diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..7649cf0b858a9f9c2612641b9c514bb53e5510c9 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +third_party/ml-depth-pro/data/example.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..036b91233b59c5d5f0a8b936e8e531216d88bf52 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +*.pth +*.pt \ No newline at end of file diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..2743f10db78bcb2d288a4dce29d5c10edb0372f1 --- /dev/null +++ b/app.py @@ -0,0 +1,172 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# gradio demo +# -------------------------------------------------------- + +import argparse +import math +import gradio +import os +import torch +import numpy as np +import tempfile +import functools +import copy +from tqdm import tqdm +import cv2 + +from dust3r.inference import inference +from dust3r.model import AsymmetricCroCo3DStereo +from dust3r.image_pairs import make_pairs +from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks +from dust3r.utils.device import to_numpy +from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode +import matplotlib.pyplot as pl +from transformers import pipeline +from dust3r.utils.viz_demo import convert_scene_output_to_glb +import depth_pro +pl.ion() + +# for gpu >= Ampere and pytorch >= 1.12 +torch.backends.cuda.matmul.allow_tf32 = True +batch_size = 1 + +tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo') +image_size = 512 +silent = True +gradio_delete_cache = 7200 + + +class FileState: + def __init__(self, outfile_name=None): + self.outfile_name = outfile_name + + def __del__(self): + if self.outfile_name is not None and os.path.isfile(self.outfile_name): + os.remove(self.outfile_name) + self.outfile_name = None + +def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, + clean_depth=False, transparent_cams=False, cam_size=0.05, show_cam=True, save_name=None, thr_for_init_conf=True): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene is None: + return None + # post processes + if clean_depth: + scene = scene.clean_pointcloud() + if mask_sky: + scene = scene.mask_sky() + + # get optimized values from scene + rgbimg = scene.imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + # 3D pointcloud from depthmap, poses and intrinsics + pts3d = to_numpy(scene.get_pts3d(raw_pts=True)) + scene.min_conf_thr = min_conf_thr + scene.thr_for_init_conf = thr_for_init_conf + msk = to_numpy(scene.get_masks()) + cmap = pl.get_cmap('viridis') + cam_color = [cmap(i/len(rgbimg))[:3] for i in range(len(rgbimg))] + cam_color = [(255*c[0], 255*c[1], 255*c[2]) for c in cam_color] + return convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, cam_size=cam_size, show_cam=show_cam, silent=silent, save_name=save_name, + cam_color=cam_color) + +def generate_monocular_depth_maps(img_list, depth_prior_name): + if depth_prior_name=='depthpro': + model, transform = depth_pro.create_model_and_transforms(device='cuda') + model.eval() + for image_path in tqdm(img_list): + path_depthpro = image_path.replace('.png','_pred_depth_depthpro.npz').replace('.jpg','_pred_depth_depthpro.npz') + image, _, f_px = depth_pro.load_rgb(image_path) + image = transform(image) + # Run inference. + prediction = model.infer(image, f_px=f_px) + depth = prediction["depth"].cpu() # Depth in [m]. + np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu()) + elif depth_prior_name=='depthanything': + pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda') + for image_path in tqdm(img_list): + path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz') + image = Image.open(image_path) + depth = pipe(image)["predicted_depth"].numpy() + np.savez_compressed(path_depthanything, depth=depth) + +@spaces.GPU(duration=180) +def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw): + generate_monocular_depth_maps(filelist, depth_prior_name) + imgs = load_images(filelist, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name) + pairs = [] + pairs.append((imgs[0], imgs[1])) + output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent) + mode = GlobalAlignerMode.PairViewer + scene = global_aligner(output, device=device, mode=mode, verbose=not silent) + save_folder = './output' + outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, show_cam) + + return outfile + + +def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw): + return local_get_reconstructed_scene(filelist, cam_size, **kw) + +css = """.gradio-container {margin: 0 !important; min-width: 100%};""" +title = "Align3R Demo" +with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo: + filestate = gradio.State(None) + gradio.HTML('

3D Reconstruction with MASt3R

') + gradio.HTML('

Upload two images (wait for them to be fully uploaded before hitting the run button). ' + 'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally ' + 'and more details about the method at github.com/jiah-cloud/Align3R. ' + 'The checkpoint used in this demo is available at Align3R (Depth Anything V2) and Align3R (Depth Pro).

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + snapshot = gradio.Image(None, visible=False) + with gradio.Row(): + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) + + depth_prior_name = gradio.Dropdown( + ["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.") + min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.1, minimum=0.0, maximum=20, step=0.01) + + if depth_prior_name == "Depth Pro": + weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt" + else: + weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt" + device = 'cuda' if torch.cuda.is_available() else 'cpu' + model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") + mask_sky = gradio.Checkbox(value=False, label="Mask sky") + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") + transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") + # not to show camera + show_cam = gradio.Checkbox(value=True, label="Show Camera") + run_btn = gradio.Button("Run") + outmodel = gradio.Model3D() + + # examples = gradio.Examples( + # examples=[ + # ['./example/yellowman/frame_0003.png', + # 0.0, 1.5, 0.2, True, False, + # ] + # ], + # inputs=[snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, inputfiles], + # outputs=[filestate, outmodel], + # fn=run_example, + # cache_examples="lazy", + # ) + + # events + run_btn.click(fn=local_get_reconstructed_scene, + inputs=[inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name], + outputs=[outmodel]) + +demo.launch(show_error=True, share=None, server_name=None, server_port=None) +shutil.rmtree(tmpdirname) \ No newline at end of file diff --git a/croco/LICENSE b/croco/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d9b84b1a65f9db6d8920a9048d162f52ba3ea56d --- /dev/null +++ b/croco/LICENSE @@ -0,0 +1,52 @@ +CroCo, Copyright (c) 2022-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. + +A summary of the CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/ + +The CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode + + +SEE NOTICE BELOW WITH RESPECT TO THE FILE: models/pos_embed.py, models/blocks.py + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/pos_embed.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py + +This software in this file incorporates parts of the following software available here: + +Transformer: https://github.com/tensorflow/models/blob/master/official/legacy/transformer/model_utils.py +available under the following license: https://github.com/tensorflow/models/blob/master/LICENSE + +MoCo v3: https://github.com/facebookresearch/moco-v3 +available under the following license: https://github.com/facebookresearch/moco-v3/blob/main/LICENSE + +DeiT: https://github.com/facebookresearch/deit +available under the following license: https://github.com/facebookresearch/deit/blob/main/LICENSE + + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/facebookresearch/mae/blob/main/LICENSE + +Attribution-NonCommercial 4.0 International + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/blocks.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/rwightman/pytorch-image-models + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/rwightman/pytorch-image-models/blob/master/LICENSE + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/croco/NOTICE b/croco/NOTICE new file mode 100644 index 0000000000000000000000000000000000000000..d51bb365036c12d428d6e3a4fd00885756d5261c --- /dev/null +++ b/croco/NOTICE @@ -0,0 +1,21 @@ +CroCo +Copyright 2022-present NAVER Corp. + +This project contains subcomponents with separate copyright notices and license terms. +Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses. + +==== + +facebookresearch/mae +https://github.com/facebookresearch/mae + +Attribution-NonCommercial 4.0 International + +==== + +rwightman/pytorch-image-models +https://github.com/rwightman/pytorch-image-models + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/croco/README.MD b/croco/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..38e33b001a60bd16749317fb297acd60f28a6f1b --- /dev/null +++ b/croco/README.MD @@ -0,0 +1,124 @@ +# CroCo + CroCo v2 / CroCo-Stereo / CroCo-Flow + +[[`CroCo arXiv`](https://arxiv.org/abs/2210.10716)] [[`CroCo v2 arXiv`](https://arxiv.org/abs/2211.10408)] [[`project page and demo`](https://croco.europe.naverlabs.com/)] + +This repository contains the code for our CroCo model presented in our NeurIPS'22 paper [CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion](https://openreview.net/pdf?id=wZEfHUM5ri) and its follow-up extension published at ICCV'23 [Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow](https://openaccess.thecvf.com/content/ICCV2023/html/Weinzaepfel_CroCo_v2_Improved_Cross-view_Completion_Pre-training_for_Stereo_Matching_and_ICCV_2023_paper.html), refered to as CroCo v2: + +![image](assets/arch.jpg) + +```bibtex +@inproceedings{croco, + title={{CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion}}, + author={{Weinzaepfel, Philippe and Leroy, Vincent and Lucas, Thomas and Br\'egier, Romain and Cabon, Yohann and Arora, Vaibhav and Antsfeld, Leonid and Chidlovskii, Boris and Csurka, Gabriela and Revaud J\'er\^ome}}, + booktitle={{NeurIPS}}, + year={2022} +} + +@inproceedings{croco_v2, + title={{CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow}}, + author={Weinzaepfel, Philippe and Lucas, Thomas and Leroy, Vincent and Cabon, Yohann and Arora, Vaibhav and Br{\'e}gier, Romain and Csurka, Gabriela and Antsfeld, Leonid and Chidlovskii, Boris and Revaud, J{\'e}r{\^o}me}, + booktitle={ICCV}, + year={2023} +} +``` + +## License + +The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](LICENSE) for more information. +Some components are based on code from [MAE](https://github.com/facebookresearch/mae) released under the CC BY-NC-SA 4.0 License and [timm](https://github.com/rwightman/pytorch-image-models) released under the Apache 2.0 License. +Some components for stereo matching and optical flow are based on code from [unimatch](https://github.com/autonomousvision/unimatch) released under the MIT license. + +## Preparation + +1. Install dependencies on a machine with a NVidia GPU using e.g. conda. Note that `habitat-sim` is required only for the interactive demo and the synthetic pre-training data generation. If you don't plan to use it, you can ignore the line installing it and use a more recent python version. + +```bash +conda create -n croco python=3.7 cmake=3.14.0 +conda activate croco +conda install habitat-sim headless -c conda-forge -c aihabitat +conda install pytorch torchvision -c pytorch +conda install notebook ipykernel matplotlib +conda install ipywidgets widgetsnbextension +conda install scikit-learn tqdm quaternion opencv # only for pretraining / habitat data generation + +``` + +2. Compile cuda kernels for RoPE + +CroCo v2 relies on RoPE positional embeddings for which you need to compile some cuda kernels. +```bash +cd models/curope/ +python setup.py build_ext --inplace +cd ../../ +``` + +This can be a bit long as we compile for all cuda architectures, feel free to update L9 of `models/curope/setup.py` to compile for specific architectures only. +You might also need to set the environment `CUDA_HOME` in case you use a custom cuda installation. + +In case you cannot provide, we also provide a slow pytorch version, which will be automatically loaded. + +3. Download pre-trained model + +We provide several pre-trained models: + +| modelname | pre-training data | pos. embed. | Encoder | Decoder | +|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------|---------| +| [`CroCo.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth) | Habitat | cosine | ViT-B | Small | +| [`CroCo_V2_ViTBase_SmallDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_SmallDecoder.pth) | Habitat + real | RoPE | ViT-B | Small | +| [`CroCo_V2_ViTBase_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_BaseDecoder.pth) | Habitat + real | RoPE | ViT-B | Base | +| [`CroCo_V2_ViTLarge_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth) | Habitat + real | RoPE | ViT-L | Base | + +To download a specific model, i.e., the first one (`CroCo.pth`) +```bash +mkdir -p pretrained_models/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth -P pretrained_models/ +``` + +## Reconstruction example + +Simply run after downloading the `CroCo_V2_ViTLarge_BaseDecoder` pretrained model (or update the corresponding line in `demo.py`) +```bash +python demo.py +``` + +## Interactive demonstration of cross-view completion reconstruction on the Habitat simulator + +First download the test scene from Habitat: +```bash +python -m habitat_sim.utils.datasets_download --uids habitat_test_scenes --data-path habitat-sim-data/ +``` + +Then, run the Notebook demo `interactive_demo.ipynb`. + +In this demo, you should be able to sample a random reference viewpoint from an [Habitat](https://github.com/facebookresearch/habitat-sim) test scene. Use the sliders to change viewpoint and select a masked target view to reconstruct using CroCo. +![croco_interactive_demo](https://user-images.githubusercontent.com/1822210/200516576-7937bc6a-55f8-49ed-8618-3ddf89433ea4.jpg) + +## Pre-training + +### CroCo + +To pre-train CroCo, please first generate the pre-training data from the Habitat simulator, following the instructions in [datasets/habitat_sim/README.MD](datasets/habitat_sim/README.MD) and then run the following command: +``` +torchrun --nproc_per_node=4 pretrain.py --output_dir ./output/pretraining/ +``` + +Our CroCo pre-training was launched on a single server with 4 GPUs. +It should take around 10 days with A100 or 15 days with V100 to do the 400 pre-training epochs, but decent performances are obtained earlier in training. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. +The first run can take a few minutes to start, to parse all available pre-training pairs. + +### CroCo v2 + +For CroCo v2 pre-training, in addition to the generation of the pre-training data from the Habitat simulator above, please pre-extract the crops from the real datasets following the instructions in [datasets/crops/README.MD](datasets/crops/README.MD). +Then, run the following command for the largest model (ViT-L encoder, Base decoder): +``` +torchrun --nproc_per_node=8 pretrain.py --model "CroCoNet(enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_num_heads=12, dec_depth=12, pos_embed='RoPE100')" --dataset "habitat_release+ARKitScenes+MegaDepth+3DStreetView+IndoorVL" --warmup_epochs 12 --max_epoch 125 --epochs 250 --amp 0 --keep_freq 5 --output_dir ./output/pretraining_crocov2/ +``` + +Our CroCo v2 pre-training was launched on a single server with 8 GPUs for the largest model, and on a single server with 4 GPUs for the smaller ones, keeping a batch size of 64 per gpu in all cases. +The largest model should take around 12 days on A100. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. + +## Stereo matching and Optical flow downstream tasks + +For CroCo-Stereo and CroCo-Flow, please refer to [stereoflow/README.MD](stereoflow/README.MD). diff --git a/croco/assets/Chateau1.png b/croco/assets/Chateau1.png new file mode 100644 index 0000000000000000000000000000000000000000..d282fc6a51c00b8dd8267d5d507220ae253c2d65 Binary files /dev/null and b/croco/assets/Chateau1.png differ diff --git a/croco/assets/Chateau2.png b/croco/assets/Chateau2.png new file mode 100644 index 0000000000000000000000000000000000000000..722b2fc553ec089346722efb9445526ddfa8e7bd Binary files /dev/null and b/croco/assets/Chateau2.png differ diff --git a/croco/assets/arch.jpg b/croco/assets/arch.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3f5b032729ddc58c06d890a0ebda1749276070c4 Binary files /dev/null and b/croco/assets/arch.jpg differ diff --git a/croco/croco-stereo-flow-demo.ipynb b/croco/croco-stereo-flow-demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..2b00a7607ab5f82d1857041969bfec977e56b3e0 --- /dev/null +++ b/croco/croco-stereo-flow-demo.ipynb @@ -0,0 +1,191 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9bca0f41", + "metadata": {}, + "source": [ + "# Simple inference example with CroCo-Stereo or CroCo-Flow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "80653ef7", + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n", + "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)." + ] + }, + { + "cell_type": "markdown", + "id": "4f033862", + "metadata": {}, + "source": [ + "First download the model(s) of your choice by running\n", + "```\n", + "bash stereoflow/download_model.sh crocostereo.pth\n", + "bash stereoflow/download_model.sh crocoflow.pth\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1fb2e392", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n", + "device = torch.device('cuda:0' if use_gpu else 'cpu')\n", + "import matplotlib.pylab as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e0e25d77", + "metadata": {}, + "outputs": [], + "source": [ + "from stereoflow.test import _load_model_and_criterion\n", + "from stereoflow.engine import tiled_pred\n", + "from stereoflow.datasets_stereo import img_to_tensor, vis_disparity\n", + "from stereoflow.datasets_flow import flowToColor\n", + "tile_overlap=0.7 # recommended value, higher value can be slightly better but slower" + ] + }, + { + "cell_type": "markdown", + "id": "86a921f5", + "metadata": {}, + "source": [ + "### CroCo-Stereo example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64e483cb", + "metadata": {}, + "outputs": [], + "source": [ + "image1 = np.asarray(Image.open(''))\n", + "image2 = np.asarray(Image.open(''))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f0d04303", + "metadata": {}, + "outputs": [], + "source": [ + "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocostereo.pth', None, device)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47dc14b5", + "metadata": {}, + "outputs": [], + "source": [ + "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n", + "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n", + "with torch.inference_mode():\n", + " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n", + "pred = pred.squeeze(0).squeeze(0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "583b9f16", + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(vis_disparity(pred))\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "id": "d2df5d70", + "metadata": {}, + "source": [ + "### CroCo-Flow example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ee257a7", + "metadata": {}, + "outputs": [], + "source": [ + "image1 = np.asarray(Image.open(''))\n", + "image2 = np.asarray(Image.open(''))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d5edccf0", + "metadata": {}, + "outputs": [], + "source": [ + "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocoflow.pth', None, device)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b19692c3", + "metadata": {}, + "outputs": [], + "source": [ + "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n", + "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n", + "with torch.inference_mode():\n", + " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n", + "pred = pred.squeeze(0).permute(1,2,0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26f79db3", + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(flowToColor(pred))\n", + "plt.axis('off')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/croco/datasets/__init__.py b/croco/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/croco/datasets/crops/README.MD b/croco/datasets/crops/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..47ddabebb177644694ee247ae878173a3a16644f --- /dev/null +++ b/croco/datasets/crops/README.MD @@ -0,0 +1,104 @@ +## Generation of crops from the real datasets + +The instructions below allow to generate the crops used for pre-training CroCo v2 from the following real-world datasets: ARKitScenes, MegaDepth, 3DStreetView and IndoorVL. + +### Download the metadata of the crops to generate + +First, download the metadata and put them in `./data/`: +``` +mkdir -p data +cd data/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/crop_metadata.zip +unzip crop_metadata.zip +rm crop_metadata.zip +cd .. +``` + +### Prepare the original datasets + +Second, download the original datasets in `./data/original_datasets/`. +``` +mkdir -p data/original_datasets +``` + +##### ARKitScenes + +Download the `raw` dataset from https://github.com/apple/ARKitScenes/blob/main/DATA.md and put it in `./data/original_datasets/ARKitScenes/`. +The resulting file structure should be like: +``` +./data/original_datasets/ARKitScenes/ +└───Training + └───40753679 + │ │ ultrawide + │ │ ... + └───40753686 + │ + ... +``` + +##### MegaDepth + +Download `MegaDepth v1 Dataset` from https://www.cs.cornell.edu/projects/megadepth/ and put it in `./data/original_datasets/MegaDepth/`. +The resulting file structure should be like: + +``` +./data/original_datasets/MegaDepth/ +└───0000 +│ └───images +│ │ │ 1000557903_87fa96b8a4_o.jpg +│ │ └ ... +│ └─── ... +└───0001 +│ │ +│ └ ... +└─── ... +``` + +##### 3DStreetView + +Download `3D_Street_View` dataset from https://github.com/amir32002/3D_Street_View and put it in `./data/original_datasets/3DStreetView/`. +The resulting file structure should be like: + +``` +./data/original_datasets/3DStreetView/ +└───dataset_aligned +│ └───0002 +│ │ │ 0000002_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +└───dataset_unaligned +│ └───0003 +│ │ │ 0000003_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +``` + +##### IndoorVL + +Download the `IndoorVL` datasets using [Kapture](https://github.com/naver/kapture). + +``` +pip install kapture +mkdir -p ./data/original_datasets/IndoorVL +cd ./data/original_datasets/IndoorVL +kapture_download_dataset.py update +kapture_download_dataset.py install "HyundaiDepartmentStore_*" +kapture_download_dataset.py install "GangnamStation_*" +cd - +``` + +### Extract the crops + +Now, extract the crops for each of the dataset: +``` +for dataset in ARKitScenes MegaDepth 3DStreetView IndoorVL; +do + python3 datasets/crops/extract_crops_from_images.py --crops ./data/crop_metadata/${dataset}/crops_release.txt --root-dir ./data/original_datasets/${dataset}/ --output-dir ./data/${dataset}_crops/ --imsize 256 --nthread 8 --max-subdir-levels 5 --ideal-number-pairs-in-dir 500; +done +``` + +##### Note for IndoorVL + +Due to some legal issues, we can only release 144,228 pairs out of the 1,593,689 pairs used in the paper. +To account for it in terms of number of pre-training iterations, the pre-training command in this repository uses 125 training epochs including 12 warm-up epochs and learning rate cosine schedule of 250, instead of 100, 10 and 200 respectively. +The impact on the performance is negligible. diff --git a/croco/datasets/crops/extract_crops_from_images.py b/croco/datasets/crops/extract_crops_from_images.py new file mode 100644 index 0000000000000000000000000000000000000000..eb66a0474ce44b54c44c08887cbafdb045b11ff3 --- /dev/null +++ b/croco/datasets/crops/extract_crops_from_images.py @@ -0,0 +1,159 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Extracting crops for pre-training +# -------------------------------------------------------- + +import os +import argparse +from tqdm import tqdm +from PIL import Image +import functools +from multiprocessing import Pool +import math + + +def arg_parser(): + parser = argparse.ArgumentParser('Generate cropped image pairs from image crop list') + + parser.add_argument('--crops', type=str, required=True, help='crop file') + parser.add_argument('--root-dir', type=str, required=True, help='root directory') + parser.add_argument('--output-dir', type=str, required=True, help='output directory') + parser.add_argument('--imsize', type=int, default=256, help='size of the crops') + parser.add_argument('--nthread', type=int, required=True, help='number of simultaneous threads') + parser.add_argument('--max-subdir-levels', type=int, default=5, help='maximum number of subdirectories') + parser.add_argument('--ideal-number-pairs-in-dir', type=int, default=500, help='number of pairs stored in a dir') + return parser + + +def main(args): + listing_path = os.path.join(args.output_dir, 'listing.txt') + + print(f'Loading list of crops ... ({args.nthread} threads)') + crops, num_crops_to_generate = load_crop_file(args.crops) + + print(f'Preparing jobs ({len(crops)} candidate image pairs)...') + num_levels = min(math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)), args.max_subdir_levels) + num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1/num_levels)) + + jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir) + del crops + + os.makedirs(args.output_dir, exist_ok=True) + mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map + call = functools.partial(save_image_crops, args) + + print(f"Generating cropped images to {args.output_dir} ...") + with open(listing_path, 'w') as listing: + listing.write('# pair_path\n') + for results in tqdm(mmap(call, jobs), total=len(jobs)): + for path in results: + listing.write(f'{path}\n') + print('Finished writing listing to', listing_path) + + +def load_crop_file(path): + data = open(path).read().splitlines() + pairs = [] + num_crops_to_generate = 0 + for line in tqdm(data): + if line.startswith('#'): + continue + line = line.split(', ') + if len(line) < 8: + img1, img2, rotation = line + pairs.append((img1, img2, int(rotation), [])) + else: + l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line) + rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2) + pairs[-1][-1].append((rect1, rect2)) + num_crops_to_generate += 1 + return pairs, num_crops_to_generate + + +def prepare_jobs(pairs, num_levels, num_pairs_in_dir): + jobs = [] + powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))] + + def get_path(idx): + idx_array = [] + d = idx + for level in range(num_levels - 1): + idx_array.append(idx // powers[level]) + idx = idx % powers[level] + idx_array.append(d) + return '/'.join(map(lambda x: hex(x)[2:], idx_array)) + + idx = 0 + for pair_data in tqdm(pairs): + img1, img2, rotation, crops = pair_data + if -60 <= rotation and rotation <= 60: + rotation = 0 # most likely not a true rotation + paths = [get_path(idx + k) for k in range(len(crops))] + idx += len(crops) + jobs.append(((img1, img2), rotation, crops, paths)) + return jobs + + +def load_image(path): + try: + return Image.open(path).convert('RGB') + except Exception as e: + print('skipping', path, e) + raise OSError() + + +def save_image_crops(args, data): + # load images + img_pair, rot, crops, paths = data + try: + img1, img2 = [load_image(os.path.join(args.root_dir, impath)) for impath in img_pair] + except OSError as e: + return [] + + def area(sz): + return sz[0] * sz[1] + + tgt_size = (args.imsize, args.imsize) + + def prepare_crop(img, rect, rot=0): + # actual crop + img = img.crop(rect) + + # resize to desired size + interp = Image.Resampling.LANCZOS if area(img.size) > 4*area(tgt_size) else Image.Resampling.BICUBIC + img = img.resize(tgt_size, resample=interp) + + # rotate the image + rot90 = (round(rot/90) % 4) * 90 + if rot90 == 90: + img = img.transpose(Image.Transpose.ROTATE_90) + elif rot90 == 180: + img = img.transpose(Image.Transpose.ROTATE_180) + elif rot90 == 270: + img = img.transpose(Image.Transpose.ROTATE_270) + return img + + results = [] + for (rect1, rect2), path in zip(crops, paths): + crop1 = prepare_crop(img1, rect1) + crop2 = prepare_crop(img2, rect2, rot) + + fullpath1 = os.path.join(args.output_dir, path+'_1.jpg') + fullpath2 = os.path.join(args.output_dir, path+'_2.jpg') + os.makedirs(os.path.dirname(fullpath1), exist_ok=True) + + assert not os.path.isfile(fullpath1), fullpath1 + assert not os.path.isfile(fullpath2), fullpath2 + crop1.save(fullpath1) + crop2.save(fullpath2) + results.append(path) + + return results + + +if __name__ == '__main__': + args = arg_parser().parse_args() + main(args) + diff --git a/croco/datasets/habitat_sim/README.MD b/croco/datasets/habitat_sim/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..a505781ff9eb91bce7f1d189e848f8ba1c560940 --- /dev/null +++ b/croco/datasets/habitat_sim/README.MD @@ -0,0 +1,76 @@ +## Generation of synthetic image pairs using Habitat-Sim + +These instructions allow to generate pre-training pairs from the Habitat simulator. +As we did not save metadata of the pairs used in the original paper, they are not strictly the same, but these data use the same setting and are equivalent. + +### Download Habitat-Sim scenes +Download Habitat-Sim scenes: +- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +- We used scenes from the HM3D, habitat-test-scenes, Replica, ReplicaCad and ScanNet datasets. +- Please put the scenes under `./data/habitat-sim-data/scene_datasets/` following the structure below, or update manually paths in `paths.py`. +``` +./data/ +└──habitat-sim-data/ + └──scene_datasets/ + ├──hm3d/ + ├──gibson/ + ├──habitat-test-scenes/ + ├──replica_cad_baked_lighting/ + ├──replica_cad/ + ├──ReplicaDataset/ + └──scannet/ +``` + +### Image pairs generation +We provide metadata to generate reproducible images pairs for pretraining and validation. +Experiments described in the paper used similar data, but whose generation was not reproducible at the time. + +Specifications: +- 256x256 resolution images, with 60 degrees field of view . +- Up to 1000 image pairs per scene. +- Number of scenes considered/number of images pairs per dataset: + - Scannet: 1097 scenes / 985 209 pairs + - HM3D: + - hm3d/train: 800 / 800k pairs + - hm3d/val: 100 scenes / 100k pairs + - hm3d/minival: 10 scenes / 10k pairs + - habitat-test-scenes: 3 scenes / 3k pairs + - replica_cad_baked_lighting: 13 scenes / 13k pairs + +- Scenes from hm3d/val and hm3d/minival pairs were not used for the pre-training but kept for validation purposes. + +Download metadata and extract it: +```bash +mkdir -p data/habitat_release_metadata/ +cd data/habitat_release_metadata/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/habitat_release_metadata/multiview_habitat_metadata.tar.gz +tar -xvf multiview_habitat_metadata.tar.gz +cd ../.. +# Location of the metadata +METADATA_DIR="./data/habitat_release_metadata/multiview_habitat_metadata" +``` + +Generate image pairs from metadata: +- The following command will print a list of commandlines to generate image pairs for each scene: +```bash +# Target output directory +PAIRS_DATASET_DIR="./data/habitat_release/" +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR +``` +- One can launch multiple of such commands in parallel e.g. using GNU Parallel: +```bash +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR | parallel -j 16 +``` + +## Metadata generation + +Image pairs were randomly sampled using the following commands, whose outputs contain randomness and are thus not exactly reproducible: +```bash +# Print commandlines to generate image pairs from the different scenes available. +PAIRS_DATASET_DIR=MY_CUSTOM_PATH +python datasets/habitat_sim/generate_multiview_images.py --list_commands --output_dir=$PAIRS_DATASET_DIR + +# Once a dataset is generated, pack metadata files for reproducibility. +METADATA_DIR=MY_CUSTON_PATH +python datasets/habitat_sim/pack_metadata_files.py $PAIRS_DATASET_DIR $METADATA_DIR +``` diff --git a/croco/datasets/habitat_sim/__init__.py b/croco/datasets/habitat_sim/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/croco/datasets/habitat_sim/generate_from_metadata.py b/croco/datasets/habitat_sim/generate_from_metadata.py new file mode 100644 index 0000000000000000000000000000000000000000..fbe0d399084359495250dc8184671ff498adfbf2 --- /dev/null +++ b/croco/datasets/habitat_sim/generate_from_metadata.py @@ -0,0 +1,92 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script to generate image pairs for a given scene reproducing poses provided in a metadata file. +""" +import os +from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator +from datasets.habitat_sim.paths import SCENES_DATASET +import argparse +import quaternion +import PIL.Image +import cv2 +import json +from tqdm import tqdm + +def generate_multiview_images_from_metadata(metadata_filename, + output_dir, + overload_params = dict(), + scene_datasets_paths=None, + exist_ok=False): + """ + Generate images from a metadata file for reproducibility purposes. + """ + # Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label + if scene_datasets_paths is not None: + scene_datasets_paths = dict(sorted(scene_datasets_paths.items(), key= lambda x: len(x[0]), reverse=True)) + + with open(metadata_filename, 'r') as f: + input_metadata = json.load(f) + metadata = dict() + for key, value in input_metadata.items(): + # Optionally replace some paths + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + if scene_datasets_paths is not None: + for dataset_label, dataset_path in scene_datasets_paths.items(): + if value.startswith(dataset_label): + value = os.path.normpath(os.path.join(dataset_path, os.path.relpath(value, dataset_label))) + break + metadata[key] = value + + # Overload some parameters + for key, value in overload_params.items(): + metadata[key] = value + + generation_entries = dict([(key, value) for key, value in metadata.items() if not (key in ('multiviews', 'output_dir', 'generate_depth'))]) + generate_depth = metadata["generate_depth"] + + os.makedirs(output_dir, exist_ok=exist_ok) + + generator = MultiviewHabitatSimGenerator(**generation_entries) + + # Generate views + for idx_label, data in tqdm(metadata['multiviews'].items()): + positions = data["positions"] + orientations = data["orientations"] + n = len(positions) + for oidx in range(n): + observation = generator.render_viewpoint(positions[oidx], quaternion.from_float_array(orientations[oidx])) + observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 + # Color image saved using PIL + img = PIL.Image.fromarray(observation['color'][:,:,:3]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr") + cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) + # Camera parameters + camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json") + with open(filename, "w") as f: + json.dump(camera_params, f) + # Save metadata + with open(os.path.join(output_dir, "metadata.json"), "w") as f: + json.dump(metadata, f) + + generator.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--metadata_filename", required=True) + parser.add_argument("--output_dir", required=True) + args = parser.parse_args() + + generate_multiview_images_from_metadata(metadata_filename=args.metadata_filename, + output_dir=args.output_dir, + scene_datasets_paths=SCENES_DATASET, + overload_params=dict(), + exist_ok=True) + + \ No newline at end of file diff --git a/croco/datasets/habitat_sim/generate_from_metadata_files.py b/croco/datasets/habitat_sim/generate_from_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..962ef849d8c31397b8622df4f2d9140175d78873 --- /dev/null +++ b/croco/datasets/habitat_sim/generate_from_metadata_files.py @@ -0,0 +1,27 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script generating commandlines to generate image pairs from metadata files. +""" +import os +import glob +from tqdm import tqdm +import argparse + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--input_dir", required=True) + parser.add_argument("--output_dir", required=True) + parser.add_argument("--prefix", default="", help="Commanline prefix, useful e.g. to setup environment.") + args = parser.parse_args() + + input_metadata_filenames = glob.iglob(f"{args.input_dir}/**/metadata.json", recursive=True) + + for metadata_filename in tqdm(input_metadata_filenames): + output_dir = os.path.join(args.output_dir, os.path.relpath(os.path.dirname(metadata_filename), args.input_dir)) + # Do not process the scene if the metadata file already exists + if os.path.exists(os.path.join(output_dir, "metadata.json")): + continue + commandline = f"{args.prefix}python datasets/habitat_sim/generate_from_metadata.py --metadata_filename={metadata_filename} --output_dir={output_dir}" + print(commandline) diff --git a/croco/datasets/habitat_sim/generate_multiview_images.py b/croco/datasets/habitat_sim/generate_multiview_images.py new file mode 100644 index 0000000000000000000000000000000000000000..421d49a1696474415940493296b3f2d982398850 --- /dev/null +++ b/croco/datasets/habitat_sim/generate_multiview_images.py @@ -0,0 +1,177 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +from tqdm import tqdm +import argparse +import PIL.Image +import numpy as np +import json +from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator, NoNaviguableSpaceError +from datasets.habitat_sim.paths import list_scenes_available +import cv2 +import quaternion +import shutil + +def generate_multiview_images_for_scene(scene_dataset_config_file, + scene, + navmesh, + output_dir, + views_count, + size, + exist_ok=False, + generate_depth=False, + **kwargs): + """ + Generate tuples of overlapping views for a given scene. + generate_depth: generate depth images and camera parameters. + """ + if os.path.exists(output_dir) and not exist_ok: + print(f"Scene {scene}: data already generated. Ignoring generation.") + return + try: + print(f"Scene {scene}: {size} multiview acquisitions to generate...") + os.makedirs(output_dir, exist_ok=exist_ok) + + metadata_filename = os.path.join(output_dir, "metadata.json") + + metadata_template = dict(scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count=views_count, + size=size, + generate_depth=generate_depth, + **kwargs) + metadata_template["multiviews"] = dict() + + if os.path.exists(metadata_filename): + print("Metadata file already exists:", metadata_filename) + print("Loading already generated metadata file...") + with open(metadata_filename, "r") as f: + metadata = json.load(f) + + for key in metadata_template.keys(): + if key != "multiviews": + assert metadata_template[key] == metadata[key], f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}." + else: + print("No temporary file found. Starting generation from scratch...") + metadata = metadata_template + + starting_id = len(metadata["multiviews"]) + print(f"Starting generation from index {starting_id}/{size}...") + if starting_id >= size: + print("Generation already done.") + return + + generator = MultiviewHabitatSimGenerator(scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count = views_count, + size = size, + **kwargs) + + for idx in tqdm(range(starting_id, size)): + # Generate / re-generate the observations + try: + data = generator[idx] + observations = data["observations"] + positions = data["positions"] + orientations = data["orientations"] + + idx_label = f"{idx:08}" + for oidx, observation in enumerate(observations): + observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 + # Color image saved using PIL + img = PIL.Image.fromarray(observation['color'][:,:,:3]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr") + cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) + # Camera parameters + camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json") + with open(filename, "w") as f: + json.dump(camera_params, f) + metadata["multiviews"][idx_label] = {"positions": positions.tolist(), + "orientations": orientations.tolist(), + "covisibility_ratios": data["covisibility_ratios"].tolist(), + "valid_fractions": data["valid_fractions"].tolist(), + "pairwise_visibility_ratios": data["pairwise_visibility_ratios"].tolist()} + except RecursionError: + print("Recursion error: unable to sample observations for this scene. We will stop there.") + break + + # Regularly save a temporary metadata file, in case we need to restart the generation + if idx % 10 == 0: + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + # Save metadata + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + generator.close() + except NoNaviguableSpaceError: + pass + +def create_commandline(scene_data, generate_depth, exist_ok=False): + """ + Create a commandline string to generate a scene. + """ + def my_formatting(val): + if val is None or val == "": + return '""' + else: + return val + commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)} + --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)} + --navmesh {my_formatting(scene_data.navmesh)} + --output_dir {my_formatting(scene_data.output_dir)} + --generate_depth {int(generate_depth)} + --exist_ok {int(exist_ok)} + """ + commandline = " ".join(commandline.split()) + return commandline + +if __name__ == "__main__": + os.umask(2) + + parser = argparse.ArgumentParser(description="""Example of use -- listing commands to generate data for scenes available: + > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands + """) + + parser.add_argument("--output_dir", type=str, required=True) + parser.add_argument("--list_commands", action='store_true', help="list commandlines to run if true") + parser.add_argument("--scene", type=str, default="") + parser.add_argument("--scene_dataset_config_file", type=str, default="") + parser.add_argument("--navmesh", type=str, default="") + + parser.add_argument("--generate_depth", type=int, default=1) + parser.add_argument("--exist_ok", type=int, default=0) + + kwargs = dict(resolution=(256,256), hfov=60, views_count = 2, size=1000) + + args = parser.parse_args() + generate_depth=bool(args.generate_depth) + exist_ok = bool(args.exist_ok) + + if args.list_commands: + # Listing scenes available... + scenes_data = list_scenes_available(base_output_dir=args.output_dir) + + for scene_data in scenes_data: + print(create_commandline(scene_data, generate_depth=generate_depth, exist_ok=exist_ok)) + else: + if args.scene == "" or args.output_dir == "": + print("Missing scene or output dir argument!") + print(parser.format_help()) + else: + generate_multiview_images_for_scene(scene=args.scene, + scene_dataset_config_file = args.scene_dataset_config_file, + navmesh = args.navmesh, + output_dir = args.output_dir, + exist_ok=exist_ok, + generate_depth=generate_depth, + **kwargs) \ No newline at end of file diff --git a/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py b/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..91e5f923b836a645caf5d8e4aacc425047e3c144 --- /dev/null +++ b/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py @@ -0,0 +1,390 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +import numpy as np +import quaternion +import habitat_sim +import json +from sklearn.neighbors import NearestNeighbors +import cv2 + +# OpenCV to habitat camera convention transformation +R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0) +R_HABITAT2OPENCV = R_OPENCV2HABITAT.T +DEG2RAD = np.pi / 180 + +def compute_camera_intrinsics(height, width, hfov): + f = width/2 / np.tan(hfov/2 * np.pi/180) + cu, cv = width/2, height/2 + return f, cu, cv + +def compute_camera_pose_opencv_convention(camera_position, camera_orientation): + R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT + t_cam2world = np.asarray(camera_position) + return R_cam2world, t_cam2world + +def compute_pointmap(depthmap, hfov): + """ Compute a HxWx3 pointmap in camera frame from a HxW depth map.""" + height, width = depthmap.shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + # Cast depth map to point + z_cam = depthmap + u, v = np.meshgrid(range(width), range(height)) + x_cam = (u - cu) / f * z_cam + y_cam = (v - cv) / f * z_cam + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1) + return X_cam + +def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation): + """Return a 3D point cloud corresponding to valid pixels of the depth map""" + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation) + + X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov) + valid_mask = (X_cam[:,:,2] != 0.0) + + X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()] + X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3) + return X_world + +def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False): + """ + Compute 'overlapping' metrics based on a distance threshold between two point clouds. + """ + nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2) + distances, indices = nbrs.kneighbors(pointcloud1) + intersection1 = np.count_nonzero(distances.flatten() < distance_threshold) + + data = {"intersection1": intersection1, + "size1": len(pointcloud1)} + if compute_symmetric: + nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1) + distances, indices = nbrs.kneighbors(pointcloud2) + intersection2 = np.count_nonzero(distances.flatten() < distance_threshold) + data["intersection2"] = intersection2 + data["size2"] = len(pointcloud2) + + return data + +def _append_camera_parameters(observation, hfov, camera_location, camera_rotation): + """ + Add camera parameters to the observation dictionnary produced by Habitat-Sim + In-place modifications. + """ + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation) + height, width = observation['depth'].shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + K = np.asarray([[f, 0, cu], + [0, f, cv], + [0, 0, 1.0]]) + observation["camera_intrinsics"] = K + observation["t_cam2world"] = t_cam2world + observation["R_cam2world"] = R_cam2world + +def look_at(eye, center, up, return_cam2world=True): + """ + Return camera pose looking at a given center point. + Analogous of gluLookAt function, using OpenCV camera convention. + """ + z = center - eye + z /= np.linalg.norm(z, axis=-1, keepdims=True) + y = -up + y = y - np.sum(y * z, axis=-1, keepdims=True) * z + y /= np.linalg.norm(y, axis=-1, keepdims=True) + x = np.cross(y, z, axis=-1) + + if return_cam2world: + R = np.stack((x, y, z), axis=-1) + t = eye + else: + # World to camera transformation + # Transposed matrix + R = np.stack((x, y, z), axis=-2) + t = - np.einsum('...ij, ...j', R, eye) + return R, t + +def look_at_for_habitat(eye, center, up, return_cam2world=True): + R, t = look_at(eye, center, up) + orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T) + return orientation, t + +def generate_orientation_noise(pan_range, tilt_range, roll_range): + return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP) + * quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT) + * quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT)) + + +class NoNaviguableSpaceError(RuntimeError): + def __init__(self, *args): + super().