encoder_config = create_backbone_model( preset=config.patch_encoder_preset ) image_encoder, _ = create_backbone_model( preset=config.image_encoder_preset ) fov_encoder = None if config.use_fov_head and config.fov_encoder_preset is not None: fov_encoder, _ = create_backbone_model(preset=config.fov_encoder_preset) dims_encoder = patch_encoder_config.encoder_feature_dims hook_block_ids = patch_encoder_config.encoder_feature_layer_ids encoder = DepthProEncoder( dims_encoder=dims_encoder, patch_encoder=patch_encoder, image_encoder=image_encoder, hook_block_ids=hook_block_ids, decoder_features=config.decoder_features, ) decoder = MultiresConvDecoder( dims_encoder=[config.decoder_features] + list(encoder.dims_encoder), dim_decoder=config.decoder_features, ) model = DepthPro( encoder=encoder, decoder=decoder, last_dims=(32, 1), use_fov_head=config.use_fov_head, fov_encoder=fov_encoder, ).to(device) if precision == torch.half: model.half() transform = Compose( [ ToTensor(), Lambda(lambda x: x.to(device)), Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ConvertImageDtype(precision), ] ) if config.checkpoint_uri is not None: state_dict = torch.load(config.checkpoint_uri, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict( state_dict=state_dict, strict=True ) if len(unexpected_keys) != 0: raise KeyError( f"Found unexpected keys when loading monodepth: {unexpected_keys}" ) # fc_norm is only for the classification head, # which we would not use. We only use the encoding. missing_keys = [key for key in missing_keys if "fc_norm" not in key] if len(missing_keys) != 0: raise KeyError(f"Keys are missing when loading monodepth: {missing_keys}") return model, transform class DepthPro(nn.Module): """DepthPro network.""" def __init__( self, encoder: DepthProEncoder, decoder: MultiresConvDecoder, last_dims: tuple[int, int], use_fov_head: bool = True, fov_encoder: Optional[nn.Module] = None, ): """Initialize DepthPro. Args: ---- encoder: The DepthProEncoder backbone. decoder: The MultiresConvDecoder decoder. last_dims: The dimension for the last convolution layers. use_fov_head: Whether to use the field-of-view head. fov_encoder: A separate encoder for the field of view. """ super().__init__() self.encoder = encoder self.decoder = decoder dim_decoder = decoder.dim_decoder self.head = nn.Sequential( nn.Conv2d( dim_decoder, dim_decoder // 2, kernel_size=3, stride=1, padding=1 ), nn.ConvTranspose2d( in_channels=dim_decoder // 2, out_channels=dim_decoder // 2, kernel_size=2, stride=2, padding=0, bias=True, ), nn.Conv2d( dim_decoder // 2, last_dims[0], kernel_size=3, stride=1, padding=1, ), nn.ReLU(True), nn.Conv2d(last_dims[0], last_dims[1], kernel_size=1, stride=1, padding=0), nn.ReLU(), ) # Set the final convolution layer's bias to be 0. self.head[4].bias.data.fill_(0) # Set the FOV estimation head. if use_fov_head: self.fov = FOVNetwork(num_features=dim_decoder, fov_encoder=fov_encoder) @property def img_size(self) -> int: """Return the internal image size of the network.""" return self.encoder.img_size def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Decode by projection and fusion of multi-resolution encodings. Args: ---- x (torch.Tensor): Input image. Returns: ------- The canonical inverse depth map [m] and the optional estimated field of view [deg]. """ _, _, H, W = x.shape assert H == self.img_size and W == self.img_size encodings = self.encoder(x) features, features_0 = self.decoder(encodings) canonical_inverse_depth = self.head(features) fov_deg = None if hasattr(self, "fov"): fov_deg = self.fov.forward(x, features_0.detach()) return canonical_inverse_depth, fov_deg @torch.no_grad() def infer( self, x: torch.Tensor, f_px: Optional[Union[float, torch.Tensor]] = None, interpolation_mode="bilinear", ) -> Mapping[str, torch.Tensor]: """Infer depth and fov for a given image. If the image is not at network resolution, it is resized to 1536x1536 and the estimated depth is resized to the original image resolution. Note: if the focal length is given, the estimated value is ignored and the provided focal length is use to generate the metric depth values. Args: ---- x (torch.Tensor): Input image f_px (torch.Tensor): Optional focal length in pixels corresponding to `x`. interpolation_mode (str): Interpolation function for downsampling/upsampling. Returns: ------- Tensor dictionary (torch.Tensor): depth [m], focallength [pixels]. """ if len(x.shape) == 3: x = x.unsqueeze(0) _, _, H, W = x.shape resize = H != self.img_size or W != self.img_size if resize: x = nn.functional.interpolate( x, size=(self.img_size, self.img_size), mode=interpolation_mode, align_corners=False, ) canonical_inverse_depth, fov_deg = self.forward(x) if f_px is None: f_px = 0.5 * W / torch.tan(0.5 * torch.deg2rad(fov_deg.to(torch.float))) inverse_depth = canonical_inverse_depth * (W / f_px) f_px = f_px.squeeze() if resize: inverse_depth = nn.functional.interpolate( inverse_depth, size=(H, W), mode=interpolation_mode, align_corners=False ) depth = 1.0 / torch.clamp(inverse_depth, min=1e-4, max=1e4) return { "depth": depth.squeeze(), "focallength_px": f_px, }