__init__(*args) + +class MultiviewHabitatSimGenerator: + def __init__(self, + scene, + navmesh, + scene_dataset_config_file, + resolution = (240, 320), + views_count=2, + hfov = 60, + gpu_id = 0, + size = 10000, + minimum_covisibility = 0.5, + transform = None): + self.scene = scene + self.navmesh = navmesh + self.scene_dataset_config_file = scene_dataset_config_file + self.resolution = resolution + self.views_count = views_count + assert(self.views_count >= 1) + self.hfov = hfov + self.gpu_id = gpu_id + self.size = size + self.transform = transform + + # Noise added to camera orientation + self.pan_range = (-3, 3) + self.tilt_range = (-10, 10) + self.roll_range = (-5, 5) + + # Height range to sample cameras + self.height_range = (1.2, 1.8) + + # Random steps between the camera views + self.random_steps_count = 5 + self.random_step_variance = 2.0 + + # Minimum fraction of the scene which should be valid (well defined depth) + self.minimum_valid_fraction = 0.7 + + # Distance threshold to see to select pairs + self.distance_threshold = 0.05 + # Minimum IoU of a view point cloud with respect to the reference view to be kept. + self.minimum_covisibility = minimum_covisibility + + # Maximum number of retries. + self.max_attempts_count = 100 + + self.seed = None + self._lazy_initialization() + + def _lazy_initialization(self): + # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly + if self.seed == None: + # Re-seed numpy generator + np.random.seed() + self.seed = np.random.randint(2**32-1) + sim_cfg = habitat_sim.SimulatorConfiguration() + sim_cfg.scene_id = self.scene + if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "": + sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file + sim_cfg.random_seed = self.seed + sim_cfg.load_semantic_mesh = False + sim_cfg.gpu_device_id = self.gpu_id + + depth_sensor_spec = habitat_sim.CameraSensorSpec() + depth_sensor_spec.uuid = "depth" + depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH + depth_sensor_spec.resolution = self.resolution + depth_sensor_spec.hfov = self.hfov + depth_sensor_spec.position = [0.0, 0.0, 0] + depth_sensor_spec.orientation + + rgb_sensor_spec = habitat_sim.CameraSensorSpec() + rgb_sensor_spec.uuid = "color" + rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR + rgb_sensor_spec.resolution = self.resolution + rgb_sensor_spec.hfov = self.hfov + rgb_sensor_spec.position = [0.0, 0.0, 0] + agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec]) + + cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg]) + self.sim = habitat_sim.Simulator(cfg) + if self.navmesh is not None and self.navmesh != "": + # Use pre-computed navmesh when available (usually better than those generated automatically) + self.sim.pathfinder.load_nav_mesh(self.navmesh) + + if not self.sim.pathfinder.is_loaded: + # Try to compute a navmesh + navmesh_settings = habitat_sim.NavMeshSettings() + navmesh_settings.set_defaults() + self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True) + + # Ensure that the navmesh is not empty + if not self.sim.pathfinder.is_loaded: + raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})") + + self.agent = self.sim.initialize_agent(agent_id=0) + + def close(self): + self.sim.close() + + def __del__(self): + self.sim.close() + + def __len__(self): + return self.size + + def sample_random_viewpoint(self): + """ Sample a random viewpoint using the navmesh """ + nav_point = self.sim.pathfinder.get_random_navigable_point() + + # Sample a random viewpoint height + viewpoint_height = np.random.uniform(*self.height_range) + viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP + viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) + return viewpoint_position, viewpoint_orientation, nav_point + + def sample_other_random_viewpoint(self, observed_point, nav_point): + """ Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point.""" + other_nav_point = nav_point + + walk_directions = self.random_step_variance * np.asarray([1,0,1]) + for i in range(self.random_steps_count): + temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3)) + # Snapping may return nan when it fails + if not np.isnan(temp[0]): + other_nav_point = temp + + other_viewpoint_height = np.random.uniform(*self.height_range) + other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP + + # Set viewing direction towards the central point + rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True) + rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) + return position, rotation, other_nav_point + + def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud): + """ Check if a viewpoint is valid and overlaps significantly with a reference one. """ + # Observation + pixels_count = self.resolution[0] * self.resolution[1] + valid_fraction = len(other_pointcloud) / pixels_count + assert valid_fraction <= 1.0 and valid_fraction >= 0.0 + overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True) + covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count) + is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility) + return is_valid, valid_fraction, covisibility + + def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation): + """ Check if a viewpoint is valid and overlaps significantly with a reference one. """ + # Observation + other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation) + return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) + + def render_viewpoint(self, viewpoint_position, viewpoint_orientation): + agent_state = habitat_sim.AgentState() + agent_state.position = viewpoint_position + agent_state.rotation = viewpoint_orientation + self.agent.set_state(agent_state) + viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0) + _append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation) + return viewpoint_observations + + def __getitem__(self, useless_idx): + ref_position, ref_orientation, nav_point = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + # Extract point cloud + ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, + camera_position=ref_position, camera_rotation=ref_orientation) + + pixels_count = self.resolution[0] * self.resolution[1] + ref_valid_fraction = len(ref_pointcloud) / pixels_count + assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0 + if ref_valid_fraction < self.minimum_valid_fraction: + # This should produce a recursion error at some point when something is very wrong. + return self[0] + # Pick an reference observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + + # Add the first image as reference + viewpoints_observations = [ref_observations] + viewpoints_covisibility = [ref_valid_fraction] + viewpoints_positions = [ref_position] + viewpoints_orientations = [quaternion.as_float_array(ref_orientation)] + viewpoints_clouds = [ref_pointcloud] + viewpoints_valid_fractions = [ref_valid_fraction] + + for _ in range(self.views_count - 1): + # Generate an other viewpoint using some dummy random walk + successful_sampling = False + for sampling_attempt in range(self.max_attempts_count): + position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point) + # Observation + other_viewpoint_observations = self.render_viewpoint(position, rotation) + other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation) + + is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) + if is_valid: + successful_sampling = True + break + if not successful_sampling: + print("WARNING: Maximum number of attempts reached.") + # Dirty hack, try using a novel original viewpoint + return self[0] + viewpoints_observations.append(other_viewpoint_observations) + viewpoints_covisibility.append(covisibility) + viewpoints_positions.append(position) + viewpoints_orientations.append(quaternion.as_float_array(rotation)) # WXYZ convention for the quaternion encoding. + viewpoints_clouds.append(other_pointcloud) + viewpoints_valid_fractions.append(valid_fraction) + + # Estimate relations between all pairs of images + pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations))) + for i in range(len(viewpoints_observations)): + pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i] + for j in range(i+1, len(viewpoints_observations)): + overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True) + pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count + pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count + + # IoU is relative to the image 0 + data = {"observations": viewpoints_observations, + "positions": np.asarray(viewpoints_positions), + "orientations": np.asarray(viewpoints_orientations), + "covisibility_ratios": np.asarray(viewpoints_covisibility), + "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float), + "pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float), + } + + if self.transform is not None: + data = self.transform(data) + return data + + def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False): + """ + Return a list of images corresponding to a spiral trajectory from a random starting point. + Useful to generate nice visualisations. + Use an even number of half turns to get a nice "C1-continuous" loop effect + """ + ref_position, ref_orientation, navpoint = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, + camera_position=ref_position, camera_rotation=ref_orientation) + pixels_count = self.resolution[0] * self.resolution[1] + if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction: + # Dirty hack: ensure that the valid part of the image is significant + return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation) + + # Pick an observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation) + + images = [] + is_valid = [] + # Spiral trajectory, use_constant orientation + for i, alpha in enumerate(np.linspace(0, 1, images_count)): + r = max_radius * np.abs(np.sin(alpha * np.pi)) # Increase then decrease the radius + theta = alpha * half_turns * np.pi + x = r * np.cos(theta) + y = r * np.sin(theta) + z = 0.0 + position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten() + if use_constant_orientation: + orientation = ref_orientation + else: + # trajectory looking at a mean point in front of the ref observation + orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP) + observations = self.render_viewpoint(position, orientation) + images.append(observations['color'][...,:3]) + _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation) + is_valid.append(_is_valid) + return images, np.all(is_valid) \ No newline at end of file diff --git a/croco/datasets/habitat_sim/pack_metadata_files.py b/croco/datasets/habitat_sim/pack_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..10672a01f7dd615d3b4df37781f7f6f97e753ba6 --- /dev/null +++ b/croco/datasets/habitat_sim/pack_metadata_files.py @@ -0,0 +1,69 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +""" +Utility script to pack metadata files of the dataset in order to be able to re-generate it elsewhere. +""" +import os +import glob +from tqdm import tqdm +import shutil +import json +from datasets.habitat_sim.paths import * +import argparse +import collections + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("input_dir") + parser.add_argument("output_dir") + args = parser.parse_args() + + input_dirname = args.input_dir + output_dirname = args.output_dir + + input_metadata_filenames = glob.iglob(f"{input_dirname}/**/metadata.json", recursive=True) + + images_count = collections.defaultdict(lambda : 0) + + os.makedirs(output_dirname) + for input_filename in tqdm(input_metadata_filenames): + # Ignore empty files + with open(input_filename, "r") as f: + original_metadata = json.load(f) + if "multiviews" not in original_metadata or len(original_metadata["multiviews"]) == 0: + print("No views in", input_filename) + continue + + relpath = os.path.relpath(input_filename, input_dirname) + print(relpath) + + # Copy metadata, while replacing scene paths by generic keys depending on the dataset, for portability. + # Data paths are sorted by decreasing length to avoid potential bugs due to paths starting by the same string pattern. + scenes_dataset_paths = dict(sorted(SCENES_DATASET.items(), key=lambda x: len(x[1]), reverse=True)) + metadata = dict() + for key, value in original_metadata.items(): + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + known_path = False + for dataset, dataset_path in scenes_dataset_paths.items(): + if value.startswith(dataset_path): + value = os.path.join(dataset, os.path.relpath(value, dataset_path)) + known_path = True + break + if not known_path: + raise KeyError("Unknown path:" + value) + metadata[key] = value + + # Compile some general statistics while packing data + scene_split = metadata["scene"].split("/") + upper_level = "/".join(scene_split[:2]) if scene_split[0] == "hm3d" else scene_split[0] + images_count[upper_level] += len(metadata["multiviews"]) + + output_filename = os.path.join(output_dirname, relpath) + os.makedirs(os.path.dirname(output_filename), exist_ok=True) + with open(output_filename, "w") as f: + json.dump(metadata, f) + + # Print statistics + print("Images count:") + for upper_level, count in images_count.items(): + print(f"- {upper_level}: {count}") \ No newline at end of file diff --git a/croco/datasets/habitat_sim/paths.py b/croco/datasets/habitat_sim/paths.py new file mode 100644 index 0000000000000000000000000000000000000000..4d63b5fa29c274ddfeae084734a35ba66d7edee8 --- /dev/null +++ b/croco/datasets/habitat_sim/paths.py @@ -0,0 +1,129 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Paths to Habitat-Sim scenes +""" + +import os +import json +import collections +from tqdm import tqdm + + +# Hardcoded path to the different scene datasets +SCENES_DATASET = { + "hm3d": "./data/habitat-sim-data/scene_datasets/hm3d/", + "gibson": "./data/habitat-sim-data/scene_datasets/gibson/", + "habitat-test-scenes": "./data/habitat-sim/scene_datasets/habitat-test-scenes/", + "replica_cad_baked_lighting": "./data/habitat-sim/scene_datasets/replica_cad_baked_lighting/", + "replica_cad": "./data/habitat-sim/scene_datasets/replica_cad/", + "replica": "./data/habitat-sim/scene_datasets/ReplicaDataset/", + "scannet": "./data/habitat-sim/scene_datasets/scannet/" +} + +SceneData = collections.namedtuple("SceneData", ["scene_dataset_config_file", "scene", "navmesh", "output_dir"]) + +def list_replicacad_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad"]): + scene_dataset_config_file = os.path.join(base_path, "replicaCAD.scene_dataset_config.json") + scenes = [f"apt_{i}" for i in range(6)] + ["empty_stage"] + navmeshes = [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join(base_output_dir, "ReplicaCAD", scenes[idx]) + # Add scene + data = SceneData(scene_dataset_config_file=scene_dataset_config_file, + scene = scenes[idx] + ".scene_instance.json", + navmesh = os.path.join(base_path, navmeshes[idx]), + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + +def list_replica_cad_baked_lighting_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad_baked_lighting"]): + scene_dataset_config_file = os.path.join(base_path, "replicaCAD_baked.scene_dataset_config.json") + scenes = sum([[f"Baked_sc{i}_staging_{j:02}" for i in range(5)] for j in range(21)], []) + navmeshes = ""#[f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join(base_output_dir, "replica_cad_baked_lighting", scenes[idx]) + data = SceneData(scene_dataset_config_file=scene_dataset_config_file, + scene = scenes[idx], + navmesh = "", + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + +def list_replica_scenes(base_output_dir, base_path): + scenes_data = [] + for scene_id in os.listdir(base_path): + scene = os.path.join(base_path, scene_id, "mesh.ply") + navmesh = os.path.join(base_path, scene_id, "habitat/mesh_preseg_semantic.navmesh") # Not sure if I should use it + scene_dataset_config_file = "" + output_dir = os.path.join(base_output_dir, scene_id) + # Add scene only if it does not exist already, or if exist_ok + data = SceneData(scene_dataset_config_file = scene_dataset_config_file, + scene = scene, + navmesh = navmesh, + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + + +def list_scenes(base_output_dir, base_path): + """ + Generic method iterating through a base_path folder to find scenes. + """ + scenes_data = [] + for root, dirs, files in os.walk(base_path, followlinks=True): + folder_scenes_data = [] + for file in files: + name, ext = os.path.splitext(file) + if ext == ".glb": + scene = os.path.join(root, name + ".glb") + navmesh = os.path.join(root, name + ".navmesh") + if not os.path.exists(navmesh): + navmesh = "" + relpath = os.path.relpath(root, base_path) + output_dir = os.path.abspath(os.path.join(base_output_dir, relpath, name)) + data = SceneData(scene_dataset_config_file="", + scene = scene, + navmesh = navmesh, + output_dir = output_dir) + folder_scenes_data.append(data) + + # Specific check for HM3D: + # When two meshesxxxx.basis.glb and xxxx.glb are present, use the 'basis' version. + basis_scenes = [data.scene[:-len(".basis.glb")] for data in folder_scenes_data if data.scene.endswith(".basis.glb")] + if len(basis_scenes) != 0: + folder_scenes_data = [data for data in folder_scenes_data if not (data.scene[:-len(".glb")] in basis_scenes)] + + scenes_data.extend(folder_scenes_data) + return scenes_data + +def list_scenes_available(base_output_dir, scenes_dataset_paths=SCENES_DATASET): + scenes_data = [] + + # HM3D + for split in ("minival", "train", "val", "examples"): + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, f"hm3d/{split}/"), + base_path=f"{scenes_dataset_paths['hm3d']}/{split}") + + # Gibson + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "gibson"), + base_path=scenes_dataset_paths["gibson"]) + + # Habitat test scenes (just a few) + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "habitat-test-scenes"), + base_path=scenes_dataset_paths["habitat-test-scenes"]) + + # ReplicaCAD (baked lightning) + scenes_data += list_replica_cad_baked_lighting_scenes(base_output_dir=base_output_dir) + + # ScanNet + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "scannet"), + base_path=scenes_dataset_paths["scannet"]) + + # Replica + list_replica_scenes(base_output_dir=os.path.join(base_output_dir, "replica"), + base_path=scenes_dataset_paths["replica"]) + return scenes_data diff --git a/croco/datasets/pairs_dataset.py b/croco/datasets/pairs_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..9f107526b34e154d9013a9a7a0bde3d5ff6f581c --- /dev/null +++ b/croco/datasets/pairs_dataset.py @@ -0,0 +1,109 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +from torch.utils.data import Dataset +from PIL import Image + +from datasets.transforms import get_pair_transforms + +def load_image(impath): + return Image.open(impath) + +def load_pairs_from_cache_file(fname, root=''): + assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, 'r') as fid: + lines = fid.read().strip().splitlines() + pairs = [ (os.path.join(root,l.split()[0]), os.path.join(root,l.split()[1])) for l in lines] + return pairs + +def load_pairs_from_list_file(fname, root=''): + assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, 'r') as fid: + lines = fid.read().strip().splitlines() + pairs = [ (os.path.join(root,l+'_1.jpg'), os.path.join(root,l+'_2.jpg')) for l in lines if not l.startswith('#')] + return pairs + + +def write_cache_file(fname, pairs, root=''): + if len(root)>0: + if not root.endswith('/'): root+='/' + assert os.path.isdir(root) + s = '' + for im1, im2 in pairs: + if len(root)>0: + assert im1.startswith(root), im1 + assert im2.startswith(root), im2 + s += '{:s} {:s}\n'.format(im1[len(root):], im2[len(root):]) + with open(fname, 'w') as fid: + fid.write(s[:-1]) + +def parse_and_cache_all_pairs(dname, data_dir='./data/'): + if dname=='habitat_release': + dirname = os.path.join(data_dir, 'habitat_release') + assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname + cache_file = os.path.join(dirname, 'pairs.txt') + assert not os.path.isfile(cache_file), "cache file already exists: "+cache_file + + print('Parsing pairs for dataset: '+dname) + pairs = [] + for root, dirs, files in os.walk(dirname): + if 'val' in root: continue + dirs.sort() + pairs += [ (os.path.join(root,f), os.path.join(root,f[:-len('_1.jpeg')]+'_2.jpeg')) for f in sorted(files) if f.endswith('_1.jpeg')] + print('Found {:,} pairs'.format(len(pairs))) + print('Writing cache to: '+cache_file) + write_cache_file(cache_file, pairs, root=dirname) + + else: + raise NotImplementedError('Unknown dataset: '+dname) + +def dnames_to_image_pairs(dnames, data_dir='./data/'): + """ + dnames: list of datasets with image pairs, separated by + + """ + all_pairs = [] + for dname in dnames.split('+'): + if dname=='habitat_release': + dirname = os.path.join(data_dir, 'habitat_release') + assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname + cache_file = os.path.join(dirname, 'pairs.txt') + assert os.path.isfile(cache_file), "cannot find cache file for habitat_release pairs, please first create the cache file, see instructions. "+cache_file + pairs = load_pairs_from_cache_file(cache_file, root=dirname) + elif dname in ['ARKitScenes', 'MegaDepth', '3DStreetView', 'IndoorVL']: + dirname = os.path.join(data_dir, dname+'_crops') + assert os.path.isdir(dirname), "cannot find folder for {:s} pairs: {:s}".format(dname, dirname) + list_file = os.path.join(dirname, 'listing.txt') + assert os.path.isfile(list_file), "cannot find list file for {:s} pairs, see instructions. {:s}".format(dname, list_file) + pairs = load_pairs_from_list_file(list_file, root=dirname) + print(' {:s}: {:,} pairs'.format(dname, len(pairs))) + all_pairs += pairs + if '+' in dnames: print(' Total: {:,} pairs'.format(len(all_pairs))) + return all_pairs + + +class PairsDataset(Dataset): + + def __init__(self, dnames, trfs='', totensor=True, normalize=True, data_dir='./data/'): + super().__init__() + self.image_pairs = dnames_to_image_pairs(dnames, data_dir=data_dir) + self.transforms = get_pair_transforms(transform_str=trfs, totensor=totensor, normalize=normalize) + + def __len__(self): + return len(self.image_pairs) + + def __getitem__(self, index): + im1path, im2path = self.image_pairs[index] + im1 = load_image(im1path) + im2 = load_image(im2path) + if self.transforms is not None: im1, im2 = self.transforms(im1, im2) + return im1, im2 + + +if __name__=="__main__": + import argparse + parser = argparse.ArgumentParser(prog="Computing and caching list of pairs for a given dataset") + parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") + parser.add_argument('--dataset', default='habitat_release', type=str, help="name of the dataset") + args = parser.parse_args() + parse_and_cache_all_pairs(dname=args.dataset, data_dir=args.data_dir) diff --git a/croco/datasets/transforms.py b/croco/datasets/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..216bac61f8254fd50e7f269ee80301f250a2d11e --- /dev/null +++ b/croco/datasets/transforms.py @@ -0,0 +1,95 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +import torchvision.transforms +import torchvision.transforms.functional as F + +# "Pair": apply a transform on a pair +# "Both": apply the exact same transform to both images + +class ComposePair(torchvision.transforms.Compose): + def __call__(self, img1, img2): + for t in self.transforms: + img1, img2 = t(img1, img2) + return img1, img2 + +class NormalizeBoth(torchvision.transforms.Normalize): + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + +class ToTensorBoth(torchvision.transforms.ToTensor): + def __call__(self, img1, img2): + img1 = super().__call__(img1) + img2 = super().__call__(img2) + return img1, img2 + +class RandomCropPair(torchvision.transforms.RandomCrop): + # the crop will be intentionally different for the two images with this class + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + +class ColorJitterPair(torchvision.transforms.ColorJitter): + # can be symmetric (same for both images) or assymetric (different jitter params for each image) depending on assymetric_prob + def __init__(self, assymetric_prob, **kwargs): + super().__init__(**kwargs) + self.assymetric_prob = assymetric_prob + def jitter_one(self, img, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor): + for fn_id in fn_idx: + if fn_id == 0 and brightness_factor is not None: + img = F.adjust_brightness(img, brightness_factor) + elif fn_id == 1 and contrast_factor is not None: + img = F.adjust_contrast(img, contrast_factor) + elif fn_id == 2 and saturation_factor is not None: + img = F.adjust_saturation(img, saturation_factor) + elif fn_id == 3 and hue_factor is not None: + img = F.adjust_hue(img, hue_factor) + return img + + def forward(self, img1, img2): + + fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + img1 = self.jitter_one(img1, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor) + if torch.rand(1) < self.assymetric_prob: # assymetric: + fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + img2 = self.jitter_one(img2, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor) + return img1, img2 + +def get_pair_transforms(transform_str, totensor=True, normalize=True): + # transform_str is eg crop224+color + trfs = [] + for s in transform_str.split('+'): + if s.startswith('crop'): + size = int(s[len('crop'):]) + trfs.append(RandomCropPair(size)) + elif s=='acolor': + trfs.append(ColorJitterPair(assymetric_prob=1.0, brightness=(0.6, 1.4), contrast=(0.6, 1.4), saturation=(0.6, 1.4), hue=0.0)) + elif s=='': # if transform_str was "" + pass + else: + raise NotImplementedError('Unknown augmentation: '+s) + + if totensor: + trfs.append( ToTensorBoth() ) + if normalize: + trfs.append( NormalizeBoth(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ) + + if len(trfs)==0: + return None + elif len(trfs)==1: + return trfs + else: + return ComposePair(trfs) + + + + + diff --git a/croco/demo.py b/croco/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..91b80ccc5c98c18e20d1ce782511aa824ef28f77 --- /dev/null +++ b/croco/demo.py @@ -0,0 +1,55 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +from models.croco import CroCoNet +from PIL import Image +import torchvision.transforms +from torchvision.transforms import ToTensor, Normalize, Compose + +def main(): + device = torch.device('cuda:0' if torch.cuda.is_available() and torch.cuda.device_count()>0 else 'cpu') + + # load 224x224 images and transform them to tensor + imagenet_mean = [0.485, 0.456, 0.406] + imagenet_mean_tensor = torch.tensor(imagenet_mean).view(1,3,1,1).to(device, non_blocking=True) + imagenet_std = [0.229, 0.224, 0.225] + imagenet_std_tensor = torch.tensor(imagenet_std).view(1,3,1,1).to(device, non_blocking=True) + trfs = Compose([ToTensor(), Normalize(mean=imagenet_mean, std=imagenet_std)]) + image1 = trfs(Image.open('assets/Chateau1.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) + image2 = trfs(Image.open('assets/Chateau2.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) + + # load model + ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu') + model = CroCoNet( **ckpt.get('croco_kwargs',{})).to(device) + model.eval() + msg = model.load_state_dict(ckpt['model'], strict=True) + + # forward + with torch.inference_mode(): + out, mask, target = model(image1, image2) + + # the output is normalized, thus use the mean/std of the actual image to go back to RGB space + patchified = model.patchify(image1) + mean = patchified.mean(dim=-1, keepdim=True) + var = patchified.var(dim=-1, keepdim=True) + decoded_image = model.unpatchify(out * (var + 1.e-6)**.5 + mean) + # undo imagenet normalization, prepare masked image + decoded_image = decoded_image * imagenet_std_tensor + imagenet_mean_tensor + input_image = image1 * imagenet_std_tensor + imagenet_mean_tensor + ref_image = image2 * imagenet_std_tensor + imagenet_mean_tensor + image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None]) + masked_input_image = ((1 - image_masks) * input_image) + + # make visualization + visualization = torch.cat((ref_image, masked_input_image, decoded_image, input_image), dim=3) # 4*(B, 3, H, W) -> B, 3, H, W*4 + B, C, H, W = visualization.shape + visualization = visualization.permute(1, 0, 2, 3).reshape(C, B*H, W) + visualization = torchvision.transforms.functional.to_pil_image(torch.clamp(visualization, 0, 1)) + fname = "demo_output.png" + visualization.save(fname) + print('Visualization save in '+fname) + + +if __name__=="__main__": + main() diff --git a/croco/interactive_demo.ipynb b/croco/interactive_demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6cfc960af5baac9a69029c29a16eea4e24123a71 --- /dev/null +++ b/croco/interactive_demo.ipynb @@ -0,0 +1,271 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interactive demo of Cross-view Completion." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n", + "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import numpy as np\n", + "from models.croco import CroCoNet\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "import matplotlib.pyplot as plt\n", + "import quaternion\n", + "import models.masking" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load CroCo model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n", + "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n", + "msg = model.load_state_dict(ckpt['model'], strict=True)\n", + "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n", + "device = torch.device('cuda:0' if use_gpu else 'cpu')\n", + "model = model.eval()\n", + "model = model.to(device=device)\n", + "print(msg)\n", + "\n", + "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n", + " \"\"\"\n", + " Perform Cross-View completion using two input images, specified using Numpy arrays.\n", + " \"\"\"\n", + " # Replace the mask generator\n", + " model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n", + "\n", + " # ImageNet-1k color normalization\n", + " imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n", + " imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n", + "\n", + " normalize_input_colors = True\n", + " is_output_normalized = True\n", + " with torch.no_grad():\n", + " # Cast data to torch\n", + " target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + " ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + "\n", + " if normalize_input_colors:\n", + " ref_image = (ref_image - imagenet_mean) / imagenet_std\n", + " target_image = (target_image - imagenet_mean) / imagenet_std\n", + "\n", + " out, mask, _ = model(target_image, ref_image)\n", + " # # get target\n", + " if not is_output_normalized:\n", + " predicted_image = model.unpatchify(out)\n", + " else:\n", + " # The output only contains higher order information,\n", + " # we retrieve mean and standard deviation from the actual target image\n", + " patchified = model.patchify(target_image)\n", + " mean = patchified.mean(dim=-1, keepdim=True)\n", + " var = patchified.var(dim=-1, keepdim=True)\n", + " pred_renorm = out * (var + 1.e-6)**.5 + mean\n", + " predicted_image = model.unpatchify(pred_renorm)\n", + "\n", + " image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n", + " masked_target_image = (1 - image_masks) * target_image\n", + " \n", + " if not reconstruct_unmasked_patches:\n", + " # Replace unmasked patches by their actual values\n", + " predicted_image = predicted_image * image_masks + masked_target_image\n", + "\n", + " # Unapply color normalization\n", + " if normalize_input_colors:\n", + " predicted_image = predicted_image * imagenet_std + imagenet_mean\n", + " masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n", + " \n", + " # Cast to Numpy\n", + " masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " return masked_target_image, predicted_image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n", + "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n", + "import habitat_sim\n", + "\n", + "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n", + "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n", + "\n", + "sim_cfg = habitat_sim.SimulatorConfiguration()\n", + "if use_gpu: sim_cfg.gpu_device_id = 0\n", + "sim_cfg.scene_id = scene\n", + "sim_cfg.load_semantic_mesh = False\n", + "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n", + "rgb_sensor_spec.uuid = \"color\"\n", + "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n", + "rgb_sensor_spec.resolution = (224,224)\n", + "rgb_sensor_spec.hfov = 56.56\n", + "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n", + "rgb_sensor_spec.orientation = [0, 0, 0]\n", + "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n", + "\n", + "\n", + "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n", + "sim = habitat_sim.Simulator(cfg)\n", + "if navmesh is not None:\n", + " sim.pathfinder.load_nav_mesh(navmesh)\n", + "agent = sim.initialize_agent(agent_id=0)\n", + "\n", + "def sample_random_viewpoint():\n", + " \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n", + " nav_point = sim.pathfinder.get_random_navigable_point()\n", + " # Sample a random viewpoint height\n", + " viewpoint_height = np.random.uniform(1.0, 1.6)\n", + " viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n", + " viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n", + " return viewpoint_position, viewpoint_orientation\n", + "\n", + "def render_viewpoint(position, orientation):\n", + " agent_state = habitat_sim.AgentState()\n", + " agent_state.position = position\n", + " agent_state.rotation = orientation\n", + " agent.set_state(agent_state)\n", + " viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n", + " image = viewpoint_observations['color'][:,:,:3]\n", + " image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n", + " return image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample a random reference view" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ref_position, ref_orientation = sample_random_viewpoint()\n", + "ref_image = render_viewpoint(ref_position, ref_orientation)\n", + "plt.clf()\n", + "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n", + "axes[0,0].imshow(ref_image)\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interactive cross-view completion using CroCo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reconstruct_unmasked_patches = False\n", + "\n", + "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n", + " R = quaternion.as_rotation_matrix(ref_orientation)\n", + " target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n", + " target_orientation = (ref_orientation\n", + " * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n", + " * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n", + " \n", + " ref_image = render_viewpoint(ref_position, ref_orientation)\n", + " target_image = render_viewpoint(target_position, target_orientation)\n", + "\n", + " masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n", + "\n", + " fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n", + " axes[0].imshow(ref_image)\n", + " axes[0].set_xlabel(\"Reference\")\n", + " axes[1].imshow(masked_target_image)\n", + " axes[1].set_xlabel(\"Masked target\")\n", + " axes[2].imshow(predicted_image)\n", + " axes[2].set_xlabel(\"Reconstruction\") \n", + " axes[3].imshow(target_image)\n", + " axes[3].set_xlabel(\"Target\")\n", + " for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "interact(show_demo,\n", + " masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n", + " x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n", + " elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + }, + "vscode": { + "interpreter": { + "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/croco/models/__pycache__/blocks.cpython-311.pyc b/croco/models/__pycache__/blocks.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31f304b2da0dfc73988726c99dea9c1e7aa6bbc2 Binary files /dev/null and b/croco/models/__pycache__/blocks.cpython-311.pyc differ diff --git a/croco/models/__pycache__/croco.cpython-311.pyc b/croco/models/__pycache__/croco.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2afba8d0bfc7033e1675b54a563b4881c2ec662f Binary files /dev/null and b/croco/models/__pycache__/croco.cpython-311.pyc differ diff --git a/croco/models/__pycache__/dpt_block.cpython-311.pyc b/croco/models/__pycache__/dpt_block.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d2b3d8fedeb83f497b75be82cdd4d914603e38af Binary files /dev/null and b/croco/models/__pycache__/dpt_block.cpython-311.pyc differ diff --git a/croco/models/__pycache__/masking.cpython-311.pyc b/croco/models/__pycache__/masking.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd533bf04a6aaed1c7f8ef4f40ad87802df30e20 Binary files /dev/null and b/croco/models/__pycache__/masking.cpython-311.pyc differ diff --git a/croco/models/__pycache__/pos_embed.cpython-311.pyc b/croco/models/__pycache__/pos_embed.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..328137b3f0a3524979b66910522827a6b5379b22 Binary files /dev/null and b/croco/models/__pycache__/pos_embed.cpython-311.pyc differ diff --git a/croco/models/blocks.py b/croco/models/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..18133524f0ae265b0bd8d062d7c9eeaa63858a9b --- /dev/null +++ b/croco/models/blocks.py @@ -0,0 +1,241 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# Main encoder/decoder blocks +# -------------------------------------------------------- +# References: +# timm +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py + + +import torch +import torch.nn as nn + +from itertools import repeat +import collections.abc + + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return x + return tuple(repeat(x, n)) + return parse +to_2tuple = _ntuple(2) + +def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f'drop_prob={round(self.drop_prob,3):0.3f}' + +class Mlp(nn.Module): + """ MLP as used in Vision Transformer, MLP-Mixer and related networks""" + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class Attention(nn.Module): + + def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.rope = rope + + def forward(self, x, xpos): + B, N, C = x.shape + + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3) + q, k, v = [qkv[:,:,i] for i in range(3)] + # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) + + if self.rope is not None: + q = self.rope(q, xpos) + k = self.rope(k, xpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + def forward(self, x, xpos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + +class CrossAttention(nn.Module): + + def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.projq = nn.Linear(dim, dim, bias=qkv_bias) + self.projk = nn.Linear(dim, dim, bias=qkv_bias) + self.projv = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.rope = rope + + def forward(self, query, key, value, qpos, kpos): + B, Nq, C = query.shape + Nk = key.shape[1] + Nv = value.shape[1] + + q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + + if self.rope is not None: + q = self.rope(q, qpos) + k = self.rope(k, kpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class DecoderBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.norm3 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() + + def forward(self, x, y, xpos, ypos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + y_ = self.norm_y(y) + x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) + x = x + self.drop_path(self.mlp(self.norm3(x))) + return x, y + + +# patch embedding +class PositionGetter(object): + """ return positions of patches """ + + def __init__(self): + self.cache_positions = {} + + def __call__(self, b, h, w, device): + if not (h,w) in self.cache_positions: + x = torch.arange(w, device=device) + y = torch.arange(h, device=device) + self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2) + pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone() + return pos + +class PatchEmbed(nn.Module): + """ just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.flatten = flatten + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + self.position_getter = PositionGetter() + + def forward(self, x): + B, C, H, W = x.shape + torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") + torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x, pos + + def _init_weights(self): + w = self.proj.weight.data + torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) + diff --git a/croco/models/criterion.py b/croco/models/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..11696c40865344490f23796ea45e8fbd5e654731 --- /dev/null +++ b/croco/models/criterion.py @@ -0,0 +1,37 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Criterion to train CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# -------------------------------------------------------- + +import torch + +class MaskedMSE(torch.nn.Module): + + def __init__(self, norm_pix_loss=False, masked=True): + """ + norm_pix_loss: normalize each patch by their pixel mean and variance + masked: compute loss over the masked patches only + """ + super().__init__() + self.norm_pix_loss = norm_pix_loss + self.masked = masked + + def forward(self, pred, mask, target): + + if self.norm_pix_loss: + mean = target.mean(dim=-1, keepdim=True) + var = target.var(dim=-1, keepdim=True) + target = (target - mean) / (var + 1.e-6)**.5 + + loss = (pred - target) ** 2 + loss = loss.mean(dim=-1) # [N, L], mean loss per patch + if self.masked: + loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches + else: + loss = loss.mean() # mean loss + return loss diff --git a/croco/models/croco.py b/croco/models/croco.py new file mode 100644 index 0000000000000000000000000000000000000000..f6edba0f044b7d6757ec45dd76eb2e14f5afdeaf --- /dev/null +++ b/croco/models/croco.py @@ -0,0 +1,256 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# CroCo model during pretraining +# -------------------------------------------------------- + + + +import torch +import torch.nn as nn +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 +from functools import partial + +from models.blocks import Block, DecoderBlock, PatchEmbed +from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D +from models.masking import RandomMask + + +class CroCoNet(nn.Module): + + def __init__(self, + img_size=224, # input image size + patch_size=16, # patch_size + mask_ratio=0.9, # ratios of masked tokens + enc_embed_dim=768, # encoder feature dimension + enc_depth=12, # encoder depth + enc_num_heads=12, # encoder number of heads in the transformer block + dec_embed_dim=512, # decoder feature dimension + dec_depth=8, # decoder depth + dec_num_heads=16, # decoder number of heads in the transformer block + mlp_ratio=4, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder + pos_embed='cosine', # positional embedding (either cosine or RoPE100) + ): + + super(CroCoNet, self).__init__() + + self.enc_depth = enc_depth + self.enc_embed_dim = enc_embed_dim + self.dec_depth = dec_depth + self.dec_embed_dim = dec_embed_dim + # patch embeddings (with initialization done as in MAE) + self._set_patch_embed(img_size, patch_size, enc_embed_dim) + + # mask generations + self._set_mask_generator(self.patch_embed.num_patches, mask_ratio) + + self.pos_embed = pos_embed + if pos_embed=='cosine': + # positional embedding of the encoder + enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, self.patch_embed.grid_size, n_cls_token=0) + self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float()) + # positional embedding of the decoder + dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, self.patch_embed.grid_size, n_cls_token=0) + self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float()) + # pos embedding in each block + self.rope = None # nothing for cosine + elif pos_embed.startswith('RoPE'): # eg RoPE100 + self.enc_pos_embed = None # nothing to add in the encoder with RoPE + self.dec_pos_embed = None # nothing to add in the decoder with RoPE + if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions") + freq = float(pos_embed[len('RoPE'):]) + self.rope = RoPE2D(freq=freq) + else: + raise NotImplementedError('Unknown pos_embed '+pos_embed) + + # transformer for the encoder + + self.enc_blocks = nn.ModuleList([ + Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope) + for i in range(enc_depth)]) + self.enc_norm = norm_layer(enc_embed_dim) + + + self.dec_blocks_pc = nn.ModuleList([ + Block(dec_embed_dim, dec_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope) + for i in range(dec_depth//2-2)]) + # masked tokens + self._set_mask_token(dec_embed_dim) + + # decoder + self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec) + + # prediction head + self._set_prediction_head(dec_embed_dim, patch_size) + + # initializer weights + self.initialize_weights() + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim) + + def _set_mask_generator(self, num_patches, mask_ratio): + self.mask_generator = RandomMask(num_patches, mask_ratio) + + def _set_mask_token(self, dec_embed_dim): + self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim)) + + def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec): + self.dec_depth = dec_depth + self.dec_embed_dim = dec_embed_dim + # transfer from encoder to decoder + self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) + # transformer for the decoder + self.dec_blocks = nn.ModuleList([ + DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope) + for i in range(dec_depth)]) + # final norm layer + self.dec_norm = norm_layer(dec_embed_dim) + + def _set_prediction_head(self, dec_embed_dim, patch_size): + self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True) + + + def initialize_weights(self): + # patch embed + self.patch_embed._init_weights() + # mask tokens + if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02) + # linears and layer norms + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + # we use xavier_uniform following official JAX ViT: + torch.nn.init.xavier_uniform_(m.weight) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def _encode_image(self, image, do_mask=False, return_all_blocks=False): + """ + image has B x 3 x img_size x img_size + do_mask: whether to perform masking or not + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + """ + # embed the image into patches (x has size B x Npatches x C) + # and get position if each return patch (pos has size B x Npatches x 2) + x, pos = self.patch_embed(image) + # add positional embedding without cls token + if self.enc_pos_embed is not None: + x = x + self.enc_pos_embed[None,...] + # apply masking + B,N,C = x.size() + if do_mask: + masks = self.mask_generator(x) + x = x[~masks].view(B, -1, C) + posvis = pos[~masks].view(B, -1, 2) + else: + B,N,C = x.size() + masks = torch.zeros((B,N), dtype=bool) + posvis = pos + # now apply the transformer encoder and normalization + if return_all_blocks: + out = [] + for blk in self.enc_blocks: + x = blk(x, posvis) + out.append(x) + out[-1] = self.enc_norm(out[-1]) + return out, pos, masks + else: + for blk in self.enc_blocks: + x = blk(x, posvis) + x = self.enc_norm(x) + return x, pos, masks + + def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False): + """ + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + + masks1 can be None => assume image1 fully visible + """ + # encoder to decoder layer + visf1 = self.decoder_embed(feat1) + f2 = self.decoder_embed(feat2) + # append masked tokens to the sequence + B,Nenc,C = visf1.size() + if masks1 is None: # downstreams + f1_ = visf1 + else: # pretraining + Ntotal = masks1.size(1) + f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype) + f1_[~masks1] = visf1.view(B * Nenc, C) + # add positional embedding + if self.dec_pos_embed is not None: + f1_ = f1_ + self.dec_pos_embed + f2 = f2 + self.dec_pos_embed + # apply Transformer blocks + out = f1_ + out2 = f2 + if return_all_blocks: + _out, out = out, [] + for blk in self.dec_blocks: + _out, out2 = blk(_out, out2, pos1, pos2) + out.append(_out) + out[-1] = self.dec_norm(out[-1]) + else: + for blk in self.dec_blocks: + out, out2 = blk(out, out2, pos1, pos2) + out = self.dec_norm(out) + return out + + def patchify(self, imgs): + """ + imgs: (B, 3, H, W) + x: (B, L, patch_size**2 *3) + """ + p = self.patch_embed.patch_size[0] + assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 + + h = w = imgs.shape[2] // p + x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) + x = torch.einsum('nchpwq->nhwpqc', x) + x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) + + return x + + def unpatchify(self, x, channels=3): + """ + x: (N, L, patch_size**2 *channels) + imgs: (N, 3, H, W) + """ + patch_size = self.patch_embed.patch_size[0] + h = w = int(x.shape[1]**.5) + assert h * w == x.shape[1] + x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels)) + x = torch.einsum('nhwpqc->nchpwq', x) + imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size)) + return imgs + + def forward(self, img1, img2): + """ + img1: tensor of size B x 3 x img_size x img_size + img2: tensor of size B x 3 x img_size x img_size + + out will be B x N x (3*patch_size*patch_size) + masks are also returned as B x N just in case + """ + # encoder of the masked first image + feat1, pos1, mask1 = self._encode_image(img1, do_mask=True) + # encoder of the second image + feat2, pos2, _ = self._encode_image(img2, do_mask=False) + # decoder + decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2) + # prediction head + out = self.prediction_head(decfeat) + # get target + target = self.patchify(img1) + return out, mask1, target diff --git a/croco/models/croco_downstream.py b/croco/models/croco_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..159dfff4d2c1461bc235e21441b57ce1e2088f76 --- /dev/null +++ b/croco/models/croco_downstream.py @@ -0,0 +1,122 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# CroCo model for downstream tasks +# -------------------------------------------------------- + +import torch + +from .croco import CroCoNet + + +def croco_args_from_ckpt(ckpt): + if 'croco_kwargs' in ckpt: # CroCo v2 released models + return ckpt['croco_kwargs'] + elif 'args' in ckpt and hasattr(ckpt['args'], 'model'): # pretrained using the official code release + s = ckpt['args'].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)" + assert s.startswith('CroCoNet(') + return eval('dict'+s[len('CroCoNet'):]) # transform it into the string of a dictionary and evaluate it + else: # CroCo v1 released models + return dict() + +class CroCoDownstreamMonocularEncoder(CroCoNet): + + def __init__(self, + head, + **kwargs): + """ Build network for monocular downstream task, only using the encoder. + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + NOTE: It works by *calling super().__init__() but with redefined setters + + """ + super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """ No mask generator """ + return + + def _set_mask_token(self, *args, **kwargs): + """ No mask token """ + self.mask_token = None + return + + def _set_decoder(self, *args, **kwargs): + """ No decoder """ + return + + def _set_prediction_head(self, *args, **kwargs): + """ No 'prediction head' for downstream tasks.""" + return + + def forward(self, img): + """ + img if of size batch_size x 3 x h x w + """ + B, C, H, W = img.size() + img_info = {'height': H, 'width': W} + need_all_layers = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks + out, _, _ = self._encode_image(img, do_mask=False, return_all_blocks=need_all_layers) + return self.head(out, img_info) + + +class CroCoDownstreamBinocular(CroCoNet): + + def __init__(self, + head, + **kwargs): + """ Build network for binocular downstream task + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + """ + super(CroCoDownstreamBinocular, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """ No mask generator """ + return + + def _set_mask_token(self, *args, **kwargs): + """ No mask token """ + self.mask_token = None + return + + def _set_prediction_head(self, *args, **kwargs): + """ No prediction head for downstream tasks, define your own head """ + return + + def encode_image_pairs(self, img1, img2, return_all_blocks=False): + """ run encoder for a pair of images + it is actually ~5% faster to concatenate the images along the batch dimension + than to encode them separately + """ + ## the two commented lines below is the naive version with separate encoding + #out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks) + #out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False) + ## and now the faster version + out, pos, _ = self._encode_image( torch.cat( (img1,img2), dim=0), do_mask=False, return_all_blocks=return_all_blocks ) + if return_all_blocks: + out,out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out]))) + out2 = out2[-1] + else: + out,out2 = out.chunk(2, dim=0) + pos,pos2 = pos.chunk(2, dim=0) + return out, out2, pos, pos2 + + def forward(self, img1, img2): + B, C, H, W = img1.size() + img_info = {'height': H, 'width': W} + return_all_blocks = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks + out, out2, pos, pos2 = self.encode_image_pairs(img1, img2, return_all_blocks=return_all_blocks) + if return_all_blocks: + decout = self._decoder(out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks) + decout = out+decout + else: + decout = self._decoder(out, pos, None, out2, pos2, return_all_blocks=return_all_blocks) + return self.head(decout, img_info) \ No newline at end of file diff --git a/croco/models/curope/__init__.py b/croco/models/curope/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..25e3d48a162760260826080f6366838e83e26878 --- /dev/null +++ b/croco/models/curope/__init__.py @@ -0,0 +1,4 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from .curope2d import cuRoPE2D diff --git a/croco/models/curope/__pycache__/__init__.cpython-311.pyc b/croco/models/curope/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d2ea861fe166fd3c649b75ceaa3fe626477ba798 Binary files /dev/null and b/croco/models/curope/__pycache__/__init__.cpython-311.pyc differ diff --git a/croco/models/curope/__pycache__/curope2d.cpython-311.pyc b/croco/models/curope/__pycache__/curope2d.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..95d4ca4be811be6652724860edf8ce7f823f5395 Binary files /dev/null and b/croco/models/curope/__pycache__/curope2d.cpython-311.pyc differ diff --git a/croco/models/curope/build/lib.linux-x86_64-cpython-311/curope.cpython-311-x86_64-linux-gnu.so b/croco/models/curope/build/lib.linux-x86_64-cpython-311/curope.cpython-311-x86_64-linux-gnu.so new file mode 100755 index 0000000000000000000000000000000000000000..e56d3d2c34bf65aa739c1a45e16ac71a5cbb7f8a Binary files /dev/null and b/croco/models/curope/build/lib.linux-x86_64-cpython-311/curope.cpython-311-x86_64-linux-gnu.so differ diff --git a/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_deps b/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_deps new file mode 100644 index 0000000000000000000000000000000000000000..9af5749448ecf1a2afa6e8551e767f9870967f86 Binary files /dev/null and b/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_deps differ diff --git a/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_log b/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_log new file mode 100644 index 0000000000000000000000000000000000000000..4c2e2b4cf6c7d6eee7f31f231c30dfb51539b36c --- /dev/null +++ b/croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_log @@ -0,0 +1,3 @@ +# ninja log v5 +0 12275 1728651353555686417 /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o 46197fb3a2f9e5ab +0 156505 1728651497679855739 /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o 5a65d5447ccdcd9c diff --git a/croco/models/curope/build/temp.linux-x86_64-cpython-311/build.ninja b/croco/models/curope/build/temp.linux-x86_64-cpython-311/build.ninja new file mode 100644 index 0000000000000000000000000000000000000000..c35c8a2f54a88a64d3d6b37515533d0bc3726c79 --- /dev/null +++ b/croco/models/curope/build/temp.linux-x86_64-cpython-311/build.ninja @@ -0,0 +1,33 @@ +ninja_required_version = 1.3 +cxx = c++ +nvcc = /usr/local/cuda/bin/nvcc + +cflags = -pthread -B /home/lipeng/miniconda3/envs/dust3r/compiler_compat -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lipeng/miniconda3/envs/dust3r/include -fPIC -O2 -isystem /home/lipeng/miniconda3/envs/dust3r/include -fPIC -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/torch/csrc/api/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/TH -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lipeng/miniconda3/envs/dust3r/include/python3.11 -c +post_cflags = -O3 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=curope -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17 +cuda_cflags = -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/torch/csrc/api/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/TH -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lipeng/miniconda3/envs/dust3r/include/python3.11 -c +cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 --ptxas-options=-v --use_fast_math -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=curope -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17 +cuda_dlink_post_cflags = +ldflags = + +rule compile + command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags + depfile = $out.d + deps = gcc + +rule cuda_compile + depfile = $out.d + deps = gcc + command = $nvcc --generate-dependencies-with-compile --dependency-output $out.d $cuda_cflags -c $in -o $out $cuda_post_cflags + + + + + +build /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o: compile /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/curope.cpp +build /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o: cuda_compile /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/kernels.cu + + + + + + diff --git a/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o b/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o new file mode 100644 index 0000000000000000000000000000000000000000..eaabe584daaddcc89d5d6a389f2bca5c64e577ce Binary files /dev/null and b/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o differ diff --git a/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o b/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o new file mode 100644 index 0000000000000000000000000000000000000000..23b810de0b3afd3eb6984d2ffc7ab97396bdbd23 Binary files /dev/null and b/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o differ diff --git a/croco/models/curope/curope.cpp b/croco/models/curope/curope.cpp new file mode 100644 index 0000000000000000000000000000000000000000..8fe9058e05aa1bf3f37b0d970edc7312bc68455b --- /dev/null +++ b/croco/models/curope/curope.cpp @@ -0,0 +1,69 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include + +// forward declaration +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ); + +void rope_2d_cpu( torch::Tensor tokens, const torch::Tensor positions, const float base, const float fwd ) +{ + const int B = tokens.size(0); + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3) / 4; + + auto tok = tokens.accessor(); + auto pos = positions.accessor(); + + for (int b = 0; b < B; b++) { + for (int x = 0; x < 2; x++) { // y and then x (2d) + for (int n = 0; n < N; n++) { + + // grab the token position + const int p = pos[b][n][x]; + + for (int h = 0; h < H; h++) { + for (int d = 0; d < D; d++) { + // grab the two values + float u = tok[b][n][h][d+0+x*2*D]; + float v = tok[b][n][h][d+D+x*2*D]; + + // grab the cos,sin + const float inv_freq = fwd * p / powf(base, d/float(D)); + float c = cosf(inv_freq); + float s = sinf(inv_freq); + + // write the result + tok[b][n][h][d+0+x*2*D] = u*c - v*s; + tok[b][n][h][d+D+x*2*D] = v*c + u*s; + } + } + } + } + } +} + +void rope_2d( torch::Tensor tokens, // B,N,H,D + const torch::Tensor positions, // B,N,2 + const float base, + const float fwd ) +{ + TORCH_CHECK(tokens.dim() == 4, "tokens must have 4 dimensions"); + TORCH_CHECK(positions.dim() == 3, "positions must have 3 dimensions"); + TORCH_CHECK(tokens.size(0) == positions.size(0), "batch size differs between tokens & positions"); + TORCH_CHECK(tokens.size(1) == positions.size(1), "seq_length differs between tokens & positions"); + TORCH_CHECK(positions.size(2) == 2, "positions.shape[2] must be equal to 2"); + TORCH_CHECK(tokens.is_cuda() == positions.is_cuda(), "tokens and positions are not on the same device" ); + + if (tokens.is_cuda()) + rope_2d_cuda( tokens, positions, base, fwd ); + else + rope_2d_cpu( tokens, positions, base, fwd ); +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("rope_2d", &rope_2d, "RoPE 2d forward/backward"); +} diff --git a/croco/models/curope/curope.cpython-311-x86_64-linux-gnu.so b/croco/models/curope/curope.cpython-311-x86_64-linux-gnu.so new file mode 100755 index 0000000000000000000000000000000000000000..e56d3d2c34bf65aa739c1a45e16ac71a5cbb7f8a Binary files /dev/null and b/croco/models/curope/curope.cpython-311-x86_64-linux-gnu.so differ diff --git a/croco/models/curope/curope2d.py b/croco/models/curope/curope2d.py new file mode 100644 index 0000000000000000000000000000000000000000..a49c12f8c529e9a889b5ac20c5767158f238e17d --- /dev/null +++ b/croco/models/curope/curope2d.py @@ -0,0 +1,40 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch + +try: + import curope as _kernels # run `python setup.py install` +except ModuleNotFoundError: + from . import curope as _kernels # run `python setup.py build_ext --inplace` + + +class cuRoPE2D_func (torch.autograd.Function): + + @staticmethod + def forward(ctx, tokens, positions, base, F0=1): + ctx.save_for_backward(positions) + ctx.saved_base = base + ctx.saved_F0 = F0 + # tokens = tokens.clone() # uncomment this if inplace doesn't work + _kernels.rope_2d( tokens, positions, base, F0 ) + ctx.mark_dirty(tokens) + return tokens + + @staticmethod + def backward(ctx, grad_res): + positions, base, F0 = ctx.saved_tensors[0], ctx.saved_base, ctx.saved_F0 + _kernels.rope_2d( grad_res, positions, base, -F0 ) + ctx.mark_dirty(grad_res) + return grad_res, None, None, None + + +class cuRoPE2D(torch.nn.Module): + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + + def forward(self, tokens, positions): + cuRoPE2D_func.apply( tokens.transpose(1,2), positions, self.base, self.F0 ) + return tokens \ No newline at end of file diff --git a/croco/models/curope/kernels.cu b/croco/models/curope/kernels.cu new file mode 100644 index 0000000000000000000000000000000000000000..7156cd1bb935cb1f0be45e58add53f9c21505c20 --- /dev/null +++ b/croco/models/curope/kernels.cu @@ -0,0 +1,108 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include +#include +#include +#include + +#define CHECK_CUDA(tensor) {\ + TORCH_CHECK((tensor).is_cuda(), #tensor " is not in cuda memory"); \ + TORCH_CHECK((tensor).is_contiguous(), #tensor " is not contiguous"); } +void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));} + + +template < typename scalar_t > +__global__ void rope_2d_cuda_kernel( + //scalar_t* __restrict__ tokens, + torch::PackedTensorAccessor32 tokens, + const int64_t* __restrict__ pos, + const float base, + const float fwd ) + // const int N, const int H, const int D ) +{ + // tokens shape = (B, N, H, D) + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3); + + // each block update a single token, for all heads + // each thread takes care of a single output + extern __shared__ float shared[]; + float* shared_inv_freq = shared + D; + + const int b = blockIdx.x / N; + const int n = blockIdx.x % N; + + const int Q = D / 4; + // one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D] + // u_Y v_Y u_X v_X + + // shared memory: first, compute inv_freq + if (threadIdx.x < Q) + shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q)); + __syncthreads(); + + // start of X or Y part + const int X = threadIdx.x < D/2 ? 0 : 1; + const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X + + // grab the cos,sin appropriate for me + const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q]; + const float cos = cosf(freq); + const float sin = sinf(freq); + /* + float* shared_cos_sin = shared + D + D/4; + if ((threadIdx.x % (D/2)) < Q) + shared_cos_sin[m+0] = cosf(freq); + else + shared_cos_sin[m+Q] = sinf(freq); + __syncthreads(); + const float cos = shared_cos_sin[m+0]; + const float sin = shared_cos_sin[m+Q]; + */ + + for (int h = 0; h < H; h++) + { + // then, load all the token for this head in shared memory + shared[threadIdx.x] = tokens[b][n][h][threadIdx.x]; + __syncthreads(); + + const float u = shared[m]; + const float v = shared[m+Q]; + + // write output + if ((threadIdx.x % (D/2)) < Q) + tokens[b][n][h][threadIdx.x] = u*cos - v*sin; + else + tokens[b][n][h][threadIdx.x] = v*cos + u*sin; + } +} + +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ) +{ + const int B = tokens.size(0); // batch size + const int N = tokens.size(1); // sequence length + const int H = tokens.size(2); // number of heads + const int D = tokens.size(3); // dimension per head + + TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous"); + TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous"); + TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape"); + TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4"); + + // one block for each layer, one thread per local-max + const int THREADS_PER_BLOCK = D; + const int N_BLOCKS = B * N; // each block takes care of H*D values + const int SHARED_MEM = sizeof(float) * (D + D/4); + + AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.type(), "rope_2d_cuda", ([&] { + rope_2d_cuda_kernel <<>> ( + //tokens.data_ptr(), + tokens.packed_accessor32(), + pos.data_ptr(), + base, fwd); //, N, H, D ); + })); +} diff --git a/croco/models/curope/setup.py b/croco/models/curope/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..230632ed05e309200e8f93a3a852072333975009 --- /dev/null +++ b/croco/models/curope/setup.py @@ -0,0 +1,34 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from setuptools import setup +from torch import cuda +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + +# compile for all possible CUDA architectures +all_cuda_archs = cuda.get_gencode_flags().replace('compute=','arch=').split() +# alternatively, you can list cuda archs that you want, eg: +# all_cuda_archs = [ + # '-gencode', 'arch=compute_70,code=sm_70', + # '-gencode', 'arch=compute_75,code=sm_75', + # '-gencode', 'arch=compute_80,code=sm_80', + # '-gencode', 'arch=compute_86,code=sm_86' +# ] + +setup( + name = 'curope', + ext_modules = [ + CUDAExtension( + name='curope', + sources=[ + "curope.cpp", + "kernels.cu", + ], + extra_compile_args = dict( + nvcc=['-O3','--ptxas-options=-v',"--use_fast_math"]+all_cuda_archs, + cxx=['-O3']) + ) + ], + cmdclass = { + 'build_ext': BuildExtension + }) diff --git a/croco/models/dpt_block.py b/croco/models/dpt_block.py new file mode 100644 index 0000000000000000000000000000000000000000..d389193060fd265a8bf8601fb0c11a3c5349c0ab --- /dev/null +++ b/croco/models/dpt_block.py @@ -0,0 +1,457 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# DPT head for ViTs +# -------------------------------------------------------- +# References: +# https://github.com/isl-org/DPT +# https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py + +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange, repeat +from typing import Union, Tuple, Iterable, List, Optional, Dict + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + +def make_scratch(in_shape, out_shape, groups=1, expand=False): + scratch = nn.Module() + + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + out_shape4 = out_shape + if expand == True: + out_shape1 = out_shape + out_shape2 = out_shape * 2 + out_shape3 = out_shape * 4 + out_shape4 = out_shape * 8 + + scratch.layer1_rn = nn.Conv2d( + in_shape[0], + out_shape1, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer2_rn = nn.Conv2d( + in_shape[1], + out_shape2, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer3_rn = nn.Conv2d( + in_shape[2], + out_shape3, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer4_rn = nn.Conv2d( + in_shape[3], + out_shape4, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + + scratch.layer_rn = nn.ModuleList([ + scratch.layer1_rn, + scratch.layer2_rn, + scratch.layer3_rn, + scratch.layer4_rn, + ]) + + return scratch + +class ResidualConvUnit_custom(nn.Module): + """Residual convolution module.""" + + def __init__(self, features, activation, bn): + """Init. + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + + self.groups = 1 + + self.conv1 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + self.conv2 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + if self.bn == True: + self.bn1 = nn.BatchNorm2d(features) + self.bn2 = nn.BatchNorm2d(features) + + self.activation = activation + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.bn == True: + out = self.bn1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.bn == True: + out = self.bn2(out) + + if self.groups > 1: + out = self.conv_merge(out) + + return self.skip_add.add(out, x) + +class FeatureFusionBlock_custom(nn.Module): + """Feature fusion block.""" + + def __init__( + self, + features, + activation, + deconv=False, + bn=False, + expand=False, + align_corners=True, + width_ratio=1, + ): + """Init. + Args: + features (int): number of features + """ + super(FeatureFusionBlock_custom, self).__init__() + self.width_ratio = width_ratio + + self.deconv = deconv + self.align_corners = align_corners + + self.groups = 1 + + self.expand = expand + out_features = features + if self.expand == True: + out_features = features // 2 + + self.out_conv = nn.Conv2d( + features, + out_features, + kernel_size=1, + stride=1, + padding=0, + bias=True, + groups=1, + ) + + self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) + self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, *xs): + """Forward pass. + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + res = self.resConfUnit1(xs[1]) + if self.width_ratio != 1: + res = F.interpolate(res, size=(output.shape[2], output.shape[3]), mode='bilinear') + + output = self.skip_add.add(output, res) + # output += res + + output = self.resConfUnit2(output) + + if self.width_ratio != 1: + # and output.shape[3] < self.width_ratio * output.shape[2] + #size=(image.shape[]) + if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio: + shape = 3 * output.shape[3] + else: + shape = int(self.width_ratio * 2 * output.shape[2]) + output = F.interpolate(output, size=(2* output.shape[2], shape), mode='bilinear') + else: + output = nn.functional.interpolate(output, scale_factor=2, + mode="bilinear", align_corners=self.align_corners) + output = self.out_conv(output) + return output + +def make_fusion_block(features, use_bn, width_ratio=1): + return FeatureFusionBlock_custom( + features, + nn.ReLU(False), + deconv=False, + bn=use_bn, + expand=False, + align_corners=True, + width_ratio=width_ratio, + ) + +class Interpolate(nn.Module): + """Interpolation module.""" + + def __init__(self, scale_factor, mode, align_corners=False): + """Init. + Args: + scale_factor (float): scaling + mode (str): interpolation mode + """ + super(Interpolate, self).__init__() + + self.interp = nn.functional.interpolate + self.scale_factor = scale_factor + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: interpolated data + """ + + x = self.interp( + x, + scale_factor=self.scale_factor, + mode=self.mode, + align_corners=self.align_corners, + ) + + return x + +class DPTOutputAdapter(nn.Module): + """DPT output adapter. + + :param num_cahnnels: Number of output channels + :param stride_level: tride level compared to the full-sized image. + E.g. 4 for 1/4th the size of the image. + :param patch_size_full: Int or tuple of the patch size over the full image size. + Patch size for smaller inputs will be computed accordingly. + :param hooks: Index of intermediate layers + :param layer_dims: Dimension of intermediate layers + :param feature_dim: Feature dimension + :param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression + :param use_bn: If set to True, activates batch norm + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + + def __init__(self, + num_channels: int = 1, + stride_level: int = 1, + patch_size: Union[int, Tuple[int, int]] = 16, + main_tasks: Iterable[str] = ('rgb',), + hooks: List[int] = [2, 5, 8, 11], + layer_dims: List[int] = [96, 192, 384, 768], + feature_dim: int = 256, + last_dim: int = 32, + use_bn: bool = False, + dim_tokens_enc: Optional[int] = None, + head_type: str = 'regression', + output_width_ratio=1, + **kwargs): + super().__init__() + self.num_channels = num_channels + self.stride_level = stride_level + self.patch_size = pair(patch_size) + self.main_tasks = main_tasks + self.hooks = hooks + self.layer_dims = layer_dims + self.feature_dim = feature_dim + self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None + self.head_type = head_type + + # Actual patch height and width, taking into account stride of input + self.P_H = max(1, self.patch_size[0] // stride_level) + self.P_W = max(1, self.patch_size[1] // stride_level) + + self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False) + + self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + # self.mask_head = nn.Sequential( + # nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False), + # nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(), + # nn.ReLU(True), + # nn.Dropout(0.1, False), + # nn.Conv2d(feature_dim, 1, kernel_size=1), + # Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + # ) + if self.head_type == 'regression': + # The "DPTDepthModel" head + self.head = nn.Sequential( + nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1), + nn.ReLU(True), + nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0) + ) + elif self.head_type == 'semseg': + # The "DPTSegmentationModel" head + self.head = nn.Sequential( + nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False), + nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(), + nn.ReLU(True), + nn.Dropout(0.1, False), + nn.Conv2d(feature_dim, self.num_channels, kernel_size=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + ) + else: + raise ValueError('DPT head_type must be "regression" or "semseg".') + + if self.dim_tokens_enc is not None: + self.init(dim_tokens_enc=dim_tokens_enc) + + def init(self, dim_tokens_enc=768): + """ + Initialize parts of decoder that are dependent on dimension of encoder tokens. + Should be called when setting up MultiMAE. + + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + #print(dim_tokens_enc) + + # Set up activation postprocessing layers + if isinstance(dim_tokens_enc, int): + dim_tokens_enc = 4 * [dim_tokens_enc] + + self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc] + + self.act_1_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[0], + out_channels=self.layer_dims[0], + kernel_size=1, stride=1, padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[0], + out_channels=self.layer_dims[0], + kernel_size=4, stride=4, padding=0, + bias=True, dilation=1, groups=1, + ) + ) + + self.act_2_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[1], + out_channels=self.layer_dims[1], + kernel_size=1, stride=1, padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[1], + out_channels=self.layer_dims[1], + kernel_size=2, stride=2, padding=0, + bias=True, dilation=1, groups=1, + ) + ) + + self.act_3_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[2], + out_channels=self.layer_dims[2], + kernel_size=1, stride=1, padding=0, + ) + ) + + self.act_4_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[3], + out_channels=self.layer_dims[3], + kernel_size=1, stride=1, padding=0, + ), + nn.Conv2d( + in_channels=self.layer_dims[3], + out_channels=self.layer_dims[3], + kernel_size=3, stride=2, padding=1, + ) + ) + + self.act_postprocess = nn.ModuleList([ + self.act_1_postprocess, + self.act_2_postprocess, + self.act_3_postprocess, + self.act_4_postprocess + ]) + + def adapt_tokens(self, encoder_tokens): + # Adapt tokens + x = [] + x.append(encoder_tokens[:, :]) + x = torch.cat(x, dim=-1) + return x + + def forward(self, encoder_tokens: List[torch.Tensor], image_size): + #input_info: Dict): + assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' + H, W = image_size + + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3]) + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + + return out diff --git a/croco/models/head_downstream.py b/croco/models/head_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..bd40c91ba244d6c3522c6efd4ed4d724b7bdc650 --- /dev/null +++ b/croco/models/head_downstream.py @@ -0,0 +1,58 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Heads for downstream tasks +# -------------------------------------------------------- + +""" +A head is a module where the __init__ defines only the head hyperparameters. +A method setup(croconet) takes a CroCoNet and set all layers according to the head and croconet attributes. +The forward takes the features as well as a dictionary img_info containing the keys 'width' and 'height' +""" + +import torch +import torch.nn as nn +from .dpt_block import DPTOutputAdapter + + +class PixelwiseTaskWithDPT(nn.Module): + """ DPT module for CroCo. + by default, hooks_idx will be equal to: + * for encoder-only: 4 equally spread layers + * for encoder+decoder: last encoder + 3 equally spread layers of the decoder + """ + + def __init__(self, *, hooks_idx=None, layer_dims=[96,192,384,768], + output_width_ratio=1, num_channels=1, postprocess=None, **kwargs): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_blocks = True # backbone needs to return all layers + self.postprocess = postprocess + self.output_width_ratio = output_width_ratio + self.num_channels = num_channels + self.hooks_idx = hooks_idx + self.layer_dims = layer_dims + + def setup(self, croconet): + dpt_args = {'output_width_ratio': self.output_width_ratio, 'num_channels': self.num_channels} + if self.hooks_idx is None: + if hasattr(croconet, 'dec_blocks'): # encoder + decoder + step = {8: 3, 12: 4, 24: 8}[croconet.dec_depth] + hooks_idx = [croconet.dec_depth+croconet.enc_depth-1-i*step for i in range(3,-1,-1)] + else: # encoder only + step = croconet.enc_depth//4 + hooks_idx = [croconet.enc_depth-1-i*step for i in range(3,-1,-1)] + self.hooks_idx = hooks_idx + print(f' PixelwiseTaskWithDPT: automatically setting hook_idxs={self.hooks_idx}') + dpt_args['hooks'] = self.hooks_idx + dpt_args['layer_dims'] = self.layer_dims + self.dpt = DPTOutputAdapter(**dpt_args) + dim_tokens = [croconet.enc_embed_dim if hook0: + pos_embed = np.concatenate([np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0) + return pos_embed + + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=float) + omega /= embed_dim / 2. + omega = 1. / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + + +# -------------------------------------------------------- +# Interpolate position embeddings for high-resolution +# References: +# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- +def interpolate_pos_embed(model, checkpoint_model): + keys = ['enc_pos_embed']+(['dec_pos_embed'] if hasattr(model,'dec_blocks') else []) + img_size = model.patch_embed.img_size + if isinstance(img_size,int): img_size = (img_size,img_size) + for k in keys: + if not k in checkpoint_model: continue + pos_embed_checkpoint = checkpoint_model[k] + embedding_size = pos_embed_checkpoint.shape[-1] + num_extra_tokens = 0 # no cls token + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + new_size = (img_size[0]//model.patch_embed.patch_size[0],img_size[1]//model.patch_embed.patch_size[1]) + if orig_size != new_size[0] or orig_size != new_size[1]: + print("Position interpolate %s from %dx%d to %dx%d" % (k, orig_size, orig_size, new_size[0], new_size[1])) + extra_tokens = pos_embed_checkpoint[:num_extra_tokens,:] + pos_tokens = pos_embed_checkpoint[num_extra_tokens:,:] + pos_tokens = pos_tokens.reshape(1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=(new_size[0], new_size[1]), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2).squeeze(0) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0) + checkpoint_model[k] = new_pos_embed.squeeze(0) + +#---------------------------------------------------------- +# RoPE2D: RoPE implementation in 2D +#---------------------------------------------------------- + +try: + from models.curope import cuRoPE2D + RoPE2D = cuRoPE2D +except ImportError: + print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead') + + class RoPE2D(torch.nn.Module): + + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + self.cache = {} + + def get_cos_sin(self, D, seq_len, device, dtype): + if (D,seq_len,device,dtype) not in self.cache: + inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) + t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) + freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) + freqs = torch.cat((freqs, freqs), dim=-1) + cos = freqs.cos() # (Seq, Dim) + sin = freqs.sin() + self.cache[D,seq_len,device,dtype] = (cos,sin) + return self.cache[D,seq_len,device,dtype] + + @staticmethod + def rotate_half(x): + x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + def apply_rope1d(self, tokens, pos1d, cos, sin): + assert pos1d.ndim==2 + cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] + sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] + return (tokens * cos) + (self.rotate_half(tokens) * sin) + + def forward(self, tokens, positions): + """ + input: + * tokens: batch_size x nheads x ntokens x dim + * positions: batch_size x ntokens x 2 (y and x position of each token) + output: + * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) + """ + assert tokens.size(3)%2==0, "number of dimensions should be a multiple of two" + D = tokens.size(3) // 2 + assert positions.ndim==3 and positions.shape[-1] == 2 # Batch, Seq, 2 + cos, sin = self.get_cos_sin(D, int(positions.max())+1, tokens.device, tokens.dtype) + # split features into two along the feature dimension, and apply rope1d on each half + y, x = tokens.chunk(2, dim=-1) + y = self.apply_rope1d(y, positions[:,:,0], cos, sin) + x = self.apply_rope1d(x, positions[:,:,1], cos, sin) + tokens = torch.cat((y, x), dim=-1) + return tokens \ No newline at end of file diff --git a/croco/pretrain.py b/croco/pretrain.py new file mode 100644 index 0000000000000000000000000000000000000000..2c45e488015ef5380c71d0381ff453fdb860759e --- /dev/null +++ b/croco/pretrain.py @@ -0,0 +1,254 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Pre-training CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time +import math +from pathlib import Path +from typing import Iterable + +import torch +import torch.distributed as dist +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets + +import utils.misc as misc +from utils.misc import NativeScalerWithGradNormCount as NativeScaler +from models.croco import CroCoNet +from models.criterion import MaskedMSE +from datasets.pairs_dataset import PairsDataset + + +def get_args_parser(): + parser = argparse.ArgumentParser('CroCo pre-training', add_help=False) + # model and criterion + parser.add_argument('--model', default='CroCoNet()', type=str, help="string containing the model to build") + parser.add_argument('--norm_pix_loss', default=1, choices=[0,1], help="apply per-patch mean/std normalization before applying the loss") + # dataset + parser.add_argument('--dataset', default='habitat_release', type=str, help="training set") + parser.add_argument('--transforms', default='crop224+acolor', type=str, help="transforms to apply") # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful + # training + parser.add_argument('--seed', default=0, type=int, help="Random seed") + parser.add_argument('--batch_size', default=64, type=int, help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") + parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") + parser.add_argument('--max_epoch', default=400, type=int, help="Stop training at this epoch") + parser.add_argument('--accum_iter', default=1, type=int, help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") + parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") + parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') + parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') + parser.add_argument('--amp', type=int, default=1, choices=[0,1], help="Use Automatic Mixed Precision for pretraining") + # others + parser.add_argument('--num_workers', default=8, type=int) + parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') + parser.add_argument('--save_freq', default=1, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') + parser.add_argument('--keep_freq', default=20, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') + parser.add_argument('--print_freq', default=20, type=int, help='frequence (number of iterations) to print infos while training') + # paths + parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") + parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") + return parser + + + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: "+args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + ## training dataset and loader + print('Building dataset for {:s} with transforms {:s}'.format(args.dataset, args.transforms)) + dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) + if world_size>1: + sampler_train = torch.utils.data.DistributedSampler( + dataset, num_replicas=world_size, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + else: + sampler_train = torch.utils.data.RandomSampler(dataset) + data_loader_train = torch.utils.data.DataLoader( + dataset, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + + ## model + print('Loading model: {:s}'.format(args.model)) + model = eval(args.model) + print('Loading criterion: MaskedMSE(norm_pix_loss={:s})'.format(str(bool(args.norm_pix_loss)))) + criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) + model_without_ddp = model.module + + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) # following timm: set wd as 0 for bias and norm layers + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training until {args.max_epoch} epochs") + start_time = time.time() + for epoch in range(args.start_epoch, args.max_epoch): + if world_size>1: + data_loader_train.sampler.set_epoch(epoch) + + train_stats = train_one_epoch( + model, criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + log_writer=log_writer, + args=args + ) + + if args.output_dir and epoch % args.save_freq == 0 : + misc.save_model( + args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch, fname='last') + + if args.output_dir and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) and (epoch>0 or args.max_epoch==1): + misc.save_model( + args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch,} + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + + + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + log_writer=None, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + accum_iter = args.accum_iter + + optimizer.zero_grad() + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + for data_iter_step, (image1, image2) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + + # we use a per iteration lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + out, mask, target = model(image1, image2) + loss = criterion(out, mask, target) + + loss_value = loss.item() + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and ((data_iter_step + 1) % (accum_iter*args.print_freq)) == 0: + # x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes + epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) + log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', lr, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) diff --git a/croco/stereoflow/README.MD b/croco/stereoflow/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..81595380fadd274b523e0cf77921b1b65cbedb34 --- /dev/null +++ b/croco/stereoflow/README.MD @@ -0,0 +1,318 @@ +## CroCo-Stereo and CroCo-Flow + +This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. +All commands should be launched from the root directory. + +### Simple inference example + +We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. +Before running it, please download the trained models with: +``` +bash stereoflow/download_model.sh crocostereo.pth +bash stereoflow/download_model.sh crocoflow.pth +``` + +### Prepare data for training or evaluation + +Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). +Please find below on the file structure should look for each dataset: +
+FlyingChairs + +``` +./data/stereoflow/FlyingChairs/ +└───chairs_split.txt +└───data/ + └─── ... +``` +
+ +
+MPI-Sintel + +``` +./data/stereoflow/MPI-Sintel/ +└───training/ +│ └───clean/ +│ └───final/ +│ └───flow/ +└───test/ + └───clean/ + └───final/ +``` +
+ +
+SceneFlow (including FlyingThings) + +``` +./data/stereoflow/SceneFlow/ +└───Driving/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +└───FlyingThings/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +│ └───optical_flow/ +└───Monkaa/ + └───disparity/ + └───frames_cleanpass/ + └───frames_finalpass/ +``` +
+ +
+TartanAir + +``` +./data/stereoflow/TartanAir/ +└───abandonedfactory/ +│ └───.../ +└───abandonedfactory_night/ +│ └───.../ +└───.../ +``` +
+ +
+Booster + +``` +./data/stereoflow/booster_gt/ +└───train/ + └───balanced/ + └───Bathroom/ + └───Bedroom/ + └───... +``` +
+ +
+CREStereo + +``` +./data/stereoflow/crenet_stereo_trainset/ +└───stereo_trainset/ + └───crestereo/ + └───hole/ + └───reflective/ + └───shapenet/ + └───tree/ +``` +
+ +
+ETH3D Two-view Low-res + +``` +./data/stereoflow/eth3d_lowres/ +└───test/ +│ └───lakeside_1l/ +│ └───... +└───train/ +│ └───delivery_area_1l/ +│ └───... +└───train_gt/ + └───delivery_area_1l/ + └───... +``` +
+ +
+KITTI 2012 + +``` +./data/stereoflow/kitti-stereo-2012/ +└───testing/ +│ └───colored_0/ +│ └───colored_1/ +└───training/ + └───colored_0/ + └───colored_1/ + └───disp_occ/ + └───flow_occ/ +``` +
+ +
+KITTI 2015 + +``` +./data/stereoflow/kitti-stereo-2015/ +└───testing/ +│ └───image_2/ +│ └───image_3/ +└───training/ + └───image_2/ + └───image_3/ + └───disp_occ_0/ + └───flow_occ/ +``` +
+ +
+Middlebury + +``` +./data/stereoflow/middlebury +└───2005/ +│ └───train/ +│ └───Art/ +│ └───... +└───2006/ +│ └───Aloe/ +│ └───Baby1/ +│ └───... +└───2014/ +│ └───Adirondack-imperfect/ +│ └───Adirondack-perfect/ +│ └───... +└───2021/ +│ └───data/ +│ └───artroom1/ +│ └───artroom2/ +│ └───... +└───MiddEval3_F/ + └───test/ + │ └───Australia/ + │ └───... + └───train/ + └───Adirondack/ + └───... +``` +
+ +
+Spring + +``` +./data/stereoflow/spring/ +└───test/ +│ └───0003/ +│ └───... +└───train/ + └───0001/ + └───... +``` +
+ + +### CroCo-Stereo + +##### Main model + +The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo.pth +# Middlebury v3 submission +python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 +# Training command that was used, using checkpoint-last.pth +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: +torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +``` + +For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo_subtrain.pth +# Evaluation on validation sets +python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 +# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ +``` + +##### Other models + +
+ Model for ETH3D + The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. + + # Download the model + bash stereoflow/download_model.sh crocostereo_eth3d.pth + # ETH3D submission + python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ + +
+ +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 + # Training that was used + python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth. +
+ + +### CroCo-Flow + +##### Main model + +The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. +It was used for our submission to the MPI-Sintel benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocoflow.pth +# Evaluation +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 +# Sintel submission +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 +# Training command that was used, with checkpoint-best.pth +python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ +``` + +##### Other models + +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 + # Training that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Flow with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth. +
diff --git a/croco/stereoflow/augmentor.py b/croco/stereoflow/augmentor.py new file mode 100644 index 0000000000000000000000000000000000000000..69e6117151988d94cbc4b385e0d88e982133bf10 --- /dev/null +++ b/croco/stereoflow/augmentor.py @@ -0,0 +1,290 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Data augmentation for training stereo and flow +# -------------------------------------------------------- + +# References +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py + + +import numpy as np +import random +from PIL import Image + +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +import torch +from torchvision.transforms import ColorJitter +import torchvision.transforms.functional as FF + +class StereoAugmentor(object): + + def __init__(self, crop_size, scale_prob=0.5, scale_xonly=True, lhth=800., lminscale=0.0, lmaxscale=1.0, hminscale=-0.2, hmaxscale=0.4, scale_interp_nearest=True, rightjitterprob=0.5, v_flip_prob=0.5, color_aug_asym=True, color_choice_prob=0.5): + self.crop_size = crop_size + self.scale_prob = scale_prob + self.scale_xonly = scale_xonly + self.lhth = lhth + self.lminscale = lminscale + self.lmaxscale = lmaxscale + self.hminscale = hminscale + self.hmaxscale = hmaxscale + self.scale_interp_nearest = scale_interp_nearest + self.rightjitterprob = rightjitterprob + self.v_flip_prob = v_flip_prob + self.color_aug_asym = color_aug_asym + self.color_choice_prob = color_choice_prob + + def _random_scale(self, img1, img2, disp): + ch,cw = self.crop_size + h,w = img1.shape[:2] + if self.scale_prob>0. and np.random.rand()1.: + scale_x = clip_scale + scale_y = scale_x if not self.scale_xonly else 1.0 + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x + return img1, img2, disp + + def _random_crop(self, img1, img2, disp): + h,w = img1.shape[:2] + ch,cw = self.crop_size + assert ch<=h and cw<=w, (img1.shape, h,w,ch,cw) + offset_x = np.random.randint(w - cw + 1) + offset_y = np.random.randint(h - ch + 1) + img1 = img1[offset_y:offset_y+ch,offset_x:offset_x+cw] + img2 = img2[offset_y:offset_y+ch,offset_x:offset_x+cw] + disp = disp[offset_y:offset_y+ch,offset_x:offset_x+cw] + return img1, img2, disp + + def _random_vflip(self, img1, img2, disp): + # vertical flip + if self.v_flip_prob>0 and np.random.rand() < self.v_flip_prob: + img1 = np.copy(np.flipud(img1)) + img2 = np.copy(np.flipud(img2)) + disp = np.copy(np.flipud(disp)) + return img1, img2, disp + + def _random_rotate_shift_right(self, img2): + if self.rightjitterprob>0. and np.random.rand() 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow = np.inf * np.ones([ht1, wd1, 2], dtype=np.float32) # invalid value every where, before we fill it with the correct ones + flow[yy, xx] = flow1 + return flow + + def spatial_transform(self, img1, img2, flow, dname): + + if np.random.rand() < self.spatial_aug_prob: + # randomly sample scale + ht, wd = img1.shape[:2] + clip_min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), + (self.crop_size[1] + 8) / float(wd)) + min_scale, max_scale = self.min_scale, self.max_scale + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_x = np.clip(scale_x, clip_min_scale, None) + scale_y = np.clip(scale_y, clip_min_scale, None) + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = self._resize_flow(flow, scale_x, scale_y, factor=2.0 if dname=='Spring' else 1.0) + elif dname=="Spring": + flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0) + + if self.h_flip_prob>0. and np.random.rand() < self.h_flip_prob: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if self.v_flip_prob>0. and np.random.rand() < self.v_flip_prob: # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + # In case no cropping + if img1.shape[0] - self.crop_size[0] > 0: + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + else: + y0 = 0 + if img1.shape[1] - self.crop_size[1] > 0: + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + else: + x0 = 0 + + img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + + return img1, img2, flow + + def __call__(self, img1, img2, flow, dname): + img1, img2, flow = self.spatial_transform(img1, img2, flow, dname) + img1, img2 = self.color_transform(img1, img2) + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + return img1, img2, flow \ No newline at end of file diff --git a/croco/stereoflow/criterion.py b/croco/stereoflow/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..57792ebeeee34827b317a4d32b7445837bb33f17 --- /dev/null +++ b/croco/stereoflow/criterion.py @@ -0,0 +1,251 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Losses, metrics per batch, metrics per dataset +# -------------------------------------------------------- + +import torch +from torch import nn +import torch.nn.functional as F + +def _get_gtnorm(gt): + if gt.size(1)==1: # stereo + return gt + # flow + return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW + +############ losses without confidence + +class L1Loss(nn.Module): + + def __init__(self, max_gtnorm=None): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = False + + def _error(self, gt, predictions): + return torch.abs(gt-predictions) + + def forward(self, predictions, gt, inspect=False): + mask = torch.isfinite(gt) + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt).expand(-1,gt.size(1),-1,-1) which is a constant + + +class LaplacianLossBounded(nn.Module): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b + def __init__(self, max_gtnorm=10000., a=0.25, b=4.): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:,0,:,:] + if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:] which is a constant + +class LaplacianLossBounded2(nn.Module): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b + def __init__(self, max_gtnorm=None, a=3.0, b=3.0): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:,0,:,:] + if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:] which is a constant + +############## metrics per batch + +class StereoMetrics(nn.Module): + + def __init__(self, do_quantile=False): + super().__init__() + self.bad_ths = [0.5,1,2,3] + self.do_quantile = do_quantile + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + gtcopy = gt.clone() + mask = torch.isfinite(gtcopy) + gtcopy[~mask] = 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0 + Npx = mask.view(B,-1).sum(dim=1) + L1error = (torch.abs(gtcopy-predictions)*mask).view(B,-1) + L2error = (torch.square(gtcopy-predictions)*mask).view(B,-1) + # avgerr + metrics['avgerr'] = torch.mean(L1error.sum(dim=1)/Npx ) + # rmse + metrics['rmse'] = torch.sqrt(L2error.sum(dim=1)/Npx).mean(dim=0) + # err > t for t in [0.5,1,2,3] + for ths in self.bad_ths: + metrics['bad@{:.1f}'.format(ths)] = (((L1error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 + return metrics + +class FlowMetrics(nn.Module): + def __init__(self): + super().__init__() + self.bad_ths = [1,3,5] + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + mask = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + Npx = mask.view(B,-1).sum(dim=1) + gtcopy = gt.clone() # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored + gtcopy[:,0,:,:][~mask] = 999999.0 + gtcopy[:,1,:,:][~mask] = 999999.0 + L1error = (torch.abs(gtcopy-predictions).sum(dim=1)*mask).view(B,-1) + L2error = (torch.sqrt(torch.sum(torch.square(gtcopy-predictions),dim=1))*mask).view(B,-1) + metrics['L1err'] = torch.mean(L1error.sum(dim=1)/Npx ) + metrics['EPE'] = torch.mean(L2error.sum(dim=1)/Npx ) + for ths in self.bad_ths: + metrics['bad@{:.1f}'.format(ths)] = (((L2error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 + return metrics + +############## metrics per dataset +## we update the average and maintain the number of pixels while adding data batch per batch +## at the beggining, call reset() +## after each batch, call add_batch(...) +## at the end: call get_results() + +class StereoDatasetMetrics(nn.Module): + + def __init__(self): + super().__init__() + self.bad_ths = [0.5,1,2,3] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self._metrics = None + + def add_batch(self, predictions, gt): + assert predictions.size(1)==1, predictions.size() + assert gt.size(1)==1, gt.size() + if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... + L1err = torch.minimum( torch.minimum( torch.minimum( + torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), + torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) + valid = torch.isfinite(L1err) + else: + valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt-predictions),dim=1) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew + self.agg_N = Nnew + for i,th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L1err[valid]>th).sum().cpu() + + def _compute_metrics(self): + if self._metrics is not None: return + out = {} + out['L1err'] = self.agg_L1err.item() + for i,th in enumerate(self.bad_ths): + out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0 + self._metrics = out + + def get_results(self): + self._compute_metrics() # to avoid recompute them multiple times + return self._metrics + +class FlowDatasetMetrics(nn.Module): + + def __init__(self): + super().__init__() + self.bad_ths = [0.5,1,3,5] + self.speed_ths = [(0,10),(10,40),(40,torch.inf)] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self.agg_EPEspeed = [torch.tensor(0.0) for _ in self.speed_ths] # EPE per speed bin so far + self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far + self._metrics = None + self.pairname_results = {} + + def add_batch(self, predictions, gt): + assert predictions.size(1)==2, predictions.size() + assert gt.size(1)==2, gt.size() + if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... + L1err = torch.minimum( torch.minimum( torch.minimum( + torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), + torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) + L2err = torch.minimum( torch.minimum( torch.minimum( + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]-predictions),dim=1)), + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]-predictions),dim=1))), + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]-predictions),dim=1))), + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]-predictions),dim=1))) + valid = torch.isfinite(L1err) + gtspeed = (torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]),dim=1)) +\ + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]),dim=1)) ) / 4.0 # let's just average them + else: + valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt-predictions),dim=1) + L2err = torch.sqrt(torch.sum(torch.square(gt-predictions),dim=1)) + gtspeed = torch.sqrt(torch.sum(torch.square(gt),dim=1)) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew + self.agg_L2err = float(self.agg_N)/Nnew * self.agg_L2err + L2err[valid].mean().cpu() * float(N)/Nnew + self.agg_N = Nnew + for i,th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L2err[valid]>th).sum().cpu() + for i,(th1,th2) in enumerate(self.speed_ths): + vv = (gtspeed[valid]>=th1) * (gtspeed[valid] don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len(self.pairnames) # each pairname is typically of the form (str, int1, int2) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + img1name = self.pairname_to_img1name(pairname) + img2name = self.pairname_to_img2name(pairname) + flowname = self.pairname_to_flowname(pairname) if self.pairname_to_flowname is not None else None + + # load images and disparities + img1 = _read_img(img1name) + img2 = _read_img(img2name) + flow = self.load_flow(flowname) if flowname is not None else None + + # apply augmentations + if self.augmentor is not None: + img1, img2, flow = self.augmentor(img1, img2, flow, self.name) + + if self.totensor: + img1 = img_to_tensor(img1) + img2 = img_to_tensor(img2) + if flow is not None: + flow = flow_to_tensor(flow) + else: + flow = torch.tensor([]) # to allow dataloader batching with default collate_gn + pairname = str(pairname) # transform potential tuple to str to be able to batch it + + return img1, img2, flow, pairname + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f'{self.__class__.__name__}_{self.split}' + + def __repr__(self): + s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})' + if self.rmul==1: + s+=f'\n\tnum pairs: {len(self.pairnames)}' + else: + s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})' + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name+'.pkl') + if osp.isfile(cache_file): + with open(cache_file, 'rb') as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, 'wb') as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + +class TartanAirDataset(FlowDataset): + + def _prepare_data(self): + self.name = "TartanAir" + self._set_root() + assert self.split in ['train'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], 'image_left/{:06d}_left.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], 'image_left/{:06d}_left.png'.format(pairname[2])) + self.pairname_to_flowname = lambda pairname: osp.join(self.root, pairname[0], 'flow/{:06d}_{:06d}_flow.npy'.format(pairname[1],pairname[2])) + self.pairname_to_str = lambda pairname: os.path.join(pairname[0][pairname[0].find('/')+1:], '{:06d}_{:06d}'.format(pairname[1], pairname[2])) + self.load_flow = _read_numpy_flow + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + pairs = [(osp.join(s,s,difficulty,Pxxx),int(a[:6]),int(a[:6])+1) for s in seqs for difficulty in ['Easy','Hard'] for Pxxx in sorted(os.listdir(osp.join(self.root,s,s,difficulty))) for a in sorted(os.listdir(osp.join(self.root,s,s,difficulty,Pxxx,'image_left/')))[:-1]] + assert len(pairs)==306268, "incorrect parsing of pairs in TartanAir" + tosave = {'train': pairs} + return tosave + +class FlyingChairsDataset(FlowDataset): + + def _prepare_data(self): + self.name = "FlyingChairs" + self._set_root() + assert self.split in ['train','val'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, 'data', pairname+'_img1.ppm') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, 'data', pairname+'_img2.ppm') + self.pairname_to_flowname = lambda pairname: osp.join(self.root, 'data', pairname+'_flow.flo') + self.pairname_to_str = lambda pairname: pairname + self.load_flow = _read_flo_file + + def _build_cache(self): + split_file = osp.join(self.root, 'chairs_split.txt') + split_list = np.loadtxt(split_file, dtype=np.int32) + trainpairs = ['{:05d}'.format(i) for i in np.where(split_list==1)[0]+1] + valpairs = ['{:05d}'.format(i) for i in np.where(split_list==2)[0]+1] + assert len(trainpairs)==22232 and len(valpairs)==640, "incorrect parsing of pairs in MPI-Sintel" + tosave = {'train': trainpairs, 'val': valpairs} + return tosave + +class FlyingThingsDataset(FlowDataset): + + def _prepare_data(self): + self.name = "FlyingThings" + self._set_root() + assert self.split in [f'{set_}_{pass_}pass{camstr}' for set_ in ['train','test','test1024'] for camstr in ['','_rightcam'] for pass_ in ['clean','final','all']] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, f'frames_{pairname[3]}pass', pairname[0].replace('into_future','').replace('into_past',''), '{:04d}.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, f'frames_{pairname[3]}pass', pairname[0].replace('into_future','').replace('into_past',''), '{:04d}.png'.format(pairname[2])) + self.pairname_to_flowname = lambda pairname: osp.join(self.root, 'optical_flow', pairname[0], 'OpticalFlowInto{f:s}_{i:04d}_{c:s}.pfm'.format(f='Future' if 'future' in pairname[0] else 'Past', i=pairname[1], c='L' if 'left' in pairname[0] else 'R' )) + self.pairname_to_str = lambda pairname: os.path.join(pairname[3]+'pass', pairname[0], 'Into{f:s}_{i:04d}_{c:s}'.format(f='Future' if 'future' in pairname[0] else 'Past', i=pairname[1], c='L' if 'left' in pairname[0] else 'R' )) + self.load_flow = _read_pfm_flow + + def _build_cache(self): + tosave = {} + # train and test splits for the different passes + for set_ in ['train', 'test']: + sroot = osp.join(self.root, 'optical_flow', set_.upper()) + fname_to_i = lambda f: int(f[len('OpticalFlowIntoFuture_'):-len('_L.pfm')]) + pp = [(osp.join(set_.upper(), d, s, 'into_future/left'),fname_to_i(fname)) for d in sorted(os.listdir(sroot)) for s in sorted(os.listdir(osp.join(sroot,d))) for fname in sorted(os.listdir(osp.join(sroot,d, s, 'into_future/left')))[:-1]] + pairs = [(a,i,i+1) for a,i in pp] + pairs += [(a.replace('into_future','into_past'),i+1,i) for a,i in pp] + assert len(pairs)=={'train': 40302, 'test': 7866}[set_], "incorrect parsing of pairs Flying Things" + for cam in ['left','right']: + camstr = '' if cam=='left' else f'_{cam}cam' + for pass_ in ['final', 'clean']: + tosave[f'{set_}_{pass_}pass{camstr}'] = [(a.replace('left',cam),i,j,pass_) for a,i,j in pairs] + tosave[f'{set_}_allpass{camstr}'] = tosave[f'{set_}_cleanpass{camstr}'] + tosave[f'{set_}_finalpass{camstr}'] + # test1024: this is the same split as unimatch 'validation' split + # see https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/datasets.py#L229 + test1024_nsamples = 1024 + alltest_nsamples = len(tosave['test_cleanpass']) # 7866 + stride = alltest_nsamples // test1024_nsamples + remove = alltest_nsamples % test1024_nsamples + for cam in ['left','right']: + camstr = '' if cam=='left' else f'_{cam}cam' + for pass_ in ['final','clean']: + tosave[f'test1024_{pass_}pass{camstr}'] = sorted(tosave[f'test_{pass_}pass{camstr}'])[:-remove][::stride] # warning, it was not sorted before + assert len(tosave['test1024_cleanpass'])==1024, "incorrect parsing of pairs in Flying Things" + tosave[f'test1024_allpass{camstr}'] = tosave[f'test1024_cleanpass{camstr}'] + tosave[f'test1024_finalpass{camstr}'] + return tosave + + +class MPISintelDataset(FlowDataset): + + def _prepare_data(self): + self.name = "MPISintel" + self._set_root() + assert self.split in [s+'_'+p for s in ['train','test','subval','subtrain'] for p in ['cleanpass','finalpass','allpass']] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], 'frame_{:04d}.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], 'frame_{:04d}.png'.format(pairname[1]+1)) + self.pairname_to_flowname = lambda pairname: None if pairname[0].startswith('test/') else osp.join(self.root, pairname[0].replace('/clean/','/flow/').replace('/final/','/flow/'), 'frame_{:04d}.flo'.format(pairname[1])) + self.pairname_to_str = lambda pairname: osp.join(pairname[0], 'frame_{:04d}'.format(pairname[1])) + self.load_flow = _read_flo_file + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root+'training/clean')) + trainpairs = [ (osp.join('training/clean', s),i) for s in trainseqs for i in range(1, len(os.listdir(self.root+'training/clean/'+s)))] + subvalseqs = ['temple_2','temple_3'] + subtrainseqs = [s for s in trainseqs if s not in subvalseqs] + subvalpairs = [ (p,i) for p,i in trainpairs if any(s in p for s in subvalseqs)] + subtrainpairs = [ (p,i) for p,i in trainpairs if any(s in p for s in subtrainseqs)] + testseqs = sorted(os.listdir(self.root+'test/clean')) + testpairs = [ (osp.join('test/clean', s),i) for s in testseqs for i in range(1, len(os.listdir(self.root+'test/clean/'+s)))] + assert len(trainpairs)==1041 and len(testpairs)==552 and len(subvalpairs)==98 and len(subtrainpairs)==943, "incorrect parsing of pairs in MPI-Sintel" + tosave = {} + tosave['train_cleanpass'] = trainpairs + tosave['test_cleanpass'] = testpairs + tosave['subval_cleanpass'] = subvalpairs + tosave['subtrain_cleanpass'] = subtrainpairs + for t in ['train','test','subval','subtrain']: + tosave[t+'_finalpass'] = [(p.replace('/clean/','/final/'),i) for p,i in tosave[t+'_cleanpass']] + tosave[t+'_allpass'] = tosave[t+'_cleanpass'] + tosave[t+'_finalpass'] + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, _time): + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, 'submission', self.pairname_to_str(pairname)+'.flo') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowFile(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split == 'test_allpass' + bundle_exe = "/nfs/data/ffs-3d/datasets/StereoFlow/MPI-Sintel/bundler/linux-x64/bundler" # eg + if os.path.isfile(bundle_exe): + cmd = f'{bundle_exe} "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at: "{outdir}/submission/bundled.lzma"') + else: + print('Could not find bundler executable for submission.') + print('Please download it and run:') + print(f' "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"') + +class SpringDataset(FlowDataset): + + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ['train','test','subtrain','subval'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], pairname[1], 'frame_'+pairname[3], 'frame_{:s}_{:04d}.png'.format(pairname[3], pairname[4])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], pairname[1], 'frame_'+pairname[3], 'frame_{:s}_{:04d}.png'.format(pairname[3], pairname[4]+(1 if pairname[2]=='FW' else -1))) + self.pairname_to_flowname = lambda pairname: None if pairname[0]=='test' else osp.join(self.root, pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5') + self.pairname_to_str = lambda pairname: osp.join(pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}') + self.load_flow = _read_hdf5_flow + + def _build_cache(self): + # train + trainseqs = sorted(os.listdir( osp.join(self.root,'train'))) + trainpairs = [] + for leftright in ['left','right']: + for fwbw in ['FW','BW']: + trainpairs += [('train',s,fwbw,leftright,int(f[len(f'flow_{fwbw}_{leftright}_'):-len('.flo5')])) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,f'flow_{fwbw}_{leftright}')))] + # test + testseqs = sorted(os.listdir( osp.join(self.root,'test'))) + testpairs = [] + for leftright in ['left','right']: + testpairs += [('test',s,'FW',leftright,int(f[len(f'frame_{leftright}_'):-len('.png')])) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,f'frame_{leftright}')))[:-1]] + testpairs += [('test',s,'BW',leftright,int(f[len(f'frame_{leftright}_'):-len('.png')])+1) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,f'frame_{leftright}')))[:-1]] + # subtrain / subval + subtrainpairs = [p for p in trainpairs if p[1]!='0041'] + subvalpairs = [p for p in trainpairs if p[1]=='0041'] + assert len(trainpairs)==19852 and len(testpairs)==3960 and len(subtrainpairs)==19472 and len(subvalpairs)==380, "incorrect parsing of pairs in Spring" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + assert prediction.dtype==np.float32 + outfile = osp.join(outdir, pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlo5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + exe = "{self.root}/flow_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/test/flow_submission.hdf5') + else: + print('Could not find flow_subsampling executable for submission.') + print('Please download it and run:') + print(f'cd "{outdir}/test"; .') + + +class Kitti12Dataset(FlowDataset): + + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ['train','test'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname+'_11.png') + self.pairname_to_flowname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/flow_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/') + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)] + testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)] + assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12" + tosave = {'train': trainseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti12_flow_results.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti12_flow_results.zip') + + +class Kitti15Dataset(FlowDataset): + + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ['train','subtrain','subval','test'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname+'_11.png') + self.pairname_to_flowname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/flow_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/') + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/image_2/%06d"%(i) for i in range(200)] + subtrainseqs = trainseqs[:-10] + subvalseqs = trainseqs[-10:] + testseqs = ["testing/image_2/%06d"%(i) for i in range(200)] + assert len(trainseqs)==200 and len(subtrainseqs)==190 and len(subvalseqs)==10 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15" + tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, 'flow', pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti15_flow_results.zip" flow' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti15_flow_results.zip') + + +import cv2 +def _read_numpy_flow(filename): + return np.load(filename) + +def _read_pfm_flow(filename): + f, _ = _read_pfm(filename) + assert np.all(f[:,:,2]==0.0) + return np.ascontiguousarray(f[:,:,:2]) + +TAG_FLOAT = 202021.25 # tag to check the sanity of the file +TAG_STRING = 'PIEH' # string containing the tag +MIN_WIDTH = 1 +MAX_WIDTH = 99999 +MIN_HEIGHT = 1 +MAX_HEIGHT = 99999 +def readFlowFile(filename): + """ + readFlowFile() reads a flow file into a 2-band np.array. + if does not exist, an IOError is raised. + if does not finish by '.flo' or the tag, the width, the height or the file's size is illegal, an Expcetion is raised. + ---- PARAMETERS ---- + filename: string containg the name of the file to read a flow + ---- OUTPUTS ---- + a np.array of dimension (height x width x 2) containing the flow of type 'float32' + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception("readFlowFile({:s}): filename must finish with '.flo'".format(filename)) + + # open the file and read it + with open(filename,'rb') as f: + # check tag + tag = struct.unpack('f',f.read(4))[0] + if tag != TAG_FLOAT: + raise Exception("flow_utils.readFlowFile({:s}): wrong tag".format(filename)) + # read dimension + w,h = struct.unpack('ii',f.read(8)) + if w < MIN_WIDTH or w > MAX_WIDTH: + raise Exception("flow_utils.readFlowFile({:s}: illegal width {:d}".format(filename,w)) + if h < MIN_HEIGHT or h > MAX_HEIGHT: + raise Exception("flow_utils.readFlowFile({:s}: illegal height {:d}".format(filename,h)) + flow = np.fromfile(f,'float32') + if not flow.shape == (h*w*2,): + raise Exception("flow_utils.readFlowFile({:s}: illegal size of the file".format(filename)) + flow.shape = (h,w,2) + return flow + +def writeFlowFile(flow,filename): + """ + writeFlowFile(flow,) write flow to the file . + if does not exist, an IOError is raised. + if does not finish with '.flo' or the flow has not 2 bands, an Exception is raised. + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to write + filename: string containg the name of the file to write a flow + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception("flow_utils.writeFlowFile(,{:s}): filename must finish with '.flo'".format(filename)) + + if not flow.shape[2:] == (2,): + raise Exception("flow_utils.writeFlowFile(,{:s}): must have 2 bands".format(filename)) + + + # open the file and write it + with open(filename,'wb') as f: + # write TAG + f.write( TAG_STRING.encode('utf-8') ) + # write dimension + f.write( struct.pack('ii',flow.shape[1],flow.shape[0]) ) + # write the flow + + flow.astype(np.float32).tofile(f) + +_read_flo_file = readFlowFile + +def _read_kitti_flow(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) + flow = flow[:, :, ::-1].astype(np.float32) + valid = flow[:, :, 2]>0 + flow = flow[:, :, :2] + flow = (flow - 2 ** 15) / 64.0 + flow[~valid,0] = np.inf + flow[~valid,1] = np.inf + return flow +_read_hd1k_flow = _read_kitti_flow + + +def writeFlowKitti(filename, uv): + uv = 64.0 * uv + 2 ** 15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + +def writeFlo5File(flow, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5) + +def _read_hdf5_flow(filename): + flow = np.asarray(h5py.File(filename)['flow']) + flow[np.isnan(flow)] = np.inf # make invalid values as +inf + return flow.astype(np.float32) + +# flow visualization +RY = 15 +YG = 6 +GC = 4 +CB = 11 +BM = 13 +MR = 6 +UNKNOWN_THRESH = 1e9 + +def colorTest(): + """ + flow_utils.colorTest(): display an example of image showing the color encoding scheme + """ + import matplotlib.pylab as plt + truerange = 1 + h,w = 151,151 + trange = truerange*1.04 + s2 = round(h/2) + x,y = np.meshgrid(range(w),range(h)) + u = x*trange/s2-trange + v = y*trange/s2-trange + img = _computeColor(np.concatenate((u[:,:,np.newaxis],v[:,:,np.newaxis]),2)/trange/np.sqrt(2)) + plt.imshow(img) + plt.axis('off') + plt.axhline(round(h/2),color='k') + plt.axvline(round(w/2),color='k') + +def flowToColor(flow, maxflow=None, maxmaxflow=None, saturate=False): + """ + flow_utils.flowToColor(flow): return a color code flow field, normalized based on the maximum l2-norm of the flow + flow_utils.flowToColor(flow,maxflow): return a color code flow field, normalized by maxflow + ---- PARAMETERS ---- + flow: flow to display of shape (height x width x 2) + maxflow (default:None): if given, normalize the flow by its value, otherwise by the flow norm + maxmaxflow (default:None): if given, normalize the flow by the max of its value and the flow norm + ---- OUTPUT ---- + an np.array of shape (height x width x 3) of type uint8 containing a color code of the flow + """ + h,w,n = flow.shape + # check size of flow + assert n == 2, "flow_utils.flowToColor(flow): flow must have 2 bands" + # fix unknown flow + unknown_idx = np.max(np.abs(flow),2)>UNKNOWN_THRESH + flow[unknown_idx] = 0.0 + # compute max flow if needed + if maxflow is None: + maxflow = flowMaxNorm(flow) + if maxmaxflow is not None: + maxflow = min(maxmaxflow, maxflow) + # normalize flow + eps = np.spacing(1) # minimum positive float value to avoid division by 0 + # compute the flow + img = _computeColor(flow/(maxflow+eps), saturate=saturate) + # put black pixels in unknown location + img[ np.tile( unknown_idx[:,:,np.newaxis],[1,1,3]) ] = 0.0 + return img + +def flowMaxNorm(flow): + """ + flow_utils.flowMaxNorm(flow): return the maximum of the l2-norm of the given flow + ---- PARAMETERS ---- + flow: the flow + + ---- OUTPUT ---- + a float containing the maximum of the l2-norm of the flow + """ + return np.max( np.sqrt( np.sum( np.square( flow ) , 2) ) ) + +def _computeColor(flow, saturate=True): + """ + flow_utils._computeColor(flow): compute color codes for the flow field flow + + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to display + ---- OUTPUTS ---- + an np.array of dimension (height x width x 3) containing the color conversion of the flow + """ + # set nan to 0 + nanidx = np.isnan(flow[:,:,0]) + flow[nanidx] = 0.0 + + # colorwheel + ncols = RY + YG + GC + CB + BM + MR + nchans = 3 + colorwheel = np.zeros((ncols,nchans),'uint8') + col = 0; + #RY + colorwheel[:RY,0] = 255 + colorwheel[:RY,1] = [(255*i) // RY for i in range(RY)] + col += RY + # YG + colorwheel[col:col+YG,0] = [255 - (255*i) // YG for i in range(YG)] + colorwheel[col:col+YG,1] = 255 + col += YG + # GC + colorwheel[col:col+GC,1] = 255 + colorwheel[col:col+GC,2] = [(255*i) // GC for i in range(GC)] + col += GC + # CB + colorwheel[col:col+CB,1] = [255 - (255*i) // CB for i in range(CB)] + colorwheel[col:col+CB,2] = 255 + col += CB + # BM + colorwheel[col:col+BM,0] = [(255*i) // BM for i in range(BM)] + colorwheel[col:col+BM,2] = 255 + col += BM + # MR + colorwheel[col:col+MR,0] = 255 + colorwheel[col:col+MR,2] = [255 - (255*i) // MR for i in range(MR)] + + # compute utility variables + rad = np.sqrt( np.sum( np.square(flow) , 2) ) # magnitude + a = np.arctan2( -flow[:,:,1] , -flow[:,:,0]) / np.pi # angle + fk = (a+1)/2 * (ncols-1) # map [-1,1] to [0,ncols-1] + k0 = np.floor(fk).astype('int') + k1 = k0+1 + k1[k1==ncols] = 0 + f = fk-k0 + + if not saturate: + rad = np.minimum(rad,1) + + # compute the image + img = np.zeros( (flow.shape[0],flow.shape[1],nchans), 'uint8' ) + for i in range(nchans): + tmp = colorwheel[:,i].astype('float') + col0 = tmp[k0]/255 + col1 = tmp[k1]/255 + col = (1-f)*col0 + f*col1 + idx = (rad <= 1) + col[idx] = 1-rad[idx]*(1-col[idx]) # increase saturation with radius + col[~idx] *= 0.75 # out of range + img[:,:,i] = (255*col*(1-nanidx.astype('float'))).astype('uint8') + + return img + +# flow dataset getter + +def get_train_dataset_flow(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace('(','Dataset(') + if augmentor: + dataset_str = dataset_str.replace(')',', augmentor=True)') + if crop_size is not None: + dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size))) + return eval(dataset_str) + +def get_test_datasets_flow(dataset_str): + dataset_str = dataset_str.replace('(','Dataset(') + return [eval(s) for s in dataset_str.split('+')] \ No newline at end of file diff --git a/croco/stereoflow/datasets_stereo.py b/croco/stereoflow/datasets_stereo.py new file mode 100644 index 0000000000000000000000000000000000000000..dbdf841a6650afa71ae5782702902c79eba31a5c --- /dev/null +++ b/croco/stereoflow/datasets_stereo.py @@ -0,0 +1,674 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Dataset structure for stereo +# -------------------------------------------------------- + +import sys, os +import os.path as osp +import pickle +import numpy as np +from PIL import Image +import json +import h5py +from glob import glob +import cv2 + +import torch +from torch.utils import data + +from .augmentor import StereoAugmentor + + + +dataset_to_root = { + 'CREStereo': './data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/', + 'SceneFlow': './data/stereoflow//SceneFlow/', + 'ETH3DLowRes': './data/stereoflow/eth3d_lowres/', + 'Booster': './data/stereoflow/booster_gt/', + 'Middlebury2021': './data/stereoflow/middlebury/2021/data/', + 'Middlebury2014': './data/stereoflow/middlebury/2014/', + 'Middlebury2006': './data/stereoflow/middlebury/2006/', + 'Middlebury2005': './data/stereoflow/middlebury/2005/train/', + 'MiddleburyEval3': './data/stereoflow/middlebury/MiddEval3/', + 'Spring': './data/stereoflow/spring/', + 'Kitti15': './data/stereoflow/kitti-stereo-2015/', + 'Kitti12': './data/stereoflow/kitti-stereo-2012/', +} +cache_dir = "./data/stereoflow/datasets_stereo_cache/" + + +in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1) +in1k_std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1) +def img_to_tensor(img): + img = torch.from_numpy(img).permute(2, 0, 1).float() / 255. + img = (img-in1k_mean)/in1k_std + return img +def disp_to_tensor(disp): + return torch.from_numpy(disp)[None,:,:] + +class StereoDataset(data.Dataset): + + def __init__(self, split, augmentor=False, crop_size=None, totensor=True): + self.split = split + if not augmentor: assert crop_size is None + if crop_size: assert augmentor + self.crop_size = crop_size + self.augmentor_str = augmentor + self.augmentor = StereoAugmentor(crop_size) if augmentor else None + self.totensor = totensor + self.rmul = 1 # keep track of rmul + self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len(self.pairnames) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + Limgname = self.pairname_to_Limgname(pairname) + Rimgname = self.pairname_to_Rimgname(pairname) + Ldispname = self.pairname_to_Ldispname(pairname) if self.pairname_to_Ldispname is not None else None + + # load images and disparities + Limg = _read_img(Limgname) + Rimg = _read_img(Rimgname) + disp = self.load_disparity(Ldispname) if Ldispname is not None else None + + # sanity check + if disp is not None: assert np.all(disp>0) or self.name=="Spring", (self.name, pairname, Ldispname) + + # apply augmentations + if self.augmentor is not None: + Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name) + + if self.totensor: + Limg = img_to_tensor(Limg) + Rimg = img_to_tensor(Rimg) + if disp is None: + disp = torch.tensor([]) # to allow dataloader batching with default collate_gn + else: + disp = disp_to_tensor(disp) + + return Limg, Rimg, disp, str(pairname) + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f'{self.__class__.__name__}_{self.split}' + + def __repr__(self): + s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})' + if self.rmul==1: + s+=f'\n\tnum pairs: {len(self.pairnames)}' + else: + s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})' + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name+'.pkl') + if osp.isfile(cache_file): + with open(cache_file, 'rb') as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, 'wb') as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + +class CREStereoDataset(StereoDataset): + + def _prepare_data(self): + self.name = 'CREStereo' + self._set_root() + assert self.split in ['train'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_left.jpg') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'_right.jpg') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname+'_left.disp.png') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_crestereo_disp + + + def _build_cache(self): + allpairs = [s+'/'+f[:-len('_left.jpg')] for s in sorted(os.listdir(self.root)) for f in sorted(os.listdir(self.root+'/'+s)) if f.endswith('_left.jpg')] + assert len(allpairs)==200000, "incorrect parsing of pairs in CreStereo" + tosave = {'train': allpairs} + return tosave + +class SceneFlowDataset(StereoDataset): + + def _prepare_data(self): + self.name = "SceneFlow" + self._set_root() + assert self.split in ['train_finalpass','train_cleanpass','train_allpass','test_finalpass','test_cleanpass','test_allpass','test1of100_cleanpass','test1of100_finalpass'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/left/','/right/') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname).replace('/frames_finalpass/','/disparity/').replace('/frames_cleanpass/','/disparity/')[:-4]+'.pfm' + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_sceneflow_disp + + def _build_cache(self): + trainpairs = [] + # driving + pairs = sorted(glob(self.root+'Driving/frames_finalpass/*/*/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # monkaa + pairs = sorted(glob(self.root+'Monkaa/frames_finalpass/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # flyingthings + pairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow" + testpairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TEST/*/*/left/*.png')) + testpairs = list(map(lambda x: x[len(self.root):], testpairs)) + assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow" + test1of100pairs = testpairs[::100] + assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow" + # all + tosave = {'train_finalpass': trainpairs, + 'train_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), trainpairs)), + 'test_finalpass': testpairs, + 'test_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), testpairs)), + 'test1of100_finalpass': test1of100pairs, + 'test1of100_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), test1of100pairs)), + } + tosave['train_allpass'] = tosave['train_finalpass']+tosave['train_cleanpass'] + tosave['test_allpass'] = tosave['test_finalpass']+tosave['test_cleanpass'] + return tosave + +class Md21Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2021" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/im0','/im1')) + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp0.pfm') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + #trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings + trainpairs += [s+'/ambient/'+b+'/'+a for b in sorted(os.listdir(osp.join(self.root,s,'ambient'))) for a in sorted(os.listdir(osp.join(self.root,s,'ambient',b))) if a.startswith('im0')] + assert len(trainpairs)==355 + subtrainpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[:-2])] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[-2:])] + assert len(subtrainpairs)==335 and len(subvalpairs)==20, "incorrect parsing of pairs in Middlebury 2021" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md14Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2014" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'disp0.pfm') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + trainpairs += [s+'/im1.png',s+'/im1E.png',s+'/im1L.png'] + assert len(trainpairs)==138 + valseqs = ['Umbrella-imperfect','Vintage-perfect'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==132 and len(subvalpairs)==6, "incorrect parsing of pairs in Middlebury 2014" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md06Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2006" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png') + self.load_disparity = _read_middlebury20052006_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ['Illum1','Illum2','Illum3']: + for e in ['Exp0','Exp1','Exp2']: + trainpairs.append(osp.join(s,i,e,'view1.png')) + assert len(trainpairs)==189 + valseqs = ['Rocks1','Wood2'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==171 and len(subvalpairs)==18, "incorrect parsing of pairs in Middlebury 2006" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md05Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2005" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury20052006_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ['Illum1','Illum2','Illum3']: + for e in ['Exp0','Exp1','Exp2']: + trainpairs.append(osp.join(s,i,e,'view1.png')) + assert len(trainpairs)==54, "incorrect parsing of pairs in Middlebury 2005" + valseqs = ['Reindeer'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==45 and len(subvalpairs)==9, "incorrect parsing of pairs in Middlebury 2005" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class MdEval3Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "MiddleburyEval3" + self._set_root() + assert self.split in [s+'_'+r for s in ['train','subtrain','subval','test','all'] for r in ['full','half','quarter']] + if self.split.endswith('_full'): + self.root = self.root.replace('/MiddEval3','/MiddEval3_F') + elif self.split.endswith('_half'): + self.root = self.root.replace('/MiddEval3','/MiddEval3_H') + else: + assert self.split.endswith('_quarter') + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png') + self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname, 'disp0GT.pfm') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_middlebury_disp + # for submission only + self.submission_methodname = "CroCo-Stereo" + self.submission_sresolution = 'F' if self.split.endswith('_full') else ('H' if self.split.endswith('_half') else 'Q') + + def _build_cache(self): + trainpairs = ['train/'+s for s in sorted(os.listdir(self.root+'train/'))] + testpairs = ['test/'+s for s in sorted(os.listdir(self.root+'test/'))] + subvalpairs = trainpairs[-1:] + subtrainpairs = trainpairs[:-1] + allpairs = trainpairs+testpairs + assert len(trainpairs)==15 and len(testpairs)==15 and len(subvalpairs)==1 and len(subtrainpairs)==14 and len(allpairs)==30, "incorrect parsing of pairs in Middlebury Eval v3" + tosave = {} + for r in ['full','half','quarter']: + tosave.update(**{'train_'+r: trainpairs, 'subtrain_'+r: subtrainpairs, 'subval_'+r: subvalpairs, 'test_'+r: testpairs, 'all_'+r: allpairs}) + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname.split('/')[0].replace('train','training')+self.submission_sresolution, pairname.split('/')[1], 'disp0'+self.submission_methodname+'.pfm') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = os.path.join( os.path.dirname(outfile), "time"+self.submission_methodname+'.txt') + with open(timefile, 'w') as fid: + fid.write(str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/{self.submission_methodname}.zip') + +class ETH3DLowResDataset(StereoDataset): + + def _prepare_data(self): + self.name = "ETH3DLowRes" + self._set_root() + assert self.split in ['train','test','subtrain','subval','all'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: None if pairname.startswith('test/') else osp.join(self.root, pairname.replace('train/','train_gt/'), 'disp0GT.pfm') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_eth3d_disp + self.has_constant_resolution = False + + def _build_cache(self): + trainpairs = ['train/' + s for s in sorted(os.listdir(self.root+'train/'))] + testpairs = ['test/' + s for s in sorted(os.listdir(self.root+'test/'))] + assert len(trainpairs) == 27 and len(testpairs) == 20, "incorrect parsing of pairs in ETH3D Low Res" + subvalpairs = ['train/delivery_area_3s','train/electro_3l','train/playground_3l'] + assert all(p in trainpairs for p in subvalpairs) + subtrainpairs = [p for p in trainpairs if not p in subvalpairs] + assert len(subvalpairs)==3 and len(subtrainpairs)==24, "incorrect parsing of pairs in ETH3D Low Res" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs, 'all': trainpairs+testpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, 'low_res_two_view', pairname.split('/')[1]+'.pfm') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = outfile[:-4]+'.txt' + with open(timefile, 'w') as fid: + fid.write('runtime '+str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip') + +class BoosterDataset(StereoDataset): + + def _prepare_data(self): + self.name = "Booster" + self._set_root() + assert self.split in ['train_balanced','test_balanced','subtrain_balanced','subval_balanced'] # we use only the balanced version + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/camera_00/','/camera_02/') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), '../disp_00.npy') # same images with different colors, same gt per sequence + self.pairname_to_str = lambda pairname: pairname[:-4].replace('/camera_00/','/') + self.load_disparity = _read_booster_disp + + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root+'train/balanced')) + trainpairs = ['train/balanced/'+s+'/camera_00/'+imname for s in trainseqs for imname in sorted(os.listdir(self.root+'train/balanced/'+s+'/camera_00/'))] + testpairs = ['test/balanced/'+s+'/camera_00/'+imname for s in sorted(os.listdir(self.root+'test/balanced')) for imname in sorted(os.listdir(self.root+'test/balanced/'+s+'/camera_00/'))] + assert len(trainpairs) == 228 and len(testpairs) == 191 + subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])] + subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])] + # warning: if we do validation split, we should split scenes!!! + tosave = {'train_balanced': trainpairs, 'test_balanced': testpairs, 'subtrain_balanced': subtrainpairs, 'subval_balanced': subvalpairs,} + return tosave + +class SpringDataset(StereoDataset): + + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ['train', 'test', 'subtrain', 'subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'.png').replace('frame_right','').replace('frame_left','frame_right').replace('','frame_left') + self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_hdf5_disp + + def _build_cache(self): + trainseqs = sorted(os.listdir( osp.join(self.root,'train'))) + trainpairs = [osp.join('train',s,'frame_left',f[:-4]) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,'frame_left')))] + testseqs = sorted(os.listdir( osp.join(self.root,'test'))) + testpairs = [osp.join('test',s,'frame_left',f[:-4]) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,'frame_left')))] + testpairs += [p.replace('frame_left','frame_right') for p in testpairs] + """maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041""" + subtrainpairs = [p for p in trainpairs if p.split('/')[1]!='0041'] + subvalpairs = [p for p in trainpairs if p.split('/')[1]=='0041'] + assert len(trainpairs)==5000 and len(testpairs)==2000 and len(subtrainpairs)==4904 and len(subvalpairs)==96, "incorrect parsing of pairs in Spring" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeDsp5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + exe = "{self.root}/disp1_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + else: + print('Could not find disp1_subsampling executable for submission.') + print('Please download it and run:') + print(f'cd "{outdir}/test"; .') + +class Kitti12Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ['train','test'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/colored_1/')+'_10.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/disp_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/') + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)] + testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)] + assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12" + tosave = {'train': trainseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype('uint16') + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti12_results.zip') + +class Kitti15Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ['train','subtrain','subval','test'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/image_3/')+'_10.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/disp_occ_0/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/') + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/image_2/%06d"%(i) for i in range(200)] + subtrainseqs = trainseqs[:-5] + subvalseqs = trainseqs[-5:] + testseqs = ["testing/image_2/%06d"%(i) for i in range(200)] + assert len(trainseqs)==200 and len(subtrainseqs)==195 and len(subvalseqs)==5 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15" + tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, 'disp_0', pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype('uint16') + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti15_results.zip') + + +### auxiliary functions + +def _read_img(filename): + # convert to RGB for scene flow finalpass data + img = np.asarray(Image.open(filename).convert('RGB')) + return img + +def _read_booster_disp(filename): + disp = np.load(filename) + disp[disp==0.0] = np.inf + return disp + +def _read_png_disp(filename, coef=1.0): + disp = np.asarray(Image.open(filename)) + disp = disp.astype(np.float32) / coef + disp[disp==0.0] = np.inf + return disp + +def _read_pfm_disp(filename): + disp = np.ascontiguousarray(_read_pfm(filename)[0]) + disp[disp<=0] = np.inf # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm + return disp + +def _read_npy_disp(filename): + return np.load(filename) + +def _read_crestereo_disp(filename): return _read_png_disp(filename, coef=32.0) +def _read_middlebury20052006_disp(filename): return _read_png_disp(filename, coef=1.0) +def _read_kitti_disp(filename): return _read_png_disp(filename, coef=256.0) +_read_sceneflow_disp = _read_pfm_disp +_read_eth3d_disp = _read_pfm_disp +_read_middlebury_disp = _read_pfm_disp +_read_carla_disp = _read_pfm_disp +_read_tartanair_disp = _read_npy_disp + +def _read_hdf5_disp(filename): + disp = np.asarray(h5py.File(filename)['disparity']) + disp[np.isnan(disp)] = np.inf # make invalid values as +inf + #disp[disp==0.0] = np.inf # make invalid values as +inf + return disp.astype(np.float32) + +import re +def _read_pfm(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header.decode("ascii") == 'PF': + color = True + elif header.decode("ascii") == 'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) + if dim_match: + width, height = list(map(int, dim_match.groups())) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().decode("ascii").rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data, scale + +def writePFM(file, image, scale=1): + file = open(file, 'wb') + + color = None + + if image.dtype.name != 'float32': + raise Exception('Image dtype must be float32.') + + image = np.flipud(image) + + if len(image.shape) == 3 and image.shape[2] == 3: # color image + color = True + elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale + color = False + else: + raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') + + file.write('PF\n' if color else 'Pf\n'.encode()) + file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) + + endian = image.dtype.byteorder + + if endian == '<' or endian == '=' and sys.byteorder == 'little': + scale = -scale + + file.write('%f\n'.encode() % scale) + + image.tofile(file) + +def writeDsp5File(disp, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5) + + +# disp visualization + +def vis_disparity(disp, m=None, M=None): + if m is None: m = disp.min() + if M is None: M = disp.max() + disp_vis = (disp - m) / (M-m) * 255.0 + disp_vis = disp_vis.astype("uint8") + disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) + return disp_vis + +# dataset getter + +def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace('(','Dataset(') + if augmentor: + dataset_str = dataset_str.replace(')',', augmentor=True)') + if crop_size is not None: + dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size))) + return eval(dataset_str) + +def get_test_datasets_stereo(dataset_str): + dataset_str = dataset_str.replace('(','Dataset(') + return [eval(s) for s in dataset_str.split('+')] \ No newline at end of file diff --git a/croco/stereoflow/download_model.sh b/croco/stereoflow/download_model.sh new file mode 100644 index 0000000000000000000000000000000000000000..533119609108c5ec3c22ff79b10e9215c1ac5098 --- /dev/null +++ b/croco/stereoflow/download_model.sh @@ -0,0 +1,12 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +model=$1 +outfile="stereoflow_models/${model}" +if [[ ! -f $outfile ]] +then + mkdir -p stereoflow_models/; + wget https://download.europe.naverlabs.com/ComputerVision/CroCo/StereoFlow_models/$1 -P stereoflow_models/; +else + echo "Model ${model} already downloaded in ${outfile}." +fi \ No newline at end of file diff --git a/croco/stereoflow/engine.py b/croco/stereoflow/engine.py new file mode 100644 index 0000000000000000000000000000000000000000..c057346b99143bf6b9c4666a58215b2b91aca7a6 --- /dev/null +++ b/croco/stereoflow/engine.py @@ -0,0 +1,280 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main function for training one epoch or testing +# -------------------------------------------------------- + +import math +import sys +from typing import Iterable +import numpy as np +import torch +import torchvision + +from utils import misc as misc + + +def split_prediction_conf(predictions, with_conf=False): + if not with_conf: + return predictions, None + conf = predictions[:,-1:,:,:] + predictions = predictions[:,:-1,:,:] + return predictions, conf + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, metrics: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + log_writer=None, print_freq = 20, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + + accum_iter = args.accum_iter + + optimizer.zero_grad() + + details = {} + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if args.img_per_epoch: + iter_per_epoch = args.img_per_epoch // args.batch_size + int(args.img_per_epoch % args.batch_size > 0) + assert len(data_loader) >= iter_per_epoch, 'Dataset is too small for so many iterations' + len_data_loader = iter_per_epoch + else: + len_data_loader, iter_per_epoch = len(data_loader), None + + for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_logger.log_every(data_loader, print_freq, header, max_iter=iter_per_epoch)): + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, data_iter_step / len_data_loader + epoch, args) + + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + prediction = model(image1, image2) + prediction, conf = split_prediction_conf(prediction, criterion.with_conf) + batch_metrics = metrics(prediction.detach(), gt) + loss = criterion(prediction, gt) if conf is None else criterion(prediction, gt, conf) + + loss_value = loss.item() + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + for k,v in batch_metrics.items(): + metric_logger.update(**{k: v.item()}) + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + #if args.dsitributed: loss_value_reduce = misc.all_reduce_mean(loss_value) + time_to_log = ((data_iter_step + 1) % (args.tboard_log_step * accum_iter) == 0 or data_iter_step == len_data_loader-1) + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and time_to_log: + epoch_1000x = int((data_iter_step / len_data_loader + epoch) * 1000) + # We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. + log_writer.add_scalar('train/loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', lr, epoch_1000x) + for k,v in batch_metrics.items(): + log_writer.add_scalar('train/'+k, v.item(), epoch_1000x) + + # gather the stats from all processes + #if args.distributed: metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def validate_one_epoch(model: torch.nn.Module, + criterion: torch.nn.Module, + metrics: torch.nn.Module, + data_loaders: list[Iterable], + device: torch.device, + epoch: int, + log_writer=None, + args=None): + + model.eval() + metric_loggers = [] + header = 'Epoch: [{}]'.format(epoch) + print_freq = 20 + + conf_mode = args.tile_conf_mode + crop = args.crop + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + results = {} + dnames = [] + image1, image2, gt, prediction = None, None, None, None + for didx, data_loader in enumerate(data_loaders): + dname = str(data_loader.dataset) + dnames.append(dname) + metric_loggers.append(misc.MetricLogger(delimiter=" ")) + for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_loggers[didx].log_every(data_loader, print_freq, header)): + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + if dname.startswith('Spring'): + assert gt.size(2)==image1.size(2)*2 and gt.size(3)==image1.size(3)*2 + gt = (gt[:,:,0::2,0::2] + gt[:,:,0::2,1::2] + gt[:,:,1::2,0::2] + gt[:,:,1::2,1::2] ) / 4.0 # we approximate the gt based on the 2x upsampled ones + + with torch.inference_mode(): + prediction, tiled_loss, c = tiled_pred(model, criterion, image1, image2, gt, conf_mode=conf_mode, overlap=args.val_overlap, crop=crop, with_conf=criterion.with_conf) + batch_metrics = metrics(prediction.detach(), gt) + loss = criterion(prediction.detach(), gt) if not criterion.with_conf else criterion(prediction.detach(), gt, c) + loss_value = loss.item() + metric_loggers[didx].update(loss_tiled=tiled_loss.item()) + metric_loggers[didx].update(**{f'loss': loss_value}) + for k,v in batch_metrics.items(): + metric_loggers[didx].update(**{dname+'_' + k: v.item()}) + + results = {k: meter.global_avg for ml in metric_loggers for k, meter in ml.meters.items()} + if len(dnames)>1: + for k in batch_metrics.keys(): + results['AVG_'+k] = sum(results[dname+'_'+k] for dname in dnames) / len(dnames) + + if log_writer is not None : + epoch_1000x = int((1 + epoch) * 1000) + for k,v in results.items(): + log_writer.add_scalar('val/'+k, v, epoch_1000x) + + print("Averaged stats:", results) + return results + +import torch.nn.functional as F +def _resize_img(img, new_size): + return F.interpolate(img, size=new_size, mode='bicubic', align_corners=False) +def _resize_stereo_or_flow(data, new_size): + assert data.ndim==4 + assert data.size(1) in [1,2] + scale_x = new_size[1]/float(data.size(3)) + out = F.interpolate(data, size=new_size, mode='bicubic', align_corners=False) + out[:,0,:,:] *= scale_x + if out.size(1)==2: + scale_y = new_size[0]/float(data.size(2)) + out[:,1,:,:] *= scale_y + print(scale_x, new_size, data.shape) + return out + + +@torch.no_grad() +def tiled_pred(model, criterion, img1, img2, gt, + overlap=0.5, bad_crop_thr=0.05, + downscale=False, crop=512, ret='loss', + conf_mode='conf_expsigmoid_10_5', with_conf=False, + return_time=False): + + # for each image, we are going to run inference on many overlapping patches + # then, all predictions will be weighted-averaged + if gt is not None: + B, C, H, W = gt.shape + else: + B, _, H, W = img1.shape + C = model.head.num_channels-int(with_conf) + win_height, win_width = crop[0], crop[1] + + # upscale to be larger than the crop + do_change_scale = H= window and 0 <= overlap < 1, (total, window, overlap) + num_windows = 1 + int(np.ceil( (total - window) / ((1-overlap) * window) )) + offsets = np.linspace(0, total-window, num_windows).round().astype(int) + yield from (slice(x, x+window) for x in offsets) + +def _crop(img, sy, sx): + B, THREE, H, W = img.shape + if 0 <= sy.start and sy.stop <= H and 0 <= sx.start and sx.stop <= W: + return img[:,:,sy,sx] + l, r = max(0,-sx.start), max(0,sx.stop-W) + t, b = max(0,-sy.start), max(0,sy.stop-H) + img = torch.nn.functional.pad(img, (l,r,t,b), mode='constant') + return img[:, :, slice(sy.start+t,sy.stop+t), slice(sx.start+l,sx.stop+l)] \ No newline at end of file diff --git a/croco/stereoflow/test.py b/croco/stereoflow/test.py new file mode 100644 index 0000000000000000000000000000000000000000..0248e56664c769752595af251e1eadcfa3a479d9 --- /dev/null +++ b/croco/stereoflow/test.py @@ -0,0 +1,216 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main test function +# -------------------------------------------------------- + +import os +import argparse +import pickle +from PIL import Image +import numpy as np +from tqdm import tqdm + +import torch +from torch.utils.data import DataLoader + +import utils.misc as misc +from models.croco_downstream import CroCoDownstreamBinocular +from models.head_downstream import PixelwiseTaskWithDPT + +from stereoflow.criterion import * +from stereoflow.datasets_stereo import get_test_datasets_stereo +from stereoflow.datasets_flow import get_test_datasets_flow +from stereoflow.engine import tiled_pred + +from stereoflow.datasets_stereo import vis_disparity +from stereoflow.datasets_flow import flowToColor + +def get_args_parser(): + parser = argparse.ArgumentParser('Test CroCo models on stereo/flow', add_help=False) + # important argument + parser.add_argument('--model', required=True, type=str, help='Path to the model to evaluate') + parser.add_argument('--dataset', required=True, type=str, help="test dataset (there can be multiple dataset separated by a +)") + # tiling + parser.add_argument('--tile_conf_mode', type=str, default='', help='Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint') + parser.add_argument('--tile_overlap', type=float, default=0.7, help='overlap between tiles') + # save (it will automatically go to _/_) + parser.add_argument('--save', type=str, nargs='+', default=[], + help='what to save: \ + metrics (pickle file), \ + pred (raw prediction save as torch tensor), \ + visu (visualization in png of each prediction), \ + err10 (visualization in png of the error clamp at 10 for each prediction), \ + submission (submission file)') + # other (no impact) + parser.add_argument('--num_workers', default=4, type=int) + return parser + + +def _load_model_and_criterion(model_path, do_load_metrics, device): + print('loading model from', model_path) + assert os.path.isfile(model_path) + ckpt = torch.load(model_path, 'cpu') + + ckpt_args = ckpt['args'] + task = ckpt_args.task + tile_conf_mode = ckpt_args.tile_conf_mode + num_channels = {'stereo': 1, 'flow': 2}[task] + with_conf = eval(ckpt_args.criterion).with_conf + if with_conf: num_channels += 1 + print('head: PixelwiseTaskWithDPT()') + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + print('croco_args:', ckpt_args.croco_args) + model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args) + msg = model.load_state_dict(ckpt['model'], strict=True) + model.eval() + model = model.to(device) + + if do_load_metrics: + if task=='stereo': + metrics = StereoDatasetMetrics().to(device) + else: + metrics = FlowDatasetMetrics().to(device) + else: + metrics = None + + return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode + + +def _save_batch(pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None): + + for i in range(len(pairnames)): + + pairname = eval(pairnames[i]) if pairnames[i].startswith('(') else pairnames[i] # unbatch pairname + fname = os.path.join(outdir, dataset.pairname_to_str(pairname)) + os.makedirs(os.path.dirname(fname), exist_ok=True) + + predi = pred[i,...] + if gt is not None: gti = gt[i,...] + + if 'pred' in save: + torch.save(predi.squeeze(0).cpu(), fname+'_pred.pth') + + if 'visu' in save: + if task=='stereo': + disparity = predi.permute((1,2,0)).squeeze(2).cpu().numpy() + m,M = None + if gt is not None: + mask = torch.isfinite(gti) + m = gt[mask].min() + M = gt[mask].max() + img_disparity = vis_disparity(disparity, m=m, M=M) + Image.fromarray(img_disparity).save(fname+'_pred.png') + else: + # normalize flowToColor according to the maxnorm of gt (or prediction if not available) + flowNorm = torch.sqrt(torch.sum( (gti if gt is not None else predi)**2, dim=0)).max().item() + imgflow = flowToColor(predi.permute((1,2,0)).cpu().numpy(), maxflow=flowNorm) + Image.fromarray(imgflow).save(fname+'_pred.png') + + if 'err10' in save: + assert gt is not None + L2err = torch.sqrt(torch.sum( (gti-predi)**2, dim=0)) + valid = torch.isfinite(gti[0,:,:]) + L2err[~valid] = 0.0 + L2err = torch.clamp(L2err, max=10.0) + red = (L2err*255.0/10.0).to(dtype=torch.uint8)[:,:,None] + zer = torch.zeros_like(red) + imgerr = torch.cat( (red,zer,zer), dim=2).cpu().numpy() + Image.fromarray(imgerr).save(fname+'_err10.png') + + if 'submission' in save: + assert submission_dir is not None + predi_np = predi.permute(1,2,0).squeeze(2).cpu().numpy() # transform into HxWx2 for flow or HxW for stereo + dataset.submission_save_pairname(pairname, predi_np, submission_dir, time) + +def main(args): + + # load the pretrained model and metrics + device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') + model, metrics, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion(args.model, 'metrics' in args.save, device) + if args.tile_conf_mode=='': args.tile_conf_mode = tile_conf_mode + + # load the datasets + datasets = (get_test_datasets_stereo if task=='stereo' else get_test_datasets_flow)(args.dataset) + dataloaders = [DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for dataset in datasets] + + # run + for i,dataloader in enumerate(dataloaders): + dataset = datasets[i] + dstr = args.dataset.split('+')[i] + + outdir = args.model+'_'+misc.filename(dstr) + if 'metrics' in args.save and len(args.save)==1: + fname = os.path.join(outdir, f'conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl') + if os.path.isfile(fname) and len(args.save)==1: + print(' metrics already compute in '+fname) + with open(fname, 'rb') as fid: + results = pickle.load(fid) + for k,v in results.items(): + print('{:s}: {:.3f}'.format(k, v)) + continue + + if 'submission' in args.save: + dirname = f'submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}' + submission_dir = os.path.join(outdir, dirname) + else: + submission_dir = None + + print('') + print('saving {:s} in {:s}'.format('+'.join(args.save), outdir)) + print(repr(dataset)) + + if metrics is not None: + metrics.reset() + + for data_iter_step, (image1, image2, gt, pairnames) in enumerate(tqdm(dataloader)): + + do_flip = (task=='stereo' and dstr.startswith('Spring') and any("right" in p for p in pairnames)) # we flip the images and will flip the prediction after as we assume img1 is on the left + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) if gt.numel()>0 else None # special case for test time + if do_flip: + assert all("right" in p for p in pairnames) + image1 = image1.flip(dims=[3]) # this is already the right frame, let's flip it + image2 = image2.flip(dims=[3]) + gt = gt # that is ok + + with torch.inference_mode(): + pred, _, _, time = tiled_pred(model, None, image1, image2, None if dataset.name=='Spring' else gt, conf_mode=args.tile_conf_mode, overlap=args.tile_overlap, crop=cropsize, with_conf=with_conf, return_time=True) + + if do_flip: + pred = pred.flip(dims=[3]) + + if metrics is not None: + metrics.add_batch(pred, gt) + + if any(k in args.save for k in ['pred','visu','err10','submission']): + _save_batch(pred, gt, pairnames, dataset, task, args.save, outdir, time, submission_dir=submission_dir) + + + # print + if metrics is not None: + results = metrics.get_results() + for k,v in results.items(): + print('{:s}: {:.3f}'.format(k, v)) + + # save if needed + if 'metrics' in args.save: + os.makedirs(os.path.dirname(fname), exist_ok=True) + with open(fname, 'wb') as fid: + pickle.dump(results, fid) + print('metrics saved in', fname) + + # finalize submission if needed + if 'submission' in args.save: + dataset.finalize_submission(submission_dir) + + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) \ No newline at end of file diff --git a/croco/stereoflow/train.py b/croco/stereoflow/train.py new file mode 100644 index 0000000000000000000000000000000000000000..91f2414ffbe5ecd547d31c0e2455478d402719d6 --- /dev/null +++ b/croco/stereoflow/train.py @@ -0,0 +1,253 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main training function +# -------------------------------------------------------- + +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time + +import torch +import torch.distributed as dist +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets +from torch.utils.data import DataLoader + +import utils +import utils.misc as misc +from utils.misc import NativeScalerWithGradNormCount as NativeScaler +from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt +from models.pos_embed import interpolate_pos_embed +from models.head_downstream import PixelwiseTaskWithDPT + +from stereoflow.datasets_stereo import get_train_dataset_stereo, get_test_datasets_stereo +from stereoflow.datasets_flow import get_train_dataset_flow, get_test_datasets_flow +from stereoflow.engine import train_one_epoch, validate_one_epoch +from stereoflow.criterion import * + + +def get_args_parser(): + # prepare subparsers + parser = argparse.ArgumentParser('Finetuning CroCo models on stereo or flow', add_help=False) + subparsers = parser.add_subparsers(title="Task (stereo or flow)", dest="task", required=True) + parser_stereo = subparsers.add_parser('stereo', help='Training stereo model') + parser_flow = subparsers.add_parser('flow', help='Training flow model') + def add_arg(name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs): + if default is not None: assert default_stereo is None and default_flow is None, "setting default makes default_stereo and default_flow disabled" + parser_stereo.add_argument(name_or_flags, default=default if default is not None else default_stereo, **kwargs) + parser_flow.add_argument(name_or_flags, default=default if default is not None else default_flow, **kwargs) + # output dir + add_arg('--output_dir', required=True, type=str, help='path where to save, if empty, automatically created') + # model + add_arg('--crop', type=int, nargs = '+', default_stereo=[352, 704], default_flow=[320, 384], help = "size of the random image crops used during training.") + add_arg('--pretrained', required=True, type=str, help="Load pretrained model (required as croco arguments come from there)") + # criterion + add_arg('--criterion', default_stereo='LaplacianLossBounded2()', default_flow='LaplacianLossBounded()', type=str, help='string to evaluate to get criterion') + add_arg('--bestmetric', default_stereo='avgerr', default_flow='EPE', type=str) + # dataset + add_arg('--dataset', type=str, required=True, help="training set") + # training + add_arg('--seed', default=0, type=int, help='seed') + add_arg('--batch_size', default_stereo=6, default_flow=8, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') + add_arg('--epochs', default=32, type=int, help='number of training epochs') + add_arg('--img_per_epoch', type=int, default=None, help='Fix the number of images seen in an epoch (None means use all training pairs)') + add_arg('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') + add_arg('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') + add_arg('--lr', type=float, default_stereo=3e-5, default_flow=2e-5, metavar='LR', help='learning rate (absolute lr)') + add_arg('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') + add_arg('--warmup_epochs', type=int, default=1, metavar='N', help='epochs to warmup LR') + add_arg('--optimizer', default='AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))', type=str, + help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]") + add_arg('--amp', default=0, type=int, choices=[0,1], help='enable automatic mixed precision training') + # validation + add_arg('--val_dataset', type=str, default='', help="Validation sets, multiple separated by + (empty string means that no validation is performed)") + add_arg('--tile_conf_mode', type=str, default_stereo='conf_expsigmoid_15_3', default_flow='conf_expsigmoid_10_5', help='Weights for tile aggregation') + add_arg('--val_overlap', default=0.7, type=float, help='Overlap value for the tiling') + # others + add_arg('--num_workers', default=8, type=int) + add_arg('--eval_every', type=int, default=1, help='Val loss evaluation frequency') + add_arg('--save_every', type=int, default=1, help='Save checkpoint frequency') + add_arg('--start_from', type=str, default=None, help='Start training using weights from an other model (eg for finetuning)') + add_arg('--tboard_log_step', type=int, default=100, help='Log to tboard every so many steps') + add_arg('--dist_url', default='env://', help='url used to set up distributed training') + + return parser + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + num_tasks = misc.get_world_size() + + assert os.path.isfile(args.pretrained) + print("output_dir: "+args.output_dir) + os.makedirs(args.output_dir, exist_ok=True) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + cudnn.benchmark = True + + # Metrics / criterion + device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') + metrics = (StereoMetrics if args.task=='stereo' else FlowMetrics)().to(device) + criterion = eval(args.criterion).to(device) + print('Criterion: ', args.criterion) + + # Prepare model + assert os.path.isfile(args.pretrained) + ckpt = torch.load(args.pretrained, 'cpu') + croco_args = croco_args_from_ckpt(ckpt) + croco_args['img_size'] = (args.crop[0], args.crop[1]) + print('Croco args: '+str(croco_args)) + args.croco_args = croco_args # saved for test time + # prepare head + num_channels = {'stereo': 1, 'flow': 2}[args.task] + if criterion.with_conf: num_channels += 1 + print(f'Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)') + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + # build model and load pretrained weights + model = CroCoDownstreamBinocular(head, **croco_args) + interpolate_pos_embed(model, ckpt['model']) + msg = model.load_state_dict(ckpt['model'], strict=False) + print(msg) + + total_params = sum(p.numel() for p in model.parameters()) + total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) + print(f"Total params: {total_params}") + print(f"Total params trainable: {total_params_trainable}") + model_without_ddp = model.to(device) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + print("lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], static_graph=True) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + optimizer = eval(f"torch.optim.{args.optimizer}") + print(optimizer) + loss_scaler = NativeScaler() + + # automatic restart + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + if not args.resume and args.start_from: + print(f"Starting from an other model's weights: {args.start_from}") + best_so_far = None + args.start_epoch = 0 + ckpt = torch.load(args.start_from, 'cpu') + msg = model_without_ddp.load_state_dict(ckpt['model'], strict=False) + print(msg) + else: + best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if best_so_far is None: best_so_far = np.inf + + # tensorboard + log_writer = None + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir, purge_step=args.start_epoch*1000) + + # dataset and loader + print('Building Train Data loader for dataset: ', args.dataset) + train_dataset = (get_train_dataset_stereo if args.task=='stereo' else get_train_dataset_flow)(args.dataset, crop_size=args.crop) + def _print_repr_dataset(d): + if isinstance(d, torch.utils.data.dataset.ConcatDataset): + for dd in d.datasets: + _print_repr_dataset(dd) + else: + print(repr(d)) + _print_repr_dataset(train_dataset) + print(' total length:', len(train_dataset)) + if args.distributed: + sampler_train = torch.utils.data.DistributedSampler( + train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + else: + sampler_train = torch.utils.data.RandomSampler(train_dataset) + data_loader_train = torch.utils.data.DataLoader( + train_dataset, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + if args.val_dataset=='': + data_loaders_val = None + else: + print('Building Val Data loader for datasets: ', args.val_dataset) + val_datasets = (get_test_datasets_stereo if args.task=='stereo' else get_test_datasets_flow)(args.val_dataset) + for val_dataset in val_datasets: print(repr(val_dataset)) + data_loaders_val = [DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for val_dataset in val_datasets] + bestmetric = ("AVG_" if len(data_loaders_val)>1 else str(data_loaders_val[0].dataset)+'_')+args.bestmetric + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + # Training Loop + for epoch in range(args.start_epoch, args.epochs): + + if args.distributed: data_loader_train.sampler.set_epoch(epoch) + + # Train + epoch_start = time.time() + train_stats = train_one_epoch(model, criterion, metrics, data_loader_train, optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args) + epoch_time = time.time() - epoch_start + + if args.distributed: dist.barrier() + + # Validation (current naive implementation runs the validation on every gpu ... not smart ...) + if data_loaders_val is not None and args.eval_every > 0 and (epoch+1) % args.eval_every == 0: + val_epoch_start = time.time() + val_stats = validate_one_epoch(model, criterion, metrics, data_loaders_val, device, epoch, log_writer=log_writer, args=args) + val_epoch_time = time.time() - val_epoch_start + + val_best = val_stats[bestmetric] + + # Save best of all + if val_best <= best_so_far: + best_so_far = val_best + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='best') + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch, + **{f'val_{k}': v for k, v in val_stats.items()}} + else: + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch,} + + if args.distributed: dist.barrier() + + # Save stuff + if args.output_dir and ((epoch+1) % args.save_every == 0 or epoch + 1 == args.epochs): + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='last') + + if args.output_dir: + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) \ No newline at end of file diff --git a/croco/utils/__pycache__/misc.cpython-311.pyc b/croco/utils/__pycache__/misc.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b02225f019b23f4d63e310f5d65ac735c6e423f4 Binary files /dev/null and b/croco/utils/__pycache__/misc.cpython-311.pyc differ diff --git a/croco/utils/misc.py b/croco/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..c55b17e84b6246444d335ba87059dca01c24dd31 --- /dev/null +++ b/croco/utils/misc.py @@ -0,0 +1,471 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import builtins +import datetime +import os +import time +import math +import json +from collections import defaultdict, deque +from pathlib import Path +import numpy as np + +import torch +import torch.distributed as dist +from torch import inf + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value) + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if v is None: + continue + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError("'{}' object has no attribute '{}'".format( + type(self).__name__, attr)) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append( + "{}: {}".format(name, str(meter)) + ) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None, max_iter=None): + i = 0 + if not header: + header = '' + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt='{avg:.4f}') + data_time = SmoothedValue(fmt='{avg:.4f}') + len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) + space_fmt = ':' + str(len(str(len_iterable))) + 'd' + log_msg = [ + header, + '[{0' + space_fmt + '}/{1}]', + 'eta: {eta}', + '{meters}', + 'time: {time}', + 'data: {data}' + ] + if torch.cuda.is_available(): + log_msg.append('max mem: {memory:.0f}') + log_msg = self.delimiter.join(log_msg) + MB = 1024.0 * 1024.0 + for it,obj in enumerate(iterable): + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len_iterable - 1: + eta_seconds = iter_time.global_avg * (len_iterable - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print(log_msg.format( + i, len_iterable, eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB)) + else: + print(log_msg.format( + i, len_iterable, eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time))) + i += 1 + end = time.time() + if max_iter and it >= max_iter: + break + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('{} Total time: {} ({:.4f} s / it)'.format( + header, total_time_str, total_time / len_iterable)) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + builtin_print = builtins.print + + def print(*args, **kwargs): + force = kwargs.pop('force', False) + force = force or (get_world_size() > 8) + if is_master or force: + now = datetime.datetime.now().time() + builtin_print('[{}] '.format(now), end='') # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + nodist = args.nodist if hasattr(args,'nodist') else False + if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ['WORLD_SIZE']) + args.gpu = int(os.environ['LOCAL_RANK']) + else: + print('Not using distributed mode') + setup_for_distributed(is_master=True) # hack + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = 'nccl' + print('| distributed init (rank {}): {}, gpu {}'.format( + args.rank, args.dist_url, args.gpu), flush=True) + torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, + world_size=args.world_size, rank=args.rank) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +class NativeScalerWithGradNormCount: + state_dict_key = "amp_scaler" + + def __init__(self, enabled=True): + self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) + + def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): + self._scaler.scale(loss).backward(create_graph=create_graph) + if update_grad: + if clip_grad is not None: + assert parameters is not None + self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place + norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) + else: + self._scaler.unscale_(optimizer) + norm = get_grad_norm_(parameters) + self._scaler.step(optimizer) + self._scaler.update() + else: + norm = None + return norm + + def state_dict(self): + return self._scaler.state_dict() + + def load_state_dict(self, state_dict): + self._scaler.load_state_dict(state_dict) + + +def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = [p for p in parameters if p.grad is not None] + norm_type = float(norm_type) + if len(parameters) == 0: + return torch.tensor(0.) + device = parameters[0].grad.device + if norm_type == inf: + total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) + else: + total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) + return total_norm + + + + +def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None): + output_dir = Path(args.output_dir) + if fname is None: fname = str(epoch) + checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname) + to_save = { + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'scaler': loss_scaler.state_dict(), + 'args': args, + 'epoch': epoch, + } + if best_so_far is not None: to_save['best_so_far'] = best_so_far + print(f'>> Saving model to {checkpoint_path} ...') + save_on_master(to_save, checkpoint_path) + + +def load_model(args, model_without_ddp, optimizer, loss_scaler): + args.start_epoch = 0 + best_so_far = None + if args.resume is not None: + if args.resume.startswith('https'): + checkpoint = torch.hub.load_state_dict_from_url( + args.resume, map_location='cpu', check_hash=True) + else: + checkpoint = torch.load(args.resume, map_location='cpu') + print("Resume checkpoint %s" % args.resume) + model_without_ddp.load_state_dict(checkpoint['model'], strict=False) + args.start_epoch = checkpoint['epoch'] + 1 + optimizer.load_state_dict(checkpoint['optimizer']) + if 'scaler' in checkpoint: + loss_scaler.load_state_dict(checkpoint['scaler']) + if 'best_so_far' in checkpoint: + best_so_far = checkpoint['best_so_far'] + print(" & best_so_far={:g}".format(best_so_far)) + else: + print("") + print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='') + return best_so_far + +def all_reduce_mean(x): + world_size = get_world_size() + if world_size > 1: + x_reduce = torch.tensor(x).cuda() + dist.all_reduce(x_reduce) + x_reduce /= world_size + return x_reduce.item() + else: + return x + +def _replace(text, src, tgt, rm=''): + """ Advanced string replacement. + Given a text: + - replace all elements in src by the corresponding element in tgt + - remove all elements in rm + """ + if len(tgt) == 1: + tgt = tgt * len(src) + assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" + for s,t in zip(src, tgt): + text = text.replace(s,t) + for c in rm: + text = text.replace(c,'') + return text + +def filename( obj ): + """ transform a python obj or cmd into a proper filename. + - \1 gets replaced by slash '/' + - \2 gets replaced by comma ',' + """ + if not isinstance(obj, str): + obj = repr(obj) + obj = str(obj).replace('()','') + obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"') + assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj + return obj + +def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): + if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): + return 0 + elif var_name.startswith("patch_embed"): + return 0 + elif var_name.startswith("enc_blocks"): + layer_id = int(var_name.split('.')[1]) + return layer_id + 1 + elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black + return enc_depth + elif var_name.startswith('dec_blocks'): + layer_id = int(var_name.split('.')[1]) + return enc_depth + layer_id + 1 + elif var_name.startswith('dec_norm'): # part of the last block + return enc_depth + dec_depth + elif any(var_name.startswith(k) for k in ['head','prediction_head']): + return enc_depth + dec_depth + 1 + else: + raise NotImplementedError(var_name) + +def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]): + parameter_group_names = {} + parameter_group_vars = {} + enc_depth, dec_depth = None, None + # prepare layer decay values + assert layer_decay==1.0 or 0. self.min_conf_thr) for conf in self.im_conf] + + def depth_to_pts3d(self): + raise NotImplementedError() + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def _set_focal(self, idx, focal, force=False): + raise NotImplementedError() + + def get_focals(self): + raise NotImplementedError() + + def get_known_focal_mask(self): + raise NotImplementedError() + + def get_principal_points(self): + raise NotImplementedError() + + def get_conf(self, mode=None): + trf = self.conf_trf if mode is None else get_conf_trf(mode) + return [trf(c) for c in self.im_conf] + + def get_im_poses(self): + raise NotImplementedError() + + def _set_depthmap(self, idx, depth, force=False): + raise NotImplementedError() + + def get_depthmaps(self, raw=False): + raise NotImplementedError() + + def clean_pointcloud(self, **kw): + cams = inv(self.get_im_poses()) + K = self.get_intrinsics() + depthmaps = self.get_depthmaps() + all_pts3d = self.get_pts3d() + + new_im_confs = clean_pointcloud(self.im_conf, K, cams, depthmaps, all_pts3d, **kw) + + for i, new_conf in enumerate(new_im_confs): + self.im_conf[i].data[:] = new_conf + return self + def get_tum_poses(self): + poses = self.get_im_poses() + tt = np.arange(len(poses)).astype(float) + tum_poses = [c2w_to_tumpose(p) for p in poses] + tum_poses = np.stack(tum_poses, 0) + return [tum_poses, tt] + + def save_tum_poses(self, path): + traj = self.get_tum_poses() + save_trajectory_tum_format(traj, path) + return traj[0] # return the poses + + def save_focals(self, path): + # convert focal to txt + focals = self.get_focals() + np.savetxt(path, focals.detach().cpu().numpy(), fmt='%.6f') + return focals + + def save_intrinsics(self, path): + K_raw = self.get_intrinsics() + K = K_raw.reshape(-1, 9) + np.savetxt(path, K.detach().cpu().numpy(), fmt='%.6f') + return K_raw + + def save_conf_maps(self, path): + conf = self.get_conf() + for i, c in enumerate(conf): + np.save(f'{path}/conf_{i}.npy', c.detach().cpu().numpy()) + return conf + + def save_init_conf_maps(self, path): + conf = self.get_init_conf() + for i, c in enumerate(conf): + np.save(f'{path}/init_conf_{i}.npy', c.detach().cpu().numpy()) + return conf + + def save_rgb_imgs(self, path): + imgs = self.imgs + for i, img in enumerate(imgs): + # convert from rgb to bgr + img = img[..., ::-1] + cv2.imwrite(f'{path}/frame_{i:04d}.png', img*255) + return imgs + + def save_dynamic_masks(self, path): + dynamic_masks = self.dynamic_masks if getattr(self, 'sam2_dynamic_masks', None) is None else self.sam2_dynamic_masks + for i, dynamic_mask in enumerate(dynamic_masks): + cv2.imwrite(f'{path}/dynamic_mask_{i}.png', (dynamic_mask * 255).detach().cpu().numpy().astype(np.uint8)) + return dynamic_masks + + def save_depth_maps(self, path): + depth_maps = self.get_depthmaps() + images = [] + + for i, depth_map in enumerate(depth_maps): + # Apply color map to depth map + depth_map_colored = cv2.applyColorMap((depth_map * 255).detach().cpu().numpy().astype(np.uint8), cv2.COLORMAP_JET) + img_path = f'{path}/frame_{(i):04d}.png' + cv2.imwrite(img_path, depth_map_colored) + images.append(Image.open(img_path)) + np.save(f'{path}/frame_{(i):04d}.npy', depth_map.detach().cpu().numpy()) + + images[0].save(f'{path}/_depth_maps.gif', save_all=True, append_images=images[1:], duration=100, loop=0) + + return depth_maps + def forward(self, ret_details=False): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors() + proj_pts3d = self.get_pts3d() + # pre-compute pixel weights + weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()} + weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()} + + loss = 0 + if ret_details: + details = -torch.ones((self.n_imgs, self.n_imgs)) + + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # distance in image i and j + aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j]) + aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j]) + li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean() + lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean() + loss = loss + li + lj + + if ret_details: + details[i, j] = li + lj + loss /= self.n_edges # average over all pairs + + if ret_details: + return loss, details + return loss + + @torch.cuda.amp.autocast(enabled=False) + def compute_global_alignment(self, init=None, init_priors=None, niter_PnP=10, **kw): + if init is None: + pass + elif init == 'msp' or init == 'mst': + init_fun.init_minimum_spanning_tree(self, init_priors=init_priors, niter_PnP=niter_PnP) + elif init == 'known_poses': + init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr, + niter_PnP=niter_PnP) + else: + raise ValueError(f'bad value for {init=}') + + return global_alignment_loop(self, **kw) + + @torch.no_grad() + def mask_sky(self): + res = deepcopy(self) + for i in range(self.n_imgs): + sky = segment_sky(self.imgs[i]) + res.im_conf[i][sky] = 0 + return res + + def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw): + viz = SceneViz() + if self.imgs is None: + colors = np.random.randint(0, 256, size=(self.n_imgs, 3)) + colors = list(map(tuple, colors.tolist())) + for n in range(self.n_imgs): + viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n]) + else: + viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks()) + colors = np.random.randint(256, size=(self.n_imgs, 3)) + + # camera poses + im_poses = to_numpy(self.get_im_poses()) + if cam_size is None: + cam_size = auto_cam_size(im_poses) + viz.add_cameras(im_poses, self.get_focals(), colors=colors, + images=self.imgs, imsizes=self.imsizes, cam_size=cam_size) + if show_pw_cams: + pw_poses = self.get_pw_poses() + viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size) + + if show_pw_pts3d: + pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)] + viz.add_pointcloud(pts, (128, 0, 128)) + + viz.show(**kw) + return viz + + +def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6): + params = [p for p in net.parameters() if p.requires_grad] + if not params: + return net + + verbose = net.verbose + if verbose: + print('Global alignement - optimizing for:') + print([name for name, value in net.named_parameters() if value.requires_grad]) + + lr_base = lr + optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9)) + + loss = float('inf') + if verbose: + with tqdm.tqdm(total=niter) as bar: + while bar.n < bar.total: + loss, lr = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule) + bar.set_postfix_str(f'{lr=:g} loss={loss:g}') + bar.update() + else: + for n in range(niter): + loss, _ = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule) + return loss + + +def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule): + t = cur_iter / niter + if schedule == 'cosine': + lr = cosine_schedule(t, lr_base, lr_min) + elif schedule == 'linear': + lr = linear_schedule(t, lr_base, lr_min) + else: + raise ValueError(f'bad lr {schedule=}') + adjust_learning_rate_by_lr(optimizer, lr) + optimizer.zero_grad() + loss = net() + loss.backward() + optimizer.step() + + return float(loss), lr + + +@torch.no_grad() +def clean_pointcloud( im_confs, K, cams, depthmaps, all_pts3d, + tol=0.001, bad_conf=0, dbg=()): + """ Method: + 1) express all 3d points in each camera coordinate frame + 2) if they're in front of a depthmap --> then lower their confidence + """ + assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d) + assert 0 <= tol < 1 + res = [c.clone() for c in im_confs] + + # reshape appropriately + all_pts3d = [p.view(*c.shape,3) for p,c in zip(all_pts3d, im_confs)] + depthmaps = [d.view(*c.shape) for d,c in zip(depthmaps, im_confs)] + + for i, pts3d in enumerate(all_pts3d): + for j in range(len(all_pts3d)): + if i == j: continue + + # project 3dpts in other view + proj = geotrf(cams[j], pts3d) + proj_depth = proj[:,:,2] + u,v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1) + + # check which points are actually in the visible cone + H, W = im_confs[j].shape + msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H) + msk_j = v[msk_i], u[msk_i] + + # find bad points = those in front but less confident + bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]) & (res[i][msk_i] < res[j][msk_j]) + + bad_msk_i = msk_i.clone() + bad_msk_i[msk_i] = bad_points + res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf) + + return res diff --git a/dust3r/cloud_opt/commons.py b/dust3r/cloud_opt/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..3be9f855a69ea18c82dcc8e5769e0149a59649bd --- /dev/null +++ b/dust3r/cloud_opt/commons.py @@ -0,0 +1,90 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utility functions for global alignment +# -------------------------------------------------------- +import torch +import torch.nn as nn +import numpy as np + + +def edge_str(i, j): + return f'{i}_{j}' + + +def i_j_ij(ij): + return edge_str(*ij), ij + + +def edge_conf(conf_i, conf_j, edge): + return float(conf_i[edge].mean() * conf_j[edge].mean()) + + +def compute_edge_scores(edges, conf_i, conf_j): + return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges} + + +def NoGradParamDict(x): + assert isinstance(x, dict) + return nn.ParameterDict(x).requires_grad_(False) + + +def get_imshapes(edges, pred_i, pred_j): + n_imgs = max(max(e) for e in edges) + 1 + imshapes = [None] * n_imgs + for e, (i, j) in enumerate(edges): + shape_i = tuple(pred_i[e].shape[0:2]) + shape_j = tuple(pred_j[e].shape[0:2]) + if imshapes[i]: + assert imshapes[i] == shape_i, f'incorrect shape for image {i}' + if imshapes[j]: + assert imshapes[j] == shape_j, f'incorrect shape for image {j}' + imshapes[i] = shape_i + imshapes[j] = shape_j + return imshapes + + +def get_conf_trf(mode): + if mode == 'log': + def conf_trf(x): return x.log() + elif mode == 'sqrt': + def conf_trf(x): return x.sqrt() + elif mode == 'm1': + def conf_trf(x): return x-1 + elif mode in ('id', 'none'): + def conf_trf(x): return x + else: + raise ValueError(f'bad mode for {mode=}') + return conf_trf + + +def l2_dist(a, b, weight): + return ((a - b).square().sum(dim=-1) * weight) + + +def l1_dist(a, b, weight): + return ((a - b).norm(dim=-1) * weight) + + +ALL_DISTS = dict(l1=l1_dist, l2=l2_dist) + + +def signed_log1p(x): + sign = torch.sign(x) + return sign * torch.log1p(torch.abs(x)) + + +def signed_expm1(x): + sign = torch.sign(x) + return sign * torch.expm1(torch.abs(x)) + + +def cosine_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_end + (lr_start - lr_end) * (1+np.cos(t * np.pi))/2 + + +def linear_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_start + (lr_end - lr_start) * t diff --git a/dust3r/cloud_opt/init_im_poses.py b/dust3r/cloud_opt/init_im_poses.py new file mode 100644 index 0000000000000000000000000000000000000000..9e8075f3d66f9f864c7e23804fdd3a5b7ef96a4b --- /dev/null +++ b/dust3r/cloud_opt/init_im_poses.py @@ -0,0 +1,359 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Initialization functions for global alignment +# -------------------------------------------------------- +from functools import lru_cache + +import numpy as np +import scipy.sparse as sp +import torch +import cv2 +import roma +from tqdm import tqdm + +from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses +from dust3r.post_process import estimate_focal_knowing_depth +from dust3r.viz import to_numpy + +from dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores + +def cache(user_function, /): + 'Simple lightweight unbounded cache. Sometimes called "memoize".' + return lru_cache(maxsize=None)(user_function) + +@torch.no_grad() +def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3): + device = self.device + + # indices of known poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + assert nkp == self.n_imgs, 'not all poses are known' + + # get all focals + nkf, _, im_focals = get_known_focals(self) + assert nkf == self.n_imgs + im_pp = self.get_principal_points() + + best_depthmaps = {} + # init all pairwise poses + for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)): + i_j = edge_str(i, j) + + # find relative pose for this pair + P1 = torch.eye(4, device=device) + msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1) + _, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()), + pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP) + + # align the two predicted camera with the two gt cameras + s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]]) + # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1 + # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # remember if this is a good depthmap + score = float(self.conf_i[i_j].mean()) + if score > best_depthmaps.get(i, (0,))[0]: + best_depthmaps[i] = score, i_j, s + + # init all image poses + for n in range(self.n_imgs): + assert known_poses_msk[n] + _, i_j, scale = best_depthmaps[n] + depth = self.pred_i[i_j][:, :, 2] + self._set_depthmap(n, depth * scale) + + +@torch.no_grad() +def init_minimum_spanning_tree(self, init_priors, **kw): + """ Init all camera poses (image-wise and pairwise poses) given + an initial set of pairwise estimations. + """ + device = self.device + pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges, + self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr, + device, has_im_poses=self.has_im_poses, verbose=self.verbose, init_priors = init_priors, + **kw) + + return init_from_pts3d(self, pts3d, im_focals, im_poses) + + +def init_from_pts3d(self, pts3d, im_focals, im_poses): + # init poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + if nkp == 1: + raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose") + elif nkp > 1: + # global rigid SE3 alignment + s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk]) + trf = sRT_to_4x4(s, R, T, device=known_poses.device) + + # rotate everything + im_poses = trf @ im_poses + im_poses[:, :3, :3] /= s # undo scaling on the rotation part + for img_pts3d in pts3d: + img_pts3d[:] = geotrf(trf, img_pts3d) + + # set all pairwise poses + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # compute transform that goes from cam to world + s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # take into account the scale normalization + s_factor = self.get_pw_norm_scale_factor() + im_poses[:, :3, 3] *= s_factor # apply downscaling factor + for img_pts3d in pts3d: + img_pts3d *= s_factor + + # init all image poses + if self.has_im_poses: + for i in range(self.n_imgs): + cam2world = im_poses[i] + + if not self.if_use_mono: + depth = geotrf(inv(cam2world), pts3d[i])[..., 2] + self._set_depthmap(i, depth) + + self._set_pose(self.im_poses, i, cam2world) + if im_focals[i] is not None: + self._set_focal(i, im_focals[i]) + + if self.verbose: + print(' init loss =', float(self())) + + +def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr, + device, init_priors, has_im_poses=True, niter_PnP=10, verbose=True): + n_imgs = len(imshapes) + sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j)) + msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo() + + # temp variable to store 3d points + pts3d = [None] * len(imshapes) + + todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges + im_poses = [None] * n_imgs + im_focals = [None] * n_imgs + + # init with specific edge + score, i, j = None, None, None + if init_priors is None: + score, i, j = todo.pop() + else: + while todo: + score, i, j = todo.pop() + if i == 0 or j == 0: + break + else: + todo.insert(0, (score, i, j)) + + + if verbose: + print(f' init edge ({i}*,{j}*) {score=}') + i_j = edge_str(i, j) + + + pts3d[i] = pred_i[i_j].clone() + pts3d[j] = pred_j[i_j].clone() + done = {i, j} + if has_im_poses: + if init_priors is None: + im_poses[i] = torch.eye(4, device=device) + im_focals[i] = estimate_focal(pred_i[i_j]) + else: + + init_keypose = np.array(init_priors[0]).astype(np.float32) + init_keyfocal = init_priors[2][0] + + if i == 0: + im_poses[i] = torch.from_numpy(init_keypose).to(device) + im_focals[i] = float(init_keyfocal) + + pts3d[i] = geotrf(im_poses[i], pts3d[i]) + pts3d[j] = geotrf(im_poses[i], pts3d[j]) + elif j == 0: + im_poses[j] = torch.from_numpy(init_keypose).to(device) + im_focals[j] = float(init_keyfocal) + + j_i = edge_str(j, i) + pts3d[i] = geotrf(im_poses[j], pred_j[j_i].clone()) + pts3d[j] = geotrf(im_poses[j], pred_i[j_i].clone()) + + + + + # set initial pointcloud based on pairwise graph + msp_edges = [(i, j)] + while todo: + # each time, predict the next one + score, i, j = todo.pop() + + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[i_j]) + + if i in done: + if verbose: + print(f' init edge ({i},{j}*) {score=}') + assert j not in done + # align pred[i] with pts3d[i], and then set j accordingly + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[j] = geotrf(trf, pred_j[i_j]) + done.add(j) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + + elif j in done: + if verbose: + print(f' init edge ({i}*,{j}) {score=}') + assert i not in done + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[i] = geotrf(trf, pred_i[i_j]) + done.add(i) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + else: + # let's try again later + todo.insert(0, (score, i, j)) + + + + if has_im_poses: + # complete all missing informations + pair_scores = list(sparse_graph.values()) # already negative scores: less is best + edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)] + for i, j in edges_from_best_to_worse.tolist(): + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[edge_str(i, j)]) + + for i in range(n_imgs): + if im_poses[i] is None: + msk = im_conf[i] > min_conf_thr + res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP) + if res: + im_focals[i], im_poses[i] = res + if im_poses[i] is None: + im_poses[i] = torch.eye(4, device=device) + im_poses = torch.stack(im_poses) + else: + im_poses = im_focals = None + + return pts3d, msp_edges, im_focals, im_poses + + +def dict_to_sparse_graph(dic): + n_imgs = max(max(e) for e in dic) + 1 + res = sp.dok_array((n_imgs, n_imgs)) + for edge, value in dic.items(): + res[edge] = value + return res + + +def rigid_points_registration(pts1, pts2, conf): + R, T, s = roma.rigid_points_registration( + pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True) + return s, R, T # return un-scaled (R, T) + + +def sRT_to_4x4(scale, R, T, device): + trf = torch.eye(4, device=device) + trf[:3, :3] = R * scale + trf[:3, 3] = T.ravel() # doesn't need scaling + return trf + + +def estimate_focal(pts3d_i, pp=None): + if pp is None: + H, W, THREE = pts3d_i.shape + assert THREE == 3 + pp = torch.tensor((W/2, H/2), device=pts3d_i.device) + focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel() + return float(focal) + + +@cache +def pixel_grid(H, W): + return np.mgrid[:W, :H].T.astype(np.float32) + + +def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10): + # extract camera poses and focals with RANSAC-PnP + if msk.sum() < 4: + return None # we need at least 4 points for PnP + pts3d, msk = map(to_numpy, (pts3d, msk)) + + H, W, THREE = pts3d.shape + assert THREE == 3 + pixels = pixel_grid(H, W) + + if focal is None: + S = max(W, H) + tentative_focals = np.geomspace(S/2, S*3, 21) + else: + tentative_focals = [focal] + + if pp is None: + pp = (W/2, H/2) + else: + pp = to_numpy(pp) + + best = 0, + for focal in tentative_focals: + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + if not success: + continue + + score = len(inliers) + if success and score > best[0]: + best = score, R, T, focal + + if not best[0]: + return None + + _, R, T, best_focal = best + R = cv2.Rodrigues(R)[0] # world to cam + R, T = map(torch.from_numpy, (R, T)) + return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world + + +def get_known_poses(self): + if self.has_im_poses: + known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses]) + known_poses = self.get_im_poses() + return known_poses_msk.sum(), known_poses_msk, known_poses + else: + return 0, None, None + + +def get_known_focals(self): + if self.has_im_poses: + known_focal_msk = self.get_known_focal_mask() + known_focals = self.get_focals() + return known_focal_msk.sum(), known_focal_msk, known_focals + else: + return 0, None, None + + +def align_multiple_poses(src_poses, target_poses): + N = len(src_poses) + assert src_poses.shape == target_poses.shape == (N, 4, 4) + + def center_and_z(poses): + eps = get_med_dist_between_poses(poses) / 100 + return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2])) + R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True) + return s, R, T diff --git a/dust3r/cloud_opt/modular_optimizer.py b/dust3r/cloud_opt/modular_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..d06464b40276684385c18b9195be1491c6f47f07 --- /dev/null +++ b/dust3r/cloud_opt/modular_optimizer.py @@ -0,0 +1,145 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import geotrf +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.geometry import depthmap_to_pts3d + + +class ModularPointCloudOptimizer (BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics) + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs): + super().__init__(*args, **kwargs) + self.has_im_poses = True # by definition of this class + self.focal_brake = focal_brake + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + default_focals = [self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes] + self.im_focals = nn.ParameterList(torch.FloatTensor([f, f] if fx_and_fy else [ + f]) for f in default_focals) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True)) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + def preset_intrinsics(self, known_intrinsics, msk=None): + if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: + known_intrinsics = [known_intrinsics] + for K in known_intrinsics: + assert K.shape == (3, 3) + self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) + self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) + + def preset_focal(self, known_focals, msk=None): + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal, force=True)) + + def preset_principal_point(self, known_pp, msk=None): + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp, force=True)) + + def _no_grad(self, tensor): + return tensor.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_brake * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_brake).exp() + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)]) + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().view(self.n_imgs, -1) + K[:, 0, 0] = focals[:, 0] + K[:, 1, 1] = focals[:, -1] + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(torch.stack(list(self.im_poses))) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self): + return [d.exp() for d in self.im_depthmaps] + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps() + + # convert focal to (1,2,H,W) constant field + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i]) + # get pointmaps in camera frame + rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])] + # project to world frame + return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] + + def get_pts3d(self): + return self.depth_to_pts3d() diff --git a/dust3r/cloud_opt/optimizer.py b/dust3r/cloud_opt/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..01db95afe8be4ced49bb7adc88d430eb1337819e --- /dev/null +++ b/dust3r/cloud_opt/optimizer.py @@ -0,0 +1,288 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Main class for the implementation of the global alignment +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import xy_grid, geotrf +from dust3r.utils.device import to_cpu, to_numpy + + +class PointCloudOptimizer(BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): + super().__init__(*args, **kwargs) + + self.has_im_poses = True # by definition of this class + self.focal_break = focal_break + + # adding thing to optimize + if not self.if_use_mono: + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + else: + self.scalemaps = nn.ParameterList(torch.zeros(H, W) for H, W in self.imshapes) + self.shifts = nn.ParameterList(torch.zeros((1,)) for _ in range(self.n_imgs)) + + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + self.im_focals = nn.ParameterList(torch.FloatTensor( + [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + self.imshape = self.imshapes[0] + im_areas = [h*w for h, w in self.imshapes] + self.max_area = max(im_areas) + + # adding thing to optimize + if not self.if_use_mono: + self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) + else: + self.scalemaps = ParameterStack(self.scalemaps, is_param=True, fill=self.max_area) + self.shifts = ParameterStack(self.shifts, is_param=True) + + self.im_poses = ParameterStack(self.im_poses, is_param=True) + self.im_focals = ParameterStack(self.im_focals, is_param=True) + self.im_pp = ParameterStack(self.im_pp, is_param=True) + self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) + self.register_buffer('_grid', ParameterStack( + [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) + + # pre-compute pixel weights + self.register_buffer('_weight_i', ParameterStack( + [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) + self.register_buffer('_weight_j', ParameterStack( + [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) + + # precompute aa + self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) + self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) + self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) + self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) + self.total_area_i = sum([im_areas[i] for i, j in self.edges]) + self.total_area_j = sum([im_areas[j] for i, j in self.edges]) + + def _check_all_imgs_are_selected(self, msk): + assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + self._check_all_imgs_are_selected(pose_msk) + + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + self.im_poses.requires_grad_(False) + self.norm_pw_scale = False + + def preset_focal(self, known_focals, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal)) + + self.im_focals.requires_grad_(False) + + def preset_principal_point(self, known_pp, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp)) + + self.im_pp.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _no_grad(self, tensor): + assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_break * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_break).exp() + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.im_focals]) + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return self._pp + 10 * self.im_pp + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().flatten() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(self.im_poses) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + depth = _ravel_hw(depth, self.max_area) + + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self, raw=False): + + res = [] + + if not self.if_use_mono: + res = self.im_depthmaps.exp() + else: + for idx in range(self.n_imgs): + depth_i = _ravel_hw(self.mono_depths[idx], self.max_area) * self.scalemaps[idx].exp() + self.shifts[idx] + res.append(depth_i) + res = torch.stack(res) + + if not raw: + res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps(raw=True) + + # get pointmaps in camera frame + rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) + # project to world frame + return geotrf(im_poses, rel_ptmaps) + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def fix_first_frame_grad(self): + im_poses = [] + im_poses.append(self.im_poses[0].detach().clone()) + for i in range(1, self.im_poses.shape[0]): + im_poses.append(self.im_poses[i]) + self.im_poses = im_poses + #self.im_poses[0] = self.im_poses[0].detach().clone() + if self.im_focals.requires_grad: + self.im_focals = self.im_focals.detach().clone() + if self.im_pp.requires_grad: + self.im_pp = self.im_pp.detach().clone() + # self.im_poses[0].requires_grad_(False) + # self.im_focals[0].requires_grad_(False) + # self.im_pp[0].requires_grad_(False) + + def forward(self): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors().unsqueeze(1) + proj_pts3d = self.get_pts3d(raw=True) + + # rotate pairwise prediction according to pw_poses + aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) + aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) + + # compute the less + li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i + lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j + + + # smooth loss with phot + a = self.imgs + + + return li + lj + + +def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): + pp = pp.unsqueeze(1) + focal = focal.unsqueeze(1) + assert focal.shape == (len(depth), 1, 1) + assert pp.shape == (len(depth), 1, 2) + assert pixel_grid.shape == depth.shape + (2,) + depth = depth.unsqueeze(-1) + return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) + + +def ParameterStack(params, keys=None, is_param=None, fill=0): + if keys is not None: + params = [params[k] for k in keys] + + if fill > 0: + params = [_ravel_hw(p, fill) for p in params] + + requires_grad = params[0].requires_grad + assert all(p.requires_grad == requires_grad for p in params) + + params = torch.stack(list(params)).float().detach() + if is_param or requires_grad: + params = nn.Parameter(params) + params.requires_grad_(requires_grad) + return params + + +def _ravel_hw(tensor, fill=0): + # ravel H,W + tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) + + if len(tensor) < fill: + tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) + return tensor + + +def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + return minf*focal_base, maxf*focal_base + + +def apply_mask(img, msk): + img = img.copy() + img[msk] = 0 + return img diff --git a/dust3r/cloud_opt/pair_viewer.py b/dust3r/cloud_opt/pair_viewer.py new file mode 100644 index 0000000000000000000000000000000000000000..62ae3b9a5fbca8b96711de051d9d6597830bd488 --- /dev/null +++ b/dust3r/cloud_opt/pair_viewer.py @@ -0,0 +1,127 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dummy optimizer for visualizing pairs +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn +import cv2 + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates +from dust3r.cloud_opt.commons import edge_str +from dust3r.post_process import estimate_focal_knowing_depth + + +class PairViewer (BasePCOptimizer): + """ + This a Dummy Optimizer. + To use only when the goal is to visualize the results for a pair of images (with is_symmetrized) + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.is_symmetrized and self.n_edges == 2 + self.has_im_poses = True + + # compute all parameters directly from raw input + self.focals = [] + self.pp = [] + rel_poses = [] + confs = [] + for i in range(self.n_imgs): + conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean()) + if self.verbose: + print(f' - {conf=:.3} for edge {i}-{1-i}') + confs.append(conf) + + H, W = self.imshapes[i] + pts3d = self.pred_i[edge_str(i, 1-i)] + pp = torch.tensor((W/2, H/2)) + focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld')) + self.focals.append(focal) + self.pp.append(pp) + + # estimate the pose of pts1 in image 2 + pixels = np.mgrid[:W, :H].T.astype(np.float32) + pts3d = self.pred_j[edge_str(1-i, i)].numpy() + assert pts3d.shape[:2] == (H, W) + msk = self.get_masks()[i].numpy() + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + try: + res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + success, R, T, inliers = res + assert success + + R = cv2.Rodrigues(R)[0] # world to cam + pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world + except: + pose = np.eye(4) + rel_poses.append(torch.from_numpy(pose.astype(np.float32))) + + # let's use the pair with the most confidence + if confs[0] > confs[1]: + # ptcloud is expressed in camera1 + self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1 + self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]] + else: + # ptcloud is expressed in camera2 + self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2 + self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]] + + self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False) + self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False) + self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False) + self.depth = nn.ParameterList(self.depth) + for p in self.parameters(): + p.requires_grad = False + + def _set_depthmap(self, idx, depth, force=False): + if self.verbose: + print('_set_depthmap is ignored in PairViewer') + return + + def get_depthmaps(self, raw=False): + depth = [d.to(self.device) for d in self.depth] + return depth + + def _set_focal(self, idx, focal, force=False): + self.focals[idx] = focal + + def get_focals(self): + return self.focals + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.focals]) + + def get_principal_points(self): + return self.pp + + def get_intrinsics(self): + focals = self.get_focals() + pps = self.get_principal_points() + K = torch.zeros((len(focals), 3, 3), device=self.device) + for i in range(len(focals)): + K[i, 0, 0] = K[i, 1, 1] = focals[i] + K[i, :2, 2] = pps[i] + K[i, 2, 2] = 1 + return K + + def get_im_poses(self): + return self.im_poses + + def depth_to_pts3d(self): + pts3d = [] + for d, intrinsics, im_pose in zip(self.depth, self.get_intrinsics(), self.get_im_poses()): + pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(), + intrinsics.cpu().numpy(), + im_pose.cpu().numpy()) + pts3d.append(torch.from_numpy(pts).to(device=self.device)) + return pts3d + + def forward(self): + return float('nan') diff --git a/dust3r/cloud_opt_flow/__init__.py b/dust3r/cloud_opt_flow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..faf5cd279a317c1efb9ba947682992c0949c1bdc --- /dev/null +++ b/dust3r/cloud_opt_flow/__init__.py @@ -0,0 +1,33 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# global alignment optimization wrapper function +# -------------------------------------------------------- +from enum import Enum + +from .optimizer import PointCloudOptimizer +from .modular_optimizer import ModularPointCloudOptimizer +from .pair_viewer import PairViewer + + +class GlobalAlignerMode(Enum): + PointCloudOptimizer = "PointCloudOptimizer" + ModularPointCloudOptimizer = "ModularPointCloudOptimizer" + PairViewer = "PairViewer" + + +def global_aligner(dust3r_output, device, mode=GlobalAlignerMode.PointCloudOptimizer, **optim_kw): + # extract all inputs + view1, view2, pred1, pred2 = [dust3r_output[k] for k in 'view1 view2 pred1 pred2'.split()] + # build the optimizer + if mode == GlobalAlignerMode.PointCloudOptimizer: + net = PointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(device) + elif mode == GlobalAlignerMode.ModularPointCloudOptimizer: + net = ModularPointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(device) + elif mode == GlobalAlignerMode.PairViewer: + net = PairViewer(view1, view2, pred1, pred2, **optim_kw).to(device) + else: + raise NotImplementedError(f'Unknown mode {mode}') + + return net diff --git a/dust3r/cloud_opt_flow/__pycache__/__init__.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2673e88b06c0d6b1a940deb6d27aa8bb2135a1b6 Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/base_opt.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/base_opt.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1568d0249943f95183e8bd38f6abeb1311c209ac Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/base_opt.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/commons.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/commons.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..304415c605e0e3a80250ac3da1a43e4f8e4ba9c4 Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/commons.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/init_im_poses.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/init_im_poses.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6fe4ca577c2183c6421468c2e42bb5e97b2194e4 Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/init_im_poses.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/modular_optimizer.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/modular_optimizer.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b95d4af1f515c8fa6fa03c54a8a7e55bdf4d549e Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/modular_optimizer.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/optimizer.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/optimizer.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..05034723975a4cf89231f56a40b1806b27baaccf Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/optimizer.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/__pycache__/pair_viewer.cpython-311.pyc b/dust3r/cloud_opt_flow/__pycache__/pair_viewer.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..477ef3a494459163e58ab9cf3903e2866ebff7a3 Binary files /dev/null and b/dust3r/cloud_opt_flow/__pycache__/pair_viewer.cpython-311.pyc differ diff --git a/dust3r/cloud_opt_flow/base_opt.py b/dust3r/cloud_opt_flow/base_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..703ec5d071807f9cbdc89bc81f3d6943be522e87 --- /dev/null +++ b/dust3r/cloud_opt_flow/base_opt.py @@ -0,0 +1,567 @@ +# -------------------------------------------------------- +# Base class for the global alignement procedure +# -------------------------------------------------------- +from copy import deepcopy +import cv2 + +import numpy as np +import torch +import torch.nn as nn +import roma +from copy import deepcopy +import tqdm + +from dust3r.utils.geometry import inv, geotrf +from dust3r.utils.device import to_numpy +from dust3r.utils.image import rgb +from dust3r.viz import SceneViz, segment_sky, auto_cam_size +from dust3r.optim_factory import adjust_learning_rate_by_lr + +from dust3r.cloud_opt_flow.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p, + cosine_schedule, linear_schedule, cycled_linear_schedule, get_conf_trf) +import dust3r.cloud_opt_flow.init_im_poses as init_fun +from scipy.spatial.transform import Rotation +from dust3r.utils.vo_eval import save_trajectory_tum_format +import os +import matplotlib.pyplot as plt +from PIL import Image + +def c2w_to_tumpose(c2w): + """ + Convert a camera-to-world matrix to a tuple of translation and rotation + + input: c2w: 4x4 matrix + output: tuple of translation and rotation (x y z qw qx qy qz) + """ + # convert input to numpy + c2w = to_numpy(c2w) + xyz = c2w[:3, -1] + rot = Rotation.from_matrix(c2w[:3, :3]) + qx, qy, qz, qw = rot.as_quat() + tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]]) + return tum_pose + +class BasePCOptimizer (nn.Module): + """ Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, **kwargs): + if len(args) == 1 and len(kwargs) == 0: + other = deepcopy(args[0]) + attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes + min_conf_thr conf_thr conf_i conf_j im_conf + base_scale norm_pw_scale POSE_DIM pw_poses + pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose'''.split() + self.__dict__.update({k: other[k] for k in attrs}) + else: + self._init_from_views(*args, **kwargs) + + def _init_from_views(self, view1, view2, pred1, pred2, + dist='l1', + conf='log', + min_conf_thr=3, + thr_for_init_conf=False, + base_scale=0.5, + allow_pw_adaptors=False, + pw_break=20, + rand_pose=torch.randn, + empty_cache=False, + verbose=True): + super().__init__() + if not isinstance(view1['idx'], list): + view1['idx'] = view1['idx'].tolist() + if not isinstance(view2['idx'], list): + view2['idx'] = view2['idx'].tolist() + self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])] + self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges} + #print(set(self.edges), {(j, i) for i, j in self.edges}) + self.dist = ALL_DISTS[dist] + self.verbose = verbose + self.empty_cache = empty_cache + self.n_imgs = self._check_edges() + + # input data + pred1_pts = pred1['pts3d'] + pred2_pts = pred2['pts3d_in_other_view'] + self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)}) + self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)}) + self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts) + + # work in log-scale with conf + pred1_conf = pred1['conf'] # (Number of image_pairs, H, W) + pred2_conf = pred2['conf'] # (Number of image_pairs, H, W) + self.min_conf_thr = min_conf_thr + self.thr_for_init_conf = thr_for_init_conf + self.conf_trf = get_conf_trf(conf) + + self.conf_i = NoGradParamDict({ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)}) + self.conf_j = NoGradParamDict({ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)}) + self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf) + for i in range(len(self.im_conf)): + self.im_conf[i].requires_grad = False + + self.init_conf_maps = [c.clone() for c in self.im_conf] + + # pairwise pose parameters + self.base_scale = base_scale + self.norm_pw_scale = True + self.pw_break = pw_break + self.POSE_DIM = 7 + self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM))) # pairwise poses + self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2))) # slight xy/z adaptation + self.pw_adaptors.requires_grad_(allow_pw_adaptors) + self.has_im_poses = False + self.rand_pose = rand_pose + + # possibly store images, camera_pose, instance for show_pointcloud + self.imgs = None + if 'img' in view1 and 'img' in view2: + imgs = [torch.zeros((3,)+hw) for hw in self.imshapes] + for v in range(len(self.edges)): + idx = view1['idx'][v] + imgs[idx] = view1['img'][v] + idx = view2['idx'][v] + imgs[idx] = view2['img'][v] + self.imgs = rgb(imgs) + + self.dynamic_masks = None + if 'dynamic_mask' in view1 and 'dynamic_mask' in view2: + dynamic_masks = [torch.zeros(hw) for hw in self.imshapes] + for v in range(len(self.edges)): + idx = view1['idx'][v] + dynamic_masks[idx] = view1['dynamic_mask'][v] + idx = view2['idx'][v] + dynamic_masks[idx] = view2['dynamic_mask'][v] + self.dynamic_masks = dynamic_masks + + self.camera_poses = None + if 'camera_pose' in view1 and 'camera_pose' in view2: + camera_poses = [torch.zeros((4, 4)) for _ in range(self.n_imgs)] + for v in range(len(self.edges)): + idx = view1['idx'][v] + camera_poses[idx] = view1['camera_pose'][v] + idx = view2['idx'][v] + camera_poses[idx] = view2['camera_pose'][v] + self.camera_poses = camera_poses + + self.img_pathes = None + if 'instance' in view1 and 'instance' in view2: + img_pathes = ['' for _ in range(self.n_imgs)] + for v in range(len(self.edges)): + idx = view1['idx'][v] + img_pathes[idx] = view1['instance'][v] + idx = view2['idx'][v] + img_pathes[idx] = view2['instance'][v] + self.img_pathes = img_pathes + + @property + def n_edges(self): + return len(self.edges) + + @property + def str_edges(self): + return [edge_str(i, j) for i, j in self.edges] + + @property + def imsizes(self): + return [(w, h) for h, w in self.imshapes] + + @property + def device(self): + return next(iter(self.parameters())).device + + def state_dict(self, trainable=True): + all_params = super().state_dict() + return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable} + + def load_state_dict(self, data): + return super().load_state_dict(self.state_dict(trainable=False) | data) + + def _check_edges(self): + indices = sorted({i for edge in self.edges for i in edge}) + assert indices == list(range(len(indices))), 'bad pair indices: missing values ' + return len(indices) + + @torch.no_grad() + def _compute_img_conf(self, pred1_conf, pred2_conf): + im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes]) + for e, (i, j) in enumerate(self.edges): + im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e]) + im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e]) + return im_conf + + def get_adaptors(self): + adapt = self.pw_adaptors + adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z) + if self.norm_pw_scale: # normalize so that the product == 1 + adapt = adapt - adapt.mean(dim=1, keepdim=True) + return (adapt / self.pw_break).exp() + + def _get_poses(self, poses): + # normalize rotation + Q = poses[:, :4] + T = signed_expm1(poses[:, 4:7]) + RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous() + return RT + + def _set_pose(self, poses, idx, R, T=None, scale=None, force=False): + # all poses == cam-to-world + pose = poses[idx] + if not (pose.requires_grad or force): + return pose + + if R.shape == (4, 4): + assert T is None + T = R[:3, 3] + R = R[:3, :3] + + if R is not None: + pose.data[0:4] = roma.rotmat_to_unitquat(R) + if T is not None: + pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale + + if scale is not None: + assert poses.shape[-1] in (8, 13) + pose.data[-1] = np.log(float(scale)) + return pose + + def get_pw_norm_scale_factor(self): + if self.norm_pw_scale: + # normalize scales so that things cannot go south + # we want that exp(scale) ~= self.base_scale + return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp() + else: + return 1 # don't norm scale for known poses + + def get_pw_scale(self): + scale = self.pw_poses[:, -1].exp() # (n_edges,) + scale = scale * self.get_pw_norm_scale_factor() + return scale + + def get_pw_poses(self): # cam to world + RT = self._get_poses(self.pw_poses) + scaled_RT = RT.clone() + scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation + return scaled_RT + + def get_masks(self): + if self.thr_for_init_conf: + return [(conf > self.min_conf_thr) for conf in self.init_conf_maps] + else: + return [(conf > self.min_conf_thr) for conf in self.im_conf] + + def depth_to_pts3d(self): + raise NotImplementedError() + + def get_pts3d(self, raw=False, **kwargs): + res = self.depth_to_pts3d(**kwargs) + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def _set_focal(self, idx, focal, force=False): + raise NotImplementedError() + + def get_focals(self): + raise NotImplementedError() + + def get_known_focal_mask(self): + raise NotImplementedError() + + def get_principal_points(self): + raise NotImplementedError() + + def get_conf(self, mode=None): + trf = self.conf_trf if mode is None else get_conf_trf(mode) + return [trf(c) for c in self.im_conf] + + def get_init_conf(self, mode=None): + trf = self.conf_trf if mode is None else get_conf_trf(mode) + return [trf(c) for c in self.init_conf_maps] + + def get_im_poses(self): + raise NotImplementedError() + + def _set_depthmap(self, idx, depth, force=False): + raise NotImplementedError() + + def get_depthmaps(self, raw=False): + raise NotImplementedError() + + def clean_pointcloud(self, **kw): + cams = inv(self.get_im_poses()) + K = self.get_intrinsics() + depthmaps = self.get_depthmaps() + all_pts3d = self.get_pts3d() + + new_im_confs = clean_pointcloud(self.im_conf, K, cams, depthmaps, all_pts3d, **kw) + + for i, new_conf in enumerate(new_im_confs): + self.im_conf[i].data[:] = new_conf + return self + + def get_tum_poses(self): + poses = self.get_im_poses() + tt = np.arange(len(poses)).astype(float) + tum_poses = [c2w_to_tumpose(p) for p in poses] + tum_poses = np.stack(tum_poses, 0) + return [tum_poses, tt] + + def save_tum_poses(self, path): + traj = self.get_tum_poses() + save_trajectory_tum_format(traj, path) + return traj[0] # return the poses + + def save_focals(self, path): + # convert focal to txt + focals = self.get_focals() + np.savetxt(path, focals.detach().cpu().numpy(), fmt='%.6f') + return focals + + def save_intrinsics(self, path): + K_raw = self.get_intrinsics() + K = K_raw.reshape(-1, 9) + np.savetxt(path, K.detach().cpu().numpy(), fmt='%.6f') + return K_raw + + def save_conf_maps(self, path, start): + conf = self.get_conf() + for i, c in enumerate(conf): + np.save(f'{path}/conf_{start+i}.npy', c.detach().cpu().numpy()) + return conf + + def save_init_conf_maps(self, path, start): + conf = self.get_init_conf() + for i, c in enumerate(conf): + np.save(f'{path}/init_conf_{start+i}.npy', c.detach().cpu().numpy()) + return conf + + def save_rgb_imgs(self, path, start): + imgs = self.imgs + images = [] + for i, img in enumerate(imgs): + # convert from rgb to bgr + img = img[..., ::-1] + cv2.imwrite(f'{path}/frame_{start+i:04d}_rgb.png', img*255) + images.append(Image.open(f'{path}/frame_{start+i:04d}_rgb.png')) + images[0].save(f'{path}/_rgb.gif', save_all=True, append_images=images[1:], duration=100, loop=0) + return imgs + + def save_dynamic_masks(self, path, start): + dynamic_masks = self.dynamic_masks if getattr(self, 'sam2_dynamic_masks', None) is None else self.sam2_dynamic_masks + for i, dynamic_mask in enumerate(dynamic_masks): + cv2.imwrite(f'{path}/dynamic_mask_{start+i}.png', (dynamic_mask * 255).detach().cpu().numpy().astype(np.uint8)) + return dynamic_masks + + def save_depth_maps(self, path, start): + depth_maps = self.get_depthmaps() + images = [] + + for i, depth_map in enumerate(depth_maps): + # Apply color map to depth map + depth_map_colored = cv2.applyColorMap((depth_map * 255).detach().cpu().numpy().astype(np.uint8), cv2.COLORMAP_JET) + img_path = f'{path}/frame_{(start+i):04d}.png' + cv2.imwrite(img_path, depth_map_colored) + images.append(Image.open(img_path)) + np.save(f'{path}/frame_{(start+i):04d}.npy', depth_map.detach().cpu().numpy()) + + images[0].save(f'{path}/_depth_maps.gif', save_all=True, append_images=images[1:], duration=100, loop=0) + + return depth_maps + + def forward(self, ret_details=False): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors() + proj_pts3d = self.get_pts3d() + # pre-compute pixel weights + weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()} + weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()} + + loss = 0 + if ret_details: + details = -torch.ones((self.n_imgs, self.n_imgs)) + + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # distance in image i and j + aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j]) + aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j]) + li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean() + lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean() + loss = loss + li + lj + + if ret_details: + details[i, j] = li + lj + loss /= self.n_edges # average over all pairs + + if ret_details: + return loss, details + return loss + + @torch.cuda.amp.autocast(enabled=False) + def compute_global_alignment(self, init=None, init_priors=None, save_score_path=None, save_score_only=False, niter_PnP=10, **kw): + if init is None: + pass + elif init == 'msp' or init == 'mst': + init_fun.init_minimum_spanning_tree(self, save_score_path=save_score_path, save_score_only=save_score_only, niter_PnP=niter_PnP, init_priors=init_priors) + if save_score_only: # if only want the score map + return None + elif init == 'known_poses': + self.preset_pose(known_poses=self.camera_poses, requires_grad=True) + init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr, + niter_PnP=niter_PnP) + else: + raise ValueError(f'bad value for {init=}') + + return global_alignment_loop(self, **kw) + + @torch.no_grad() + def mask_sky(self): + res = deepcopy(self) + for i in range(self.n_imgs): + sky = segment_sky(self.imgs[i]) + res.im_conf[i][sky] = 0 + return res + + def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw): + viz = SceneViz() + if self.imgs is None: + colors = np.random.randint(0, 256, size=(self.n_imgs, 3)) + colors = list(map(tuple, colors.tolist())) + for n in range(self.n_imgs): + viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n]) + else: + viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks()) + colors = np.random.randint(256, size=(self.n_imgs, 3)) + + # camera poses + im_poses = to_numpy(self.get_im_poses()) + if cam_size is None: + cam_size = auto_cam_size(im_poses) + viz.add_cameras(im_poses, self.get_focals(), colors=colors, + images=self.imgs, imsizes=self.imsizes, cam_size=cam_size) + if show_pw_cams: + pw_poses = self.get_pw_poses() + viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size) + + if show_pw_pts3d: + pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)] + viz.add_pointcloud(pts, (128, 0, 128)) + + viz.show(**kw) + return viz + + +def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-3, temporal_smoothing_weight=0, depth_map_save_dir=None): + params = [p for p in net.parameters() if p.requires_grad] + if not params: + return net + + verbose = net.verbose + if verbose: + print('Global alignement - optimizing for:') + print([name for name, value in net.named_parameters() if value.requires_grad]) + + lr_base = lr + optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9)) + + loss = float('inf') + if verbose: + with tqdm.tqdm(total=niter) as bar: + while bar.n < bar.total: + if bar.n % 500 == 0 and depth_map_save_dir is not None: + if not os.path.exists(depth_map_save_dir): + os.makedirs(depth_map_save_dir) + # visualize the depthmaps + depth_maps = net.get_depthmaps() + for i, depth_map in enumerate(depth_maps): + depth_map_save_path = os.path.join(depth_map_save_dir, f'depthmaps_{i}_iter_{bar.n}.png') + plt.imsave(depth_map_save_path, depth_map.detach().cpu().numpy(), cmap='jet') + print(f"Saved depthmaps at iteration {bar.n} to {depth_map_save_dir}") + loss, lr = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule, + temporal_smoothing_weight=temporal_smoothing_weight) + bar.set_postfix_str(f'{lr=:g} loss={loss:g}') + bar.update() + else: + for n in range(niter): + loss, _ = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule, + temporal_smoothing_weight=temporal_smoothing_weight) + return loss + + +def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule, temporal_smoothing_weight=0): + t = cur_iter / niter + if schedule == 'cosine': + lr = cosine_schedule(t, lr_base, lr_min) + elif schedule == 'linear': + lr = linear_schedule(t, lr_base, lr_min) + elif schedule.startswith('cycle'): + try: + num_cycles = int(schedule[5:]) + except ValueError: + num_cycles = 2 + lr = cycled_linear_schedule(t, lr_base, lr_min, num_cycles=num_cycles) + else: + raise ValueError(f'bad lr {schedule=}') + + adjust_learning_rate_by_lr(optimizer, lr) + optimizer.zero_grad() + + if net.empty_cache: + torch.cuda.empty_cache() + + loss = net(epoch=cur_iter) + + if net.empty_cache: + torch.cuda.empty_cache() + + loss.backward() + + if net.empty_cache: + torch.cuda.empty_cache() + + optimizer.step() + + return float(loss), lr + + + +@torch.no_grad() +def clean_pointcloud( im_confs, K, cams, depthmaps, all_pts3d, + tol=0.001, bad_conf=0, dbg=()): + """ Method: + 1) express all 3d points in each camera coordinate frame + 2) if they're in front of a depthmap --> then lower their confidence + """ + assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d) + assert 0 <= tol < 1 + res = [c.clone() for c in im_confs] + + # reshape appropriately + all_pts3d = [p.view(*c.shape,3) for p,c in zip(all_pts3d, im_confs)] + depthmaps = [d.view(*c.shape) for d,c in zip(depthmaps, im_confs)] + + for i, pts3d in enumerate(all_pts3d): + for j in range(len(all_pts3d)): + if i == j: continue + + # project 3dpts in other view + proj = geotrf(cams[j], pts3d) + proj_depth = proj[:,:,2] + u,v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1) + + # check which points are actually in the visible cone + H, W = im_confs[j].shape + msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H) + msk_j = v[msk_i], u[msk_i] + + # find bad points = those in front but less confident + bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]) & (res[i][msk_i] < res[j][msk_j]) + + bad_msk_i = msk_i.clone() + bad_msk_i[msk_i] = bad_points + res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf) + + return res diff --git a/dust3r/cloud_opt_flow/commons.py b/dust3r/cloud_opt_flow/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..8ed808dfd1591d7849e1bc3768dfb8c9561a7d8a --- /dev/null +++ b/dust3r/cloud_opt_flow/commons.py @@ -0,0 +1,103 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utility functions for global alignment +# -------------------------------------------------------- +import torch +import torch.nn as nn +import numpy as np +from scipy.stats import zscore + +def edge_str(i, j): + return f'{i}_{j}' + + +def i_j_ij(ij): + # inputs are (i, j) + return edge_str(*ij), ij + + +def edge_conf(conf_i, conf_j, edge): + + score = float(conf_i[edge].mean() * conf_j[edge].mean()) + + return score + + +def compute_edge_scores(edges, conf_i, conf_j): + score_dict = {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges} + + return score_dict + +def NoGradParamDict(x): + assert isinstance(x, dict) + return nn.ParameterDict(x).requires_grad_(False) + + +def get_imshapes(edges, pred_i, pred_j): + n_imgs = max(max(e) for e in edges) + 1 + imshapes = [None] * n_imgs + for e, (i, j) in enumerate(edges): + shape_i = tuple(pred_i[e].shape[0:2]) + shape_j = tuple(pred_j[e].shape[0:2]) + if imshapes[i]: + assert imshapes[i] == shape_i, f'incorrect shape for image {i}' + if imshapes[j]: + assert imshapes[j] == shape_j, f'incorrect shape for image {j}' + imshapes[i] = shape_i + imshapes[j] = shape_j + return imshapes + + +def get_conf_trf(mode): + if mode == 'log': + def conf_trf(x): return x.log() + elif mode == 'sqrt': + def conf_trf(x): return x.sqrt() + elif mode == 'm1': + def conf_trf(x): return x-1 + elif mode in ('id', 'none'): + def conf_trf(x): return x + else: + raise ValueError(f'bad mode for {mode=}') + return conf_trf + + +def l2_dist(a, b, weight): + return ((a - b).square().sum(dim=-1) * weight) + + +def l1_dist(a, b, weight): + return ((a - b).norm(dim=-1) * weight) + + +ALL_DISTS = dict(l1=l1_dist, l2=l2_dist) + + +def signed_log1p(x): + sign = torch.sign(x) + return sign * torch.log1p(torch.abs(x)) + + +def signed_expm1(x): + sign = torch.sign(x) + return sign * torch.expm1(torch.abs(x)) + + +def cosine_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_end + (lr_start - lr_end) * (1+np.cos(t * np.pi))/2 + + +def linear_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_start + (lr_end - lr_start) * t + +def cycled_linear_schedule(t, lr_start, lr_end, num_cycles=2): + assert 0 <= t <= 1 + cycle_t = t * num_cycles + cycle_t = cycle_t - int(cycle_t) + if t == 1: + cycle_t = 1 + return linear_schedule(cycle_t, lr_start, lr_end) \ No newline at end of file diff --git a/dust3r/cloud_opt_flow/init_im_poses.py b/dust3r/cloud_opt_flow/init_im_poses.py new file mode 100644 index 0000000000000000000000000000000000000000..3c33da3eb569ca547039af1cda4da61c250ae813 --- /dev/null +++ b/dust3r/cloud_opt_flow/init_im_poses.py @@ -0,0 +1,391 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Initialization functions for global alignment +# -------------------------------------------------------- +from functools import cache + +import numpy as np +import scipy.sparse as sp +import torch +import cv2 +import roma +from tqdm import tqdm + +from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses +from dust3r.post_process import estimate_focal_knowing_depth +from dust3r.viz import to_numpy + +from dust3r.cloud_opt_flow.commons import edge_str, i_j_ij, compute_edge_scores +import matplotlib.pyplot as plt +import seaborn as sns + +def draw_edge_scores_map(edge_scores, save_path, n_imgs=None): + # Determine the size of the heatmap + if n_imgs is None: + n_imgs = max(max(edge) for edge in edge_scores) + 1 + + # Create a matrix to hold the scores + heatmap_matrix = np.full((n_imgs, n_imgs), np.nan) + + # Populate the matrix with the edge scores + for (i, j), score in edge_scores.items(): + heatmap_matrix[i, j] = score + + # Plotting the heatmap + plt.figure(figsize=(int(5.5*np.log(n_imgs)-2), int((5.5*np.log(n_imgs)-2) * 3 / 4))) + sns.heatmap(heatmap_matrix, annot=True, fmt=".1f", cmap="viridis", cbar=True, annot_kws={"fontsize": int(-4.2*np.log(n_imgs)+22.4)}) + plt.title("Heatmap of Edge Scores") + plt.xlabel("Node") + plt.ylabel("Node") + plt.savefig(save_path) + +@torch.no_grad() +def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3): + device = self.device + + # indices of known poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + # assert nkp == self.n_imgs, 'not all poses are known' + + # get all focals + nkf, _, im_focals = get_known_focals(self) + # assert nkf == self.n_imgs + im_pp = self.get_principal_points() + + best_depthmaps = {} + # init all pairwise poses + for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)): + i_j = edge_str(i, j) + + # find relative pose for this pair + P1 = torch.eye(4, device=device) + msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1) + _, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()), + pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP) + + # align the two predicted camera with the two gt cameras + s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]]) + # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1 + # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # remember if this is a good depthmap + score = float(self.conf_i[i_j].mean()) + if score > best_depthmaps.get(i, (0,))[0]: + best_depthmaps[i] = score, i_j, s + + # init all image poses + for n in range(self.n_imgs): + # assert known_poses_msk[n] + if n in best_depthmaps: + _, i_j, scale = best_depthmaps[n] + depth = self.pred_i[i_j][:, :, 2] + self._set_depthmap(n, depth * scale) + + +@torch.no_grad() +def init_minimum_spanning_tree(self, save_score_path=None, save_score_only=False,init_priors=None, **kw): + """ Init all camera poses (image-wise and pairwise poses) given + an initial set of pairwise estimations. + """ + device = self.device + if save_score_only: + eadge_and_scores = compute_edge_scores(map(i_j_ij, self.edges), self.conf_i, self.conf_j) + draw_edge_scores_map(eadge_and_scores, save_score_path) + return + pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges, + self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr, + device, has_im_poses=self.has_im_poses, verbose=self.verbose, init_priors = init_priors, + save_score_path=save_score_path, + **kw) + + return init_from_pts3d(self, pts3d, im_focals, im_poses) + + +def init_from_pts3d(self, pts3d, im_focals, im_poses): + # init poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + if nkp == 1: + raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose") + elif nkp > 1: + # global rigid SE3 alignment + s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk]) + trf = sRT_to_4x4(s, R, T, device=known_poses.device) + + # rotate everything + im_poses = trf @ im_poses + im_poses[:, :3, :3] /= s # undo scaling on the rotation part + for img_pts3d in pts3d: + img_pts3d[:] = geotrf(trf, img_pts3d) + else: pass # no known poses + + # set all pairwise poses + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # compute transform that goes from cam to world + s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # take into account the scale normalization + s_factor = self.get_pw_norm_scale_factor() + im_poses[:, :3, 3] *= s_factor # apply downscaling factor + for img_pts3d in pts3d: + img_pts3d *= s_factor + + # init all image poses + if self.has_im_poses: + for i in range(self.n_imgs): + cam2world = im_poses[i] + depth = geotrf(inv(cam2world), pts3d[i])[..., 2] + self._set_depthmap(i, depth) + self._set_pose(self.im_poses, i, cam2world) + if im_focals[i] is not None: + if not self.shared_focal: + self._set_focal(i, im_focals[i]) + if self.shared_focal: + self._set_focal(0, sum(im_focals) / self.n_imgs) + if self.n_imgs > 2: + self._set_init_depthmap() + + if self.verbose: + with torch.no_grad(): + print(' init loss =', float(self())) + + +def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr, + device, init_priors=None, has_im_poses=True, niter_PnP=10, verbose=True, save_score_path=None): + n_imgs = len(imshapes) + eadge_and_scores = compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j) + sparse_graph = -dict_to_sparse_graph(eadge_and_scores) + msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo() + + # temp variable to store 3d points + pts3d = [None] * len(imshapes) + + todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges + im_poses = [None] * n_imgs + im_focals = [None] * n_imgs + + # init with specific edge + score, i, j = None, None, None + if init_priors is None: + score, i, j = todo.pop() + else: + while todo: + score, i, j = todo.pop() + if i == 0 or j == 0: + break + else: + todo.insert(0, (score, i, j)) + + if verbose: + print(f' init edge ({i}*,{j}*) {score=}') + if save_score_path is not None: + draw_edge_scores_map(eadge_and_scores, save_score_path, n_imgs=n_imgs) + save_tree_path = save_score_path.replace(".png", "_tree.txt") + with open(save_tree_path, "w") as f: + f.write(f'init edge ({i}*,{j}*) {score=}\n') + i_j = edge_str(i, j) + pts3d[i] = pred_i[i_j].clone() # the first one is set to be world coordinate + pts3d[j] = pred_j[i_j].clone() + done = {i, j} + if has_im_poses: + if init_priors is None: + im_poses[i] = torch.eye(4, device=device) + im_focals[i] = estimate_focal(pred_i[i_j]) + else: + + init_keypose = np.array(init_priors[0]).astype(np.float32) + init_keyfocal = init_priors[2][0] + + if i == 0: + im_poses[i] = torch.from_numpy(init_keypose).to(device) + im_focals[i] = float(init_keyfocal) + + pts3d[i] = geotrf(im_poses[i], pts3d[i]) + pts3d[j] = geotrf(im_poses[i], pts3d[j]) + elif j == 0: + im_poses[j] = torch.from_numpy(init_keypose).to(device) + im_focals[j] = float(init_keyfocal) + + j_i = edge_str(j, i) + pts3d[i] = geotrf(im_poses[j], pred_j[j_i].clone()) + pts3d[j] = geotrf(im_poses[j], pred_i[j_i].clone()) + + # set initial pointcloud based on pairwise graph + msp_edges = [(i, j)] + while todo: + # each time, predict the next one + score, i, j = todo.pop() + + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[i_j]) + + if i in done: # the first frame is already set, align the second frame with the first frame + if verbose: + print(f' init edge ({i},{j}*) {score=}') + if save_score_path is not None: + with open(save_tree_path, "a") as f: + f.write(f'init edge ({i},{j}*) {score=}\n') + assert j not in done + # align pred[i] with pts3d[i], and then set j accordingly + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[j] = geotrf(trf, pred_j[i_j]) + done.add(j) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + + elif j in done: # the second frame is already set, align the first frame with the second frame + if verbose: + print(f' init edge ({i}*,{j}) {score=}') + if save_score_path is not None: + with open(save_tree_path, "a") as f: + f.write(f'init edge ({i}*,{j}) {score=}\n') + assert i not in done + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[i] = geotrf(trf, pred_i[i_j]) + done.add(i) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + else: + # let's try again later + todo.insert(0, (score, i, j)) + + if has_im_poses: + # complete all missing informations + pair_scores = list(sparse_graph.values()) # already negative scores: less is best + edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)] + for i, j in edges_from_best_to_worse.tolist(): + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[edge_str(i, j)]) + + for i in range(n_imgs): + if im_poses[i] is None: + msk = im_conf[i] > min_conf_thr + res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP) + if res: + im_focals[i], im_poses[i] = res + if im_poses[i] is None: + im_poses[i] = torch.eye(4, device=device) + im_poses = torch.stack(im_poses) + else: + im_poses = im_focals = None + + return pts3d, msp_edges, im_focals, im_poses + + +def dict_to_sparse_graph(dic): + n_imgs = max(max(e) for e in dic) + 1 + res = sp.dok_array((n_imgs, n_imgs)) + for edge, value in dic.items(): + res[edge] = value + return res + + +def rigid_points_registration(pts1, pts2, conf): + R, T, s = roma.rigid_points_registration( + pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True) + return s, R, T # return un-scaled (R, T) + + +def sRT_to_4x4(scale, R, T, device): + trf = torch.eye(4, device=device) + trf[:3, :3] = R * scale + trf[:3, 3] = T.ravel() # doesn't need scaling + return trf + + +def estimate_focal(pts3d_i, pp=None): + if pp is None: + H, W, THREE = pts3d_i.shape + assert THREE == 3 + pp = torch.tensor((W/2, H/2), device=pts3d_i.device) + focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel() + return float(focal) + + +@cache +def pixel_grid(H, W): + return np.mgrid[:W, :H].T.astype(np.float32) + + +def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10): + # extract camera poses and focals with RANSAC-PnP + if msk.sum() < 4: + return None # we need at least 4 points for PnP + pts3d, msk = map(to_numpy, (pts3d, msk)) + + H, W, THREE = pts3d.shape + assert THREE == 3 + pixels = pixel_grid(H, W) + + if focal is None: + S = max(W, H) + tentative_focals = np.geomspace(S/2, S*3, 21) + else: + tentative_focals = [focal] + + if pp is None: + pp = (W/2, H/2) + else: + pp = to_numpy(pp) + + best = 0, + for focal in tentative_focals: + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + if not success: + continue + + score = len(inliers) + if success and score > best[0]: + best = score, R, T, focal + + if not best[0]: + return None + + _, R, T, best_focal = best + R = cv2.Rodrigues(R)[0] # world to cam + R, T = map(torch.from_numpy, (R, T)) + return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world + + +def get_known_poses(self): + if self.has_im_poses: + known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses]) + known_poses = self.get_im_poses() + return known_poses_msk.sum(), known_poses_msk, known_poses + else: + return 0, None, None + + +def get_known_focals(self): + if self.has_im_poses: + known_focal_msk = self.get_known_focal_mask() + known_focals = self.get_focals() + return known_focal_msk.sum(), known_focal_msk, known_focals + else: + return 0, None, None + + +def align_multiple_poses(src_poses, target_poses): + N = len(src_poses) + assert src_poses.shape == target_poses.shape == (N, 4, 4) + + def center_and_z(poses): + eps = get_med_dist_between_poses(poses) / 100 + return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2])) + R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True) + return s, R, T diff --git a/dust3r/cloud_opt_flow/modular_optimizer.py b/dust3r/cloud_opt_flow/modular_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..5b6a42f8e2799ebd85d4a8aacec86849206700ec --- /dev/null +++ b/dust3r/cloud_opt_flow/modular_optimizer.py @@ -0,0 +1,147 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer +from dust3r.utils.geometry import geotrf +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.geometry import depthmap_to_pts3d +from dust3r.cloud_opt_flow.optimizer import PointCloudOptimizer, tum_to_pose_matrix, ParameterStack, xy_grid + +class ModularPointCloudOptimizer (BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics) + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs): + super().__init__(*args, **kwargs) + self.has_im_poses = True # by definition of this class + self.focal_brake = focal_brake + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + default_focals = [self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes] + self.im_focals = nn.ParameterList(torch.FloatTensor([f, f] if fx_and_fy else [ + f]) for f in default_focals) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + if known_poses.shape[-1] == 7: # xyz wxyz + known_poses = [tum_to_pose_matrix(pose) for pose in known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True)) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + def preset_intrinsics(self, known_intrinsics, msk=None): + if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: + known_intrinsics = [known_intrinsics] + for K in known_intrinsics: + assert K.shape == (3, 3) + self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) + self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) + + def preset_focal(self, known_focals, msk=None): + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal, force=True)) + + def preset_principal_point(self, known_pp, msk=None): + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp, force=True)) + + def _no_grad(self, tensor): + return tensor.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_brake * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_brake).exp() + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)]) + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().view(self.n_imgs, -1) + K[:, 0, 0] = focals[:, 0] + K[:, 1, 1] = focals[:, -1] + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(torch.stack(list(self.im_poses))) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self): + return [d.exp() for d in self.im_depthmaps] + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps() + + # convert focal to (1,2,H,W) constant field + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i]) + # get pointmaps in camera frame + rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])] + # project to world frame + return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] + + def get_pts3d(self): + return self.depth_to_pts3d() diff --git a/dust3r/cloud_opt_flow/optimizer.py b/dust3r/cloud_opt_flow/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..afaca2c2a22261c453d4ea89bbe4245160fb8869 --- /dev/null +++ b/dust3r/cloud_opt_flow/optimizer.py @@ -0,0 +1,625 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from tqdm import tqdm +import contextlib +import cv2 +from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer, edge_str +from dust3r.cloud_opt_flow.pair_viewer import PairViewer +from dust3r.utils.geometry import xy_grid, geotrf, depthmap_to_pts3d +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.goem_opt import DepthBasedWarping, OccMask, WarpImage, depth_regularization_si_weighted, tum_to_pose_matrix +from third_party.raft import load_RAFT +from sam2.build_sam import build_sam2_video_predictor +sam2_checkpoint = "third_party/sam2/checkpoints/sam2.1_hiera_large.pt" +model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" + +def smooth_L1_loss_fn(estimate, gt, mask, beta=1.0, per_pixel_thre=50.): + loss_raw_shape = F.smooth_l1_loss(estimate*mask, gt*mask, beta=beta, reduction='none') + if per_pixel_thre > 0: + per_pixel_mask = (loss_raw_shape < per_pixel_thre) * mask + else: + per_pixel_mask = mask + return torch.sum(loss_raw_shape * per_pixel_mask) / torch.sum(per_pixel_mask) + +def mse_loss_fn(estimate, gt, mask): + v = torch.sum((estimate*mask-gt*mask)**2) / torch.sum(mask) + return v # , v.item() + +class PointCloudOptimizer(BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, focal_break=20, shared_focal=False, flow_loss_fn='smooth_l1', flow_loss_weight=0.0, + depth_regularize_weight=0.0, num_total_iter=300, temporal_smoothing_weight=0, translation_weight=0.1, flow_loss_start_epoch=0.15, flow_loss_thre=50, + sintel_ckpt=False, use_self_mask=False, pxl_thre=50, sam2_mask_refine=True, motion_mask_thre=0.35, **kwargs): + super().__init__(*args, **kwargs) + + self.has_im_poses = True # by definition of this class + self.focal_break = focal_break + self.num_total_iter = num_total_iter + self.temporal_smoothing_weight = temporal_smoothing_weight + self.translation_weight = translation_weight + self.flow_loss_flag = False + self.flow_loss_start_epoch = flow_loss_start_epoch + self.flow_loss_thre = flow_loss_thre + self.optimize_pp = optimize_pp + self.pxl_thre = pxl_thre + self.motion_mask_thre = motion_mask_thre + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + self.shared_focal = shared_focal + if self.shared_focal: + self.im_focals = nn.ParameterList(torch.FloatTensor( + [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes[:1]) # camera intrinsics + else: + self.im_focals = nn.ParameterList(torch.FloatTensor( + [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + self.imshape = self.imshapes[0] + im_areas = [h*w for h, w in self.imshapes] + self.max_area = max(im_areas) + + # adding thing to optimize + self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) #(num_imgs, H*W) + + self.im_poses = ParameterStack(self.im_poses, is_param=True) + self.im_focals = ParameterStack(self.im_focals, is_param=True) + self.im_pp = ParameterStack(self.im_pp, is_param=True) + self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) + self.register_buffer('_grid', ParameterStack( + [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) + + # pre-compute pixel weights + self.register_buffer('_weight_i', ParameterStack( + [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) + self.register_buffer('_weight_j', ParameterStack( + [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) + + # precompute aa + self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) + self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) + self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) + self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) + self.total_area_i = sum([im_areas[i] for i, j in self.edges]) + self.total_area_j = sum([im_areas[j] for i, j in self.edges]) + + self.depth_wrapper = DepthBasedWarping() + self.backward_warper = WarpImage() + self.depth_regularizer = depth_regularization_si_weighted + if flow_loss_fn == 'smooth_l1': + self.flow_loss_fn = smooth_L1_loss_fn + elif flow_loss_fn == 'mse': + self.low_loss_fn = mse_loss_fn + + self.flow_loss_weight = flow_loss_weight + self.depth_regularize_weight = depth_regularize_weight + if self.flow_loss_weight > 0: + self.flow_ij, self.flow_ji, self.flow_valid_mask_i, self.flow_valid_mask_j = self.get_flow(sintel_ckpt) # (num_pairs, 2, H, W) + if use_self_mask: self.get_motion_mask_from_pairs(*args) + # turn off the gradient for the flow + self.flow_ij.requires_grad_(False) + self.flow_ji.requires_grad_(False) + self.flow_valid_mask_i.requires_grad_(False) + self.flow_valid_mask_j.requires_grad_(False) + if sam2_mask_refine: + with torch.no_grad(): + self.refine_motion_mask_w_sam2() + else: + self.sam2_dynamic_masks = None + + def get_flow(self, sintel_ckpt=False): #TODO: test with gt flow + print('precomputing flow...') + device = 'cuda' if torch.cuda.is_available() else 'cpu' + get_valid_flow_mask = OccMask(th=3.0) + pair_imgs = [np.stack(self.imgs)[self._ei], np.stack(self.imgs)[self._ej]] + sintel_ckpt=False + flow_net = load_RAFT() if sintel_ckpt else load_RAFT("third_party/RAFT/models/Tartan-C-T432x960-M.pth") + flow_net = flow_net.to(device) + flow_net.eval() + if len(pair_imgs[0].shape)==3: + pair_imgs = [pair_imgs[0][None], pair_imgs[1][None]] + #print(self._ei) + with torch.no_grad(): + chunk_size = 12 + flow_ij = [] + flow_ji = [] + num_pairs = len(pair_imgs[0]) + for i in tqdm(range(0, num_pairs, chunk_size)): + end_idx = min(i + chunk_size, num_pairs) + imgs_ij = [torch.tensor(pair_imgs[0][i:end_idx]).float().to(device), + torch.tensor(pair_imgs[1][i:end_idx]).float().to(device)] + #print(imgs_ij[0].shape) + flow_ij.append(flow_net(imgs_ij[0].permute(0, 3, 1, 2) * 255, + imgs_ij[1].permute(0, 3, 1, 2) * 255, + iters=20, test_mode=True)[1]) + flow_ji.append(flow_net(imgs_ij[1].permute(0, 3, 1, 2) * 255, + imgs_ij[0].permute(0, 3, 1, 2) * 255, + iters=20, test_mode=True)[1]) + + flow_ij = torch.cat(flow_ij, dim=0) + flow_ji = torch.cat(flow_ji, dim=0) + valid_mask_i = get_valid_flow_mask(flow_ij, flow_ji) + valid_mask_j = get_valid_flow_mask(flow_ji, flow_ij) + print('flow precomputed') + # delete the flow net + if flow_net is not None: del flow_net + return flow_ij, flow_ji, valid_mask_i, valid_mask_j + + def get_motion_mask_from_pairs(self, view1, view2, pred1, pred2): + assert self.is_symmetrized, 'only support symmetric case' + symmetry_pairs_idx = [(i, i+len(self.edges)//2) for i in range(len(self.edges)//2)] + intrinsics_i = [] + intrinsics_j = [] + R_i = [] + R_j = [] + T_i = [] + T_j = [] + depth_maps_i = [] + depth_maps_j = [] + for i, j in tqdm(symmetry_pairs_idx): + new_view1 = {} + new_view2 = {} + for key in view1.keys(): + if isinstance(view1[key], list): + new_view1[key] = [view1[key][i], view1[key][j]] + new_view2[key] = [view2[key][i], view2[key][j]] + elif isinstance(view1[key], torch.Tensor): + new_view1[key] = torch.stack([view1[key][i], view1[key][j]]) + new_view2[key] = torch.stack([view2[key][i], view2[key][j]]) + new_view1['idx'] = [0, 1] + new_view2['idx'] = [1, 0] + new_pred1 = {} + new_pred2 = {} + for key in pred1.keys(): + if isinstance(pred1[key], list): + new_pred1[key] = [pred1[key][i], pred1[key][j]] + elif isinstance(pred1[key], torch.Tensor): + new_pred1[key] = torch.stack([pred1[key][i], pred1[key][j]]) + for key in pred2.keys(): + if isinstance(pred2[key], list): + new_pred2[key] = [pred2[key][i], pred2[key][j]] + elif isinstance(pred2[key], torch.Tensor): + new_pred2[key] = torch.stack([pred2[key][i], pred2[key][j]]) + pair_viewer = PairViewer(new_view1, new_view2, new_pred1, new_pred2, verbose=False) + intrinsics_i.append(pair_viewer.get_intrinsics()[0]) + intrinsics_j.append(pair_viewer.get_intrinsics()[1]) + R_i.append(pair_viewer.get_im_poses()[0][:3, :3]) + R_j.append(pair_viewer.get_im_poses()[1][:3, :3]) + T_i.append(pair_viewer.get_im_poses()[0][:3, 3:]) + T_j.append(pair_viewer.get_im_poses()[1][:3, 3:]) + depth_maps_i.append(pair_viewer.get_depthmaps()[0]) + depth_maps_j.append(pair_viewer.get_depthmaps()[1]) + + self.intrinsics_i = torch.stack(intrinsics_i).to(self.flow_ij.device) + self.intrinsics_j = torch.stack(intrinsics_j).to(self.flow_ij.device) + self.R_i = torch.stack(R_i).to(self.flow_ij.device) + self.R_j = torch.stack(R_j).to(self.flow_ij.device) + self.T_i = torch.stack(T_i).to(self.flow_ij.device) + self.T_j = torch.stack(T_j).to(self.flow_ij.device) + self.depth_maps_i = torch.stack(depth_maps_i).unsqueeze(1).to(self.flow_ij.device) + self.depth_maps_j = torch.stack(depth_maps_j).unsqueeze(1).to(self.flow_ij.device) + # self.depth_maps_i[self.depth_maps_i>0.7] = 0.7 + # self.depth_maps_j[self.depth_maps_j>0.7] = 0.7 + #cv2.imwrite('1.png', self.depth_maps_i[0,0].cpu().numpy()*255) + #print(self.depth_maps_i,self.depth_maps_i.shape) + try: + ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.inv(self.intrinsics_i)) + except Exception as e: + ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.pinv(self.intrinsics_i)) + try: + ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.inv(self.intrinsics_j)) + except Exception as e: + ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.pinv(self.intrinsics_j)) + err_map_i = torch.norm(ego_flow_1_2[:, :2, ...] - self.flow_ij[:len(symmetry_pairs_idx)], dim=1) + err_map_j = torch.norm(ego_flow_2_1[:, :2, ...] - self.flow_ji[:len(symmetry_pairs_idx)], dim=1) + # normalize the error map for each pair + err_map_i = (err_map_i - err_map_i.amin(dim=(1, 2), keepdim=True)) / (err_map_i.amax(dim=(1, 2), keepdim=True) - err_map_i.amin(dim=(1, 2), keepdim=True)) + err_map_j = (err_map_j - err_map_j.amin(dim=(1, 2), keepdim=True)) / (err_map_j.amax(dim=(1, 2), keepdim=True) - err_map_j.amin(dim=(1, 2), keepdim=True)) + self.dynamic_masks = [[] for _ in range(self.n_imgs)] + + for i, j in symmetry_pairs_idx: + i_idx = self._ei[i] + j_idx = self._ej[i] + self.dynamic_masks[i_idx].append(err_map_i[i]) + self.dynamic_masks[j_idx].append(err_map_j[i]) + + for i in range(self.n_imgs): + self.dynamic_masks[i] = torch.stack(self.dynamic_masks[i]).mean(dim=0) > self.motion_mask_thre + + def refine_motion_mask_w_sam2(self): + device = 'cuda' if torch.cuda.is_available() else 'cpu' + + # Save previous TF32 settings + if device == 'cuda': + prev_allow_tf32 = torch.backends.cuda.matmul.allow_tf32 + prev_allow_cudnn_tf32 = torch.backends.cudnn.allow_tf32 + # Enable TF32 for Ampere GPUs + if torch.cuda.get_device_properties(0).major >= 8: + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.allow_tf32 = True + + try: + autocast_dtype = torch.bfloat16 if device == 'cuda' else torch.float32 + with torch.autocast(device_type=device, dtype=autocast_dtype): + predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device) + frame_tensors = torch.from_numpy(np.array((self.imgs))).permute(0, 3, 1, 2).to(device) + inference_state = predictor.init_state(video_path=frame_tensors) + mask_list = [self.dynamic_masks[i] for i in range(self.n_imgs)] + + ann_obj_id = 1 + self.sam2_dynamic_masks = [[] for _ in range(self.n_imgs)] + + # Process even frames + predictor.reset_state(inference_state) + for idx, mask in enumerate(mask_list): + if idx % 2 == 1: + _, out_obj_ids, out_mask_logits = predictor.add_new_mask( + inference_state, + frame_idx=idx, + obj_id=ann_obj_id, + mask=mask, + ) + video_segments = {} + for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0): + video_segments[out_frame_idx] = { + out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() + for i, out_obj_id in enumerate(out_obj_ids) + } + for out_frame_idx in range(self.n_imgs): + if out_frame_idx % 2 == 0: + self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id] + + # Process odd frames + predictor.reset_state(inference_state) + for idx, mask in enumerate(mask_list): + if idx % 2 == 0: + _, out_obj_ids, out_mask_logits = predictor.add_new_mask( + inference_state, + frame_idx=idx, + obj_id=ann_obj_id, + mask=mask, + ) + video_segments = {} + for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0): + video_segments[out_frame_idx] = { + out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() + for i, out_obj_id in enumerate(out_obj_ids) + } + for out_frame_idx in range(self.n_imgs): + if out_frame_idx % 2 == 1: + self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id] + + # Update dynamic masks + for i in range(self.n_imgs): + self.sam2_dynamic_masks[i] = torch.from_numpy(self.sam2_dynamic_masks[i][0]).to(device) + self.dynamic_masks[i] = self.dynamic_masks[i].to(device) + self.dynamic_masks[i] = self.dynamic_masks[i] | self.sam2_dynamic_masks[i] + + # Clean up + del predictor + finally: + # Restore previous TF32 settings + if device == 'cuda': + torch.backends.cuda.matmul.allow_tf32 = prev_allow_tf32 + torch.backends.cudnn.allow_tf32 = prev_allow_cudnn_tf32 + + + def _check_all_imgs_are_selected(self, msk): + self.msk = torch.from_numpy(np.array(msk, dtype=bool)).to(self.device) + assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' + pass + + def preset_pose(self, known_poses, pose_msk=None, requires_grad=False): # cam-to-world + self._check_all_imgs_are_selected(pose_msk) + + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + if known_poses.shape[-1] == 7: # xyz wxyz + known_poses = [tum_to_pose_matrix(pose) for pose in known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + if len(known_poses) == self.n_imgs: + if requires_grad: + self.im_poses.requires_grad_(True) + else: + self.im_poses.requires_grad_(False) + self.norm_pw_scale = False + + def preset_intrinsics(self, known_intrinsics, msk=None): + if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: + known_intrinsics = [known_intrinsics] + for K in known_intrinsics: + assert K.shape == (3, 3) + self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) + if self.optimize_pp: + self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) + + def preset_focal(self, known_focals, msk=None, requires_grad=False): + self._check_all_imgs_are_selected(msk) + + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal)) + if len(known_focals) == self.n_imgs: + if requires_grad: + self.im_focals.requires_grad_(True) + else: + self.im_focals.requires_grad_(False) + + def preset_principal_point(self, known_pp, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp)) + + self.im_pp.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _no_grad(self, tensor): + assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_break * np.log(focal) + return param + + def get_focals(self): + if self.shared_focal: + log_focals = torch.stack([self.im_focals[0]] * self.n_imgs, dim=0) + else: + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_break).exp() + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.im_focals]) + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return self._pp + 10 * self.im_pp + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().flatten() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(self.im_poses) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + depth = _ravel_hw(depth, self.max_area) + + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def preset_depthmap(self, known_depthmaps, msk=None, requires_grad=False): + self._check_all_imgs_are_selected(msk) + + for idx, depth in zip(self._get_msk_indices(msk), known_depthmaps): + if self.verbose: + print(f' (setting depthmap #{idx})') + self._no_grad(self._set_depthmap(idx, depth)) + + if len(known_depthmaps) == self.n_imgs: + if requires_grad: + self.im_depthmaps.requires_grad_(True) + else: + self.im_depthmaps.requires_grad_(False) + + def _set_init_depthmap(self): + depth_maps = self.get_depthmaps(raw=True) + self.init_depthmap = [dm.detach().clone() for dm in depth_maps] + + def get_init_depthmaps(self, raw=False): + res = self.init_depthmap + if not raw: + res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def get_depthmaps(self, raw=False): + res = self.im_depthmaps.exp() + if not raw: + res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps(raw=True) + + # get pointmaps in camera frame + rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) + # project to world frame + return geotrf(im_poses, rel_ptmaps) + + def depth_to_pts3d_partial(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps() + + # convert focal to (1,2,H,W) constant field + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i]) + # get pointmaps in camera frame + rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])] + # project to world frame + return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] + + def get_pts3d(self, raw=False, **kwargs): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def forward(self, epoch=9999): + pw_poses = self.get_pw_poses() # cam-to-world + + pw_adapt = self.get_adaptors().unsqueeze(1) + proj_pts3d = self.get_pts3d(raw=True) + + # rotate pairwise prediction according to pw_poses + aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) + aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) + + # compute the less + li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i + lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j + + # camera temporal loss + if self.temporal_smoothing_weight > 0: + temporal_smoothing_loss = self.relative_pose_loss(self.get_im_poses()[:-1], self.get_im_poses()[1:]).sum() + else: + temporal_smoothing_loss = 0 + + if self.flow_loss_weight > 0 and epoch >= self.num_total_iter * self.flow_loss_start_epoch: # enable flow loss after certain epoch + R_all, T_all = self.get_im_poses()[:,:3].split([3, 1], dim=-1) + R1, T1 = R_all[self._ei], T_all[self._ei] + R2, T2 = R_all[self._ej], T_all[self._ej] + K_all = self.get_intrinsics() + inv_K_all = torch.linalg.inv(K_all) + K_1, inv_K_1 = K_all[self._ei], inv_K_all[self._ei] + K_2, inv_K_2 = K_all[self._ej], inv_K_all[self._ej] + depth_all = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1) + depth1, depth2 = depth_all[self._ei], depth_all[self._ej] + disp_1, disp_2 = 1 / (depth1 + 1e-6), 1 / (depth2 + 1e-6) + ego_flow_1_2, _ = self.depth_wrapper(R1, T1, R2, T2, disp_1, K_2, inv_K_1) + ego_flow_2_1, _ = self.depth_wrapper(R2, T2, R1, T1, disp_2, K_1, inv_K_2) + dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1) + dynamic_mask1, dynamic_mask2 = dynamic_masks_all[self._ei], dynamic_masks_all[self._ej] + + flow_loss_i = self.flow_loss_fn(ego_flow_1_2[:, :2, ...], self.flow_ij, ~dynamic_mask1, per_pixel_thre=self.pxl_thre) + flow_loss_j = self.flow_loss_fn(ego_flow_2_1[:, :2, ...], self.flow_ji, ~dynamic_mask2, per_pixel_thre=self.pxl_thre) + flow_loss = flow_loss_i + flow_loss_j + print(f'flow loss: {flow_loss.item()}') + if flow_loss.item() > self.flow_loss_thre and self.flow_loss_thre > 0: + flow_loss = 0 + self.flow_loss_flag = True + else: + flow_loss = 0 + + if self.depth_regularize_weight > 0: + init_depthmaps = torch.stack(self.get_init_depthmaps(raw=False)).unsqueeze(1) + depthmaps = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1) + dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1) + depth_prior_loss = self.depth_regularizer(depthmaps, init_depthmaps, dynamic_masks_all) + else: + depth_prior_loss = 0 + + loss = (li + lj) * 1 + self.temporal_smoothing_weight * temporal_smoothing_loss + \ + self.flow_loss_weight * flow_loss + self.depth_regularize_weight * depth_prior_loss + + return loss + + def relative_pose_loss(self, RT1, RT2): + relative_RT = torch.matmul(torch.inverse(RT1), RT2) + rotation_diff = relative_RT[:, :3, :3] + translation_diff = relative_RT[:, :3, 3] + + # Frobenius norm for rotation difference + rotation_loss = torch.norm(rotation_diff - (torch.eye(3, device=RT1.device)), dim=(1, 2)) + + # L2 norm for translation difference + translation_loss = torch.norm(translation_diff, dim=1) + + # Combined loss (one can weigh these differently if needed) + pose_loss = rotation_loss + translation_loss * self.translation_weight + return pose_loss + +def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): + pp = pp.unsqueeze(1) + focal = focal.unsqueeze(1) + assert focal.shape == (len(depth), 1, 1) + assert pp.shape == (len(depth), 1, 2) + assert pixel_grid.shape == depth.shape + (2,) + depth = depth.unsqueeze(-1) + return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) + + +def ParameterStack(params, keys=None, is_param=None, fill=0): + if keys is not None: + params = [params[k] for k in keys] + + if fill > 0: + params = [_ravel_hw(p, fill) for p in params] + + requires_grad = params[0].requires_grad + assert all(p.requires_grad == requires_grad for p in params) + + params = torch.stack(list(params)).float().detach() + if is_param or requires_grad: + params = nn.Parameter(params) + params.requires_grad_(requires_grad) + return params + + +def _ravel_hw(tensor, fill=0): + # ravel H,W + tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) + + if len(tensor) < fill: + tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) + return tensor + + +def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + return minf*focal_base, maxf*focal_base + + +def apply_mask(img, msk): + img = img.copy() + img[msk] = 0 + return img + +def ordered_ratio(disp_a, disp_b, mask=None): + ratio_a = torch.maximum(disp_a, disp_b) / \ + (torch.minimum(disp_a, disp_b)+1e-5) + if mask is not None: + ratio_a = ratio_a[mask] + return ratio_a - 1 \ No newline at end of file diff --git a/dust3r/cloud_opt_flow/pair_viewer.py b/dust3r/cloud_opt_flow/pair_viewer.py new file mode 100644 index 0000000000000000000000000000000000000000..3a08345b07d07dbd116d6a54ff046578da710929 --- /dev/null +++ b/dust3r/cloud_opt_flow/pair_viewer.py @@ -0,0 +1,133 @@ +# -------------------------------------------------------- +# Dummy optimizer for visualizing pairs +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn +import cv2 + +from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer +from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates +from dust3r.cloud_opt_flow.commons import edge_str +from dust3r.post_process import estimate_focal_knowing_depth + + +class PairViewer (BasePCOptimizer): + """ + This a Dummy Optimizer. + To use only when the goal is to visualize the results for a pair of images (with is_symmetrized) + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.is_symmetrized and self.n_edges == 2 + self.has_im_poses = True + + # compute all parameters directly from raw input + self.focals = [] + self.pp = [] + rel_poses = [] + confs = [] + for i in range(self.n_imgs): + conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean()) + if self.verbose: + print(f' - {conf=:.3} for edge {i}-{1-i}') + confs.append(conf) + + H, W = self.imshapes[i] + pts3d = self.pred_i[edge_str(i, 1-i)] + pp = torch.tensor((W/2, H/2)) + focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld')) + self.focals.append(focal) + self.pp.append(pp) + + # estimate the pose of pts1 in image 2 + pixels = np.mgrid[:W, :H].T.astype(np.float32) + pts3d = self.pred_j[edge_str(1-i, i)].numpy() + assert pts3d.shape[:2] == (H, W) + msk = self.get_masks()[i].numpy() + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + try: + res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + success, R, T, inliers = res + assert success + + R = cv2.Rodrigues(R)[0] # world to cam + pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world + except: + pose = np.eye(4) + rel_poses.append(torch.from_numpy(pose.astype(np.float32))) + + # let's use the pair with the most confidence + if confs[0] > confs[1]: + # ptcloud is expressed in camera1 + self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1 + self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]] + else: + # ptcloud is expressed in camera2 + self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2 + self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]] + + self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False) + self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False) + self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False) + self.depth = nn.ParameterList(self.depth) + for p in self.parameters(): + p.requires_grad = False + + def _set_depthmap(self, idx, depth, force=False): + if self.verbose: + print('_set_depthmap is ignored in PairViewer') + return + + def get_depthmaps(self, raw=False): + depth = [d.to(self.device) for d in self.depth] + return depth + + def _set_focal(self, idx, focal, force=False): + self.focals[idx] = focal + + def get_focals(self): + return self.focals + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.focals]) + + def get_principal_points(self): + return self.pp + + def get_intrinsics(self): + focals = self.get_focals() + pps = self.get_principal_points() + K = torch.zeros((len(focals), 3, 3), device=self.device) + for i in range(len(focals)): + K[i, 0, 0] = K[i, 1, 1] = focals[i] + K[i, :2, 2] = pps[i] + K[i, 2, 2] = 1 + return K + + def get_im_poses(self): + return self.im_poses + + def depth_to_pts3d(self, raw_pts=False): + pts3d = [] + if raw_pts: + im_poses = self.get_im_poses() + if im_poses[0].sum() == 4: + pts3d.append(self.pred_i['0_1']) + pts3d.append(self.pred_j['0_1']) + else: + pts3d.append(self.pred_j['1_0']) + pts3d.append(self.pred_i['1_0']) + else: + for d, intrinsics, im_pose in zip(self.depth, self.get_intrinsics(), self.get_im_poses()): + pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(), + intrinsics.cpu().numpy(), + im_pose.cpu().numpy()) + pts3d.append(torch.from_numpy(pts).to(device=self.device)) + return pts3d + + def forward(self): + return float('nan') diff --git a/dust3r/datasets/__init__.py b/dust3r/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..35c3296f34cb53c5193677edf6891486f6ed00c1 --- /dev/null +++ b/dust3r/datasets/__init__.py @@ -0,0 +1,54 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +from .utils.transforms import * +from .base.batched_sampler import BatchedRandomSampler # noqa +# from .arkitscenes import ARKitScenes # noqa +# from .blendedmvs import BlendedMVS # noqa +# from .co3d import Co3d # noqa +# from .habitat import Habitat # noqa +# from .megadepth import MegaDepth # noqa +# from .scannetpp import ScanNetpp # noqa +# from .staticthings3d import StaticThings3D # noqa +# from .waymo import Waymo # noqa +# from .wildrgbd import WildRGBD # noqa +from .my_spring import SpringDatasets +from .my_sceneflow import SceneFlowDatasets +from .my_vkitti2 import VkittiDatasets +from .my_PointOdyssey import PointodysseyDatasets +from .my_Tartanair import TartanairDatasets +from .my_sintel import SintelDatasets +def get_data_loader(dataset, batch_size, num_workers=8, shuffle=True, drop_last=True, pin_mem=True): + import torch + from croco.utils.misc import get_world_size, get_rank + + # pytorch dataset + if isinstance(dataset, str): + dataset = eval(dataset) + + world_size = get_world_size() + rank = get_rank() + + try: + sampler = dataset.make_sampler(batch_size, shuffle=shuffle, world_size=world_size, + rank=rank, drop_last=drop_last) + except (AttributeError, NotImplementedError): + # not avail for this dataset + if torch.distributed.is_initialized(): + sampler = torch.utils.data.DistributedSampler( + dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, drop_last=drop_last + ) + elif shuffle: + sampler = torch.utils.data.RandomSampler(dataset) + else: + sampler = torch.utils.data.SequentialSampler(dataset) + + data_loader = torch.utils.data.DataLoader( + dataset, + sampler=sampler, + batch_size=batch_size, + num_workers=num_workers, + pin_memory=pin_mem, + drop_last=drop_last, + ) + + return data_loader diff --git a/dust3r/datasets/__pycache__/__init__.cpython-311.pyc b/dust3r/datasets/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7c981b24c563c806cd3928821b079e0eb28633a3 Binary files /dev/null and b/dust3r/datasets/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_PointOdyssey.cpython-311.pyc b/dust3r/datasets/__pycache__/my_PointOdyssey.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cded8ed405f6c7417cf25e2fbe5c86923bfbd239 Binary files /dev/null and b/dust3r/datasets/__pycache__/my_PointOdyssey.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_Tartanair.cpython-311.pyc b/dust3r/datasets/__pycache__/my_Tartanair.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eff3e52f4098ee367c90925bab29fe899b2329e1 Binary files /dev/null and b/dust3r/datasets/__pycache__/my_Tartanair.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_sceneflow.cpython-311.pyc b/dust3r/datasets/__pycache__/my_sceneflow.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e710ce12d2a480181d94dcd3c7453088c987d450 Binary files /dev/null and b/dust3r/datasets/__pycache__/my_sceneflow.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_sintel.cpython-311.pyc b/dust3r/datasets/__pycache__/my_sintel.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41b0f394c9152974ca965d5d07937747074a182f Binary files /dev/null and b/dust3r/datasets/__pycache__/my_sintel.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_spring.cpython-311.pyc b/dust3r/datasets/__pycache__/my_spring.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78d9ba1b067c27e7801a2afe259a93dc4a9189ce Binary files /dev/null and b/dust3r/datasets/__pycache__/my_spring.cpython-311.pyc differ diff --git a/dust3r/datasets/__pycache__/my_vkitti2.cpython-311.pyc b/dust3r/datasets/__pycache__/my_vkitti2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f55baccd83d38410a4d3beb09ccd819740b10f8c Binary files /dev/null and b/dust3r/datasets/__pycache__/my_vkitti2.cpython-311.pyc differ diff --git a/dust3r/datasets/arkitscenes.py b/dust3r/datasets/arkitscenes.py new file mode 100644 index 0000000000000000000000000000000000000000..4fad51acdc18b82cd6a4d227de0dac3b25783e33 --- /dev/null +++ b/dust3r/datasets/arkitscenes.py @@ -0,0 +1,102 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed arkitscenes +# dataset at https://github.com/apple/ARKitScenes - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License https://github.com/apple/ARKitScenes/tree/main?tab=readme-ov-file#license +# See datasets_preprocess/preprocess_arkitscenes.py +# -------------------------------------------------------- +import os.path as osp +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ARKitScenes(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + if split == "train": + self.split = "Training" + elif split == "test": + self.split = "Test" + else: + raise ValueError("") + + self.loaded_data = self._load_data(self.split) + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, split, 'all_metadata.npz')) as data: + self.scenes = data['scenes'] + self.sceneids = data['sceneids'] + self.images = data['images'] + self.intrinsics = data['intrinsics'].astype(np.float32) + self.trajectories = data['trajectories'].astype(np.float32) + self.pairs = data['pairs'][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2(osp.join(scene_dir, 'vga_wide', basename.replace('.png', '.jpg'))) + # Load depthmap + depthmap = imread_cv2(osp.join(scene_dir, 'lowres_depth', basename), cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx) + + views.append(dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset='arkitscenes', + label=self.scenes[scene_id] + '_' + basename, + instance=f'{str(idx)}_{str(view_idx)}', + )) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = ARKitScenes(split='train', ROOT="data/arkitscenes_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/base/__init__.py b/dust3r/datasets/base/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/dust3r/datasets/base/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/dust3r/datasets/base/__pycache__/__init__.cpython-311.pyc b/dust3r/datasets/base/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d2d9feff6bcca01c34f2f726495431fb22760f6 Binary files /dev/null and b/dust3r/datasets/base/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/datasets/base/__pycache__/base_stereo_view_dataset.cpython-311.pyc b/dust3r/datasets/base/__pycache__/base_stereo_view_dataset.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..77af7e6bcf2b15fc296271e466bb3997a95854a5 Binary files /dev/null and b/dust3r/datasets/base/__pycache__/base_stereo_view_dataset.cpython-311.pyc differ diff --git a/dust3r/datasets/base/__pycache__/batched_sampler.cpython-311.pyc b/dust3r/datasets/base/__pycache__/batched_sampler.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..12757e884e148e6d3c88a19f8ecad082392849e1 Binary files /dev/null and b/dust3r/datasets/base/__pycache__/batched_sampler.cpython-311.pyc differ diff --git a/dust3r/datasets/base/__pycache__/easy_dataset.cpython-311.pyc b/dust3r/datasets/base/__pycache__/easy_dataset.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a33cc720852b49cf762046705606f0ab9ed473c9 Binary files /dev/null and b/dust3r/datasets/base/__pycache__/easy_dataset.cpython-311.pyc differ diff --git a/dust3r/datasets/base/base_stereo_view_dataset.py b/dust3r/datasets/base/base_stereo_view_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..d296657849b89273fb0fd85f58386ed927133463 --- /dev/null +++ b/dust3r/datasets/base/base_stereo_view_dataset.py @@ -0,0 +1,283 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# base class for implementing datasets +# -------------------------------------------------------- +import PIL +import numpy as np +import torch + +from dust3r.datasets.base.easy_dataset import EasyDataset +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates +import dust3r.datasets.utils.cropping as cropping + + +class BaseStereoViewDataset(EasyDataset): + """ Define all basic options. + + Usage: + class MyDataset (BaseStereoViewDataset): + def _get_views(self, idx, rng): + # overload here + views = [] + views.append(dict(img=, ...)) + return views + """ + + def __init__(self, *, # only keyword arguments + split=None, + resolution=None, # square_size or (width, height) or list of [(width,height), ...] + transform=ImgNorm, + aug_crop=False, + aug_f=False, + seed=None, + depth_prior_name='depthpro'): + self.num_views = 2 + self.split = split + self.depth_prior_name = depth_prior_name + self._set_resolutions(resolution) + self.aug_f = aug_f + self.transform = transform + if isinstance(transform, str): + transform = eval(transform) + + self.aug_crop = aug_crop + self.seed = seed + + def __len__(self): + return len(self.scenes) + + def get_stats(self): + return f"{len(self)} pairs" + + def __repr__(self): + resolutions_str = '['+';'.join(f'{w}x{h}' for w, h in self._resolutions)+']' + return f"""{type(self).__name__}({self.get_stats()}, + {self.split=}, + {self.seed=}, + resolutions={resolutions_str}, + {self.transform=})""".replace('self.', '').replace('\n', '').replace(' ', '') + + def _get_views(self, idx, resolution, rng): + raise NotImplementedError() + + def pixel_to_pointcloud(self, depth_map, focal_length_px): + """ + Convert a depth map to a 3D point cloud. + + Args: + depth_map (numpy.ndarray): The input depth map with shape (H, W), where each value represents the depth at that pixel. + focal_length_px (float): The focal length of the camera in pixels. + + Returns: + numpy.ndarray: The resulting point cloud with shape (H, W, 3), where each point is represented by (X, Y, Z). + """ + height, width = depth_map.shape + cx = width / 2 + cy = height / 2 + + # Create meshgrid for pixel coordinates + u = np.arange(width) + v = np.arange(height) + u, v = np.meshgrid(u, v) + #depth_map[depth_map>100]=0 + # Convert pixel coordinates to camera coordinates + Z = depth_map + X = (u - cx) * Z / focal_length_px + Y = (v - cy) * Z / focal_length_px + + # Stack the coordinates into a point cloud (H, W, 3) + point_cloud = np.dstack((X, Y, Z)).astype(np.float32) + point_cloud = self.normalize_pointcloud(point_cloud) + # Optional: Filter out invalid depth values (if necessary) + # point_cloud = point_cloud[depth_map > 0] + #print(point_cloud) + return point_cloud + + def normalize_pointcloud(self, point_cloud): + min_vals = np.min(point_cloud, axis=(0, 1)) + max_vals = np.max(point_cloud, axis=(0, 1)) + #print(min_vals, max_vals) + normalized_point_cloud = (point_cloud - min_vals) / (max_vals - min_vals) + return normalized_point_cloud + + def __getitem__(self, idx): + if isinstance(idx, tuple): + # the idx is specifying the aspect-ratio + idx, ar_idx = idx + else: + assert len(self._resolutions) == 1 + ar_idx = 0 + + # set-up the rng + if self.seed: # reseed for each __getitem__ + self._rng = np.random.default_rng(seed=self.seed + idx) + elif not hasattr(self, '_rng'): + seed = torch.initial_seed() # this is different for each dataloader process + self._rng = np.random.default_rng(seed=seed) + + # over-loaded code + resolution = self._resolutions[ar_idx] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) + #print(ar_idx, self.dataset_label,resolution) + views = self._get_views(idx, resolution, self._rng) + assert len(views) == self.num_views + + # check data-types + for v, view in enumerate(views): + assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" + view['idx'] = (idx, ar_idx, v) + + # encode the image + width, height = view['img'].size + view['true_shape'] = np.int32((height, width)) + view['img'] = self.transform(view['img']) + + assert 'camera_intrinsics' in view + if 'camera_pose' not in view: + view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) + else: + assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' + assert 'pts3d' not in view + assert 'valid_mask' not in view + assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' + pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) + + view['pts3d'] = pts3d + view['valid_mask'] = valid_mask & (np.isfinite(pts3d).all(axis=-1))[..., None] + + # check all datatypes + for key, val in view.items(): + res, err_msg = is_good_type(key, val) + assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" + K = view['camera_intrinsics'] + + # last thing done! + for view in views: + # transpose to make sure all views are the same size + transpose_to_landscape(view) + # this allows to check whether the RNG is is the same state each time + view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') + return views + + def _set_resolutions(self, resolutions): + assert resolutions is not None, 'undefined resolution' + + if not isinstance(resolutions, list): + resolutions = [resolutions] + + self._resolutions = [] + for resolution in resolutions: + if isinstance(resolution, int): + width = height = resolution + else: + width, height = resolution + assert isinstance(width, int), f'Bad type for {width=} {type(width)=}, should be int' + assert isinstance(height, int), f'Bad type for {height=} {type(height)=}, should be int' + assert width >= height + self._resolutions.append((width, height)) + + def _crop_resize_if_necessary(self, image, depthmap, pred_depth, intrinsics, resolution, rng=None, info=None): + """ This function: + - first downsizes the image with LANCZOS inteprolation, + which is better than bilinear interpolation in + """ + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + + # downscale with lanczos interpolation so that image.size == resolution + # cropping centered on the principal point + W, H = image.size + cx, cy = intrinsics[:2, 2].round().astype(int) + #print(cx, W-cx,cy, H-cy) + min_margin_x = min(cx, W-cx) + min_margin_y = min(cy, H-cy) + # scale = rng.choice([0.5, 0.75, 1, 1.25], size=1, replace=False)[0] + # #print(scale) + # crop_resolution = (resolution[0]*scale, resolution[1]*scale) + # #print(crop_resolution) + # assert min_margin_x > W/5, f'Bad principal point in view={info}' + # assert min_margin_y > H/5, f'Bad principal point in view={info}' + # if rng.choice([0, 1], size=1, replace=False)[0]==0: + # min_margin_x = min(min_margin_x, int(crop_resolution[0]/2)) + # min_margin_y = min(min_margin_y, int(crop_resolution[1]/2)) + + + # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) + l, t = cx - min_margin_x, cy - min_margin_y + r, b = cx + min_margin_x, cy + min_margin_y + crop_bbox = (l, t, r, b) + #print(resolution, crop_resolution,crop_bbox) + # print(crop_bbox) + image, depthmap, pred_depth, intrinsics = cropping.crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_bbox) + #print(image.size) + # transpose the resolution if necessary + W, H = image.size # new size + assert resolution[0] >= resolution[1] + if H > 1.1*W: + # image is portrait mode + resolution = resolution[::-1] + elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]: + # image is square, so we chose (portrait, landscape) randomly + if rng.integers(2): + resolution = resolution[::-1] + + # center-crop + target_resolution = np.array(resolution) + if self.aug_f: + crop_scale = rng.choice([0.8, 0.9, 1.0], size=1, replace=False)[0] + + image, depthmap, pred_depth, intrinsics = cropping.center_crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_scale) + + if self.aug_crop > 1: + target_resolution += rng.integers(0, self.aug_crop) + image, depthmap, pred_depth, intrinsics = cropping.rescale_image_depthmap(image, depthmap, pred_depth, intrinsics, target_resolution) + #print(image.size) + # actual cropping (if necessary) with bilinear interpolation + intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5) + crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) + image, depthmap, pred_depth, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_bbox) + #print(image.size) + return image, depthmap, pred_depth, intrinsics2 + + +def is_good_type(key, v): + """ returns (is_good, err_msg) + """ + if isinstance(v, (str, int, tuple)): + return True, None + if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8): + return False, f"bad {v.dtype=}" + return True, None + + +def view_name(view, batch_index=None): + def sel(x): return x[batch_index] if batch_index not in (None, slice(None)) else x + db = sel(view['dataset']) + label = sel(view['label']) + instance = sel(view['instance']) + return f"{db}/{label}/{instance}" + + +def transpose_to_landscape(view): + height, width = view['true_shape'] + + if width < height: + # rectify portrait to landscape + assert view['img'].shape == (3, height, width) + view['img'] = view['img'].swapaxes(1, 2) + + assert view['valid_mask'].shape == (height, width) + view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) + + assert view['depthmap'].shape == (height, width) + view['depthmap'] = view['depthmap'].swapaxes(0, 1) + + assert view['pts3d'].shape == (height, width, 3) + view['pts3d'] = view['pts3d'].swapaxes(0, 1) + + assert view['pred_depth'].shape == (height, width) + view['pred_depth'] = view['pred_depth'].swapaxes(0, 1) + # transpose x and y pixels + view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] diff --git a/dust3r/datasets/base/batched_sampler.py b/dust3r/datasets/base/batched_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..85f58a65d41bb8101159e032d5b0aac26a7cf1a1 --- /dev/null +++ b/dust3r/datasets/base/batched_sampler.py @@ -0,0 +1,74 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Random sampling under a constraint +# -------------------------------------------------------- +import numpy as np +import torch + + +class BatchedRandomSampler: + """ Random sampling under a constraint: each sample in the batch has the same feature, + which is chosen randomly from a known pool of 'features' for each batch. + + For instance, the 'feature' could be the image aspect-ratio. + + The index returned is a tuple (sample_idx, feat_idx). + This sampler ensures that each series of `batch_size` indices has the same `feat_idx`. + """ + + def __init__(self, dataset, batch_size, pool_size, world_size=1, rank=0, drop_last=True): + self.batch_size = batch_size + self.pool_size = pool_size + + self.len_dataset = N = len(dataset) + self.total_size = round_by(N, batch_size*world_size) if drop_last else N + assert world_size == 1 or drop_last, 'must drop the last batch in distributed mode' + + # distributed sampler + self.world_size = world_size + self.rank = rank + self.epoch = None + + def __len__(self): + return self.total_size // self.world_size + + def set_epoch(self, epoch): + self.epoch = epoch + + def __iter__(self): + # prepare RNG + if self.epoch is None: + assert self.world_size == 1 and self.rank == 0, 'use set_epoch() if distributed mode is used' + seed = int(torch.empty((), dtype=torch.int64).random_().item()) + else: + seed = self.epoch + 777 + rng = np.random.default_rng(seed=seed) + + # random indices (will restart from 0 if not drop_last) + sample_idxs = np.arange(self.total_size) + rng.shuffle(sample_idxs) + + # random feat_idxs (same across each batch) + n_batches = (self.total_size+self.batch_size-1) // self.batch_size + feat_idxs = rng.integers(self.pool_size, size=n_batches) + feat_idxs = np.broadcast_to(feat_idxs[:, None], (n_batches, self.batch_size)) + feat_idxs = feat_idxs.ravel()[:self.total_size] + + # put them together + idxs = np.c_[sample_idxs, feat_idxs] # shape = (total_size, 2) + + # Distributed sampler: we select a subset of batches + # make sure the slice for each node is aligned with batch_size + size_per_proc = self.batch_size * ((self.total_size + self.world_size * + self.batch_size-1) // (self.world_size * self.batch_size)) + idxs = idxs[self.rank*size_per_proc: (self.rank+1)*size_per_proc] + + yield from (tuple(idx) for idx in idxs) + + +def round_by(total, multiple, up=False): + if up: + total = total + multiple-1 + return (total//multiple) * multiple diff --git a/dust3r/datasets/base/easy_dataset.py b/dust3r/datasets/base/easy_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..4939a88f02715a1f80be943ddb6d808e1be84db7 --- /dev/null +++ b/dust3r/datasets/base/easy_dataset.py @@ -0,0 +1,157 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# A dataset base class that you can easily resize and combine. +# -------------------------------------------------------- +import numpy as np +from dust3r.datasets.base.batched_sampler import BatchedRandomSampler + + +class EasyDataset: + """ a dataset that you can easily resize and combine. + Examples: + --------- + 2 * dataset ==> duplicate each element 2x + + 10 @ dataset ==> set the size to 10 (random sampling, duplicates if necessary) + + dataset1 + dataset2 ==> concatenate datasets + """ + + def __add__(self, other): + return CatDataset([self, other]) + + def __rmul__(self, factor): + return MulDataset(factor, self) + + def __rmatmul__(self, factor): + return ResizedDataset(factor, self) + + def set_epoch(self, epoch): + pass # nothing to do by default + + def make_sampler(self, batch_size, shuffle=True, world_size=1, rank=0, drop_last=True): + if not (shuffle): + raise NotImplementedError() # cannot deal yet + num_of_aspect_ratios = len(self._resolutions) + return BatchedRandomSampler(self, batch_size, num_of_aspect_ratios, world_size=world_size, rank=rank, drop_last=drop_last) + + +class MulDataset (EasyDataset): + """ Artifically augmenting the size of a dataset. + """ + multiplicator: int + + def __init__(self, multiplicator, dataset): + assert isinstance(multiplicator, int) and multiplicator > 0 + self.multiplicator = multiplicator + self.dataset = dataset + + def __len__(self): + return self.multiplicator * len(self.dataset) + + def __repr__(self): + return f'{self.multiplicator}*{repr(self.dataset)}' + + def __getitem__(self, idx): + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[idx // self.multiplicator, other] + else: + return self.dataset[idx // self.multiplicator] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class ResizedDataset (EasyDataset): + """ Artifically changing the size of a dataset. + """ + new_size: int + + def __init__(self, new_size, dataset): + assert isinstance(new_size, int) and new_size > 0 + self.new_size = new_size + self.dataset = dataset + + def __len__(self): + return self.new_size + + def __repr__(self): + size_str = str(self.new_size) + for i in range((len(size_str)-1) // 3): + sep = -4*i-3 + size_str = size_str[:sep] + '_' + size_str[sep:] + return f'{size_str} @ {repr(self.dataset)}' + + def set_epoch(self, epoch): + # this random shuffle only depends on the epoch + rng = np.random.default_rng(seed=epoch+777) + + # shuffle all indices + perm = rng.permutation(len(self.dataset)) + + # rotary extension until target size is met + shuffled_idxs = np.concatenate([perm] * (1 + (len(self)-1) // len(self.dataset))) + self._idxs_mapping = shuffled_idxs[:self.new_size] + + assert len(self._idxs_mapping) == self.new_size + + def __getitem__(self, idx): + assert hasattr(self, '_idxs_mapping'), 'You need to call dataset.set_epoch() to use ResizedDataset.__getitem__()' + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[self._idxs_mapping[idx], other] + else: + return self.dataset[self._idxs_mapping[idx]] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class CatDataset (EasyDataset): + """ Concatenation of several datasets + """ + + def __init__(self, datasets): + for dataset in datasets: + assert isinstance(dataset, EasyDataset) + self.datasets = datasets + self._cum_sizes = np.cumsum([len(dataset) for dataset in datasets]) + + def __len__(self): + return self._cum_sizes[-1] + + def __repr__(self): + # remove uselessly long transform + return ' + '.join(repr(dataset).replace(',transform=Compose( ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))', '') for dataset in self.datasets) + + def set_epoch(self, epoch): + for dataset in self.datasets: + dataset.set_epoch(epoch) + + def __getitem__(self, idx): + other = None + if isinstance(idx, tuple): + idx, other = idx + + if not (0 <= idx < len(self)): + raise IndexError() + + db_idx = np.searchsorted(self._cum_sizes, idx, 'right') + dataset = self.datasets[db_idx] + new_idx = idx - (self._cum_sizes[db_idx - 1] if db_idx > 0 else 0) + + if other is not None: + new_idx = (new_idx, other) + return dataset[new_idx] + + @property + def _resolutions(self): + resolutions = self.datasets[0]._resolutions + for dataset in self.datasets[1:]: + assert tuple(dataset._resolutions) == tuple(resolutions) + return resolutions diff --git a/dust3r/datasets/blendedmvs.py b/dust3r/datasets/blendedmvs.py new file mode 100644 index 0000000000000000000000000000000000000000..93e68c28620cc47a7b1743834e45f82d576126d0 --- /dev/null +++ b/dust3r/datasets/blendedmvs.py @@ -0,0 +1,104 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed BlendedMVS +# dataset at https://github.com/YoYo000/BlendedMVS +# See datasets_preprocess/preprocess_blendedmvs.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class BlendedMVS (BaseStereoViewDataset): + """ Dataset of outdoor street scenes, 5 images each time + """ + + def __init__(self, *args, ROOT, split=None, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data(split) + + def _load_data(self, split): + pairs = np.load(osp.join(self.ROOT, 'blendedmvs_pairs.npy')) + if split is None: + selection = slice(None) + if split == 'train': + # select 90% of all scenes + selection = (pairs['seq_low'] % 10) > 0 + if split == 'val': + # select 10% of all scenes + selection = (pairs['seq_low'] % 10) == 0 + self.pairs = pairs[selection] + + # list of all scenes + self.scenes = np.unique(self.pairs['seq_low']) # low is unique enough + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.scenes)} scenes' + + def _get_views(self, pair_idx, resolution, rng): + seqh, seql, img1, img2, score = self.pairs[pair_idx] + + seq = f"{seqh:08x}{seql:016x}" + seq_path = osp.join(self.ROOT, seq) + + views = [] + + for view_index in [img1, img2]: + impath = f"{view_index:08n}" + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params['R_cam2world'] + camera_pose[:3, 3] = camera_params['t_cam2world'] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='BlendedMVS', + label=osp.relpath(seq_path, self.ROOT), + instance=impath)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = BlendedMVS(split='train', ROOT="data/blendedmvs_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/co3d.py b/dust3r/datasets/co3d.py new file mode 100644 index 0000000000000000000000000000000000000000..2ea5c8555d34b776e7a48396dcd0eecece713e34 --- /dev/null +++ b/dust3r/datasets/co3d.py @@ -0,0 +1,165 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed Co3d_v2 +# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International +# See datasets_preprocess/preprocess_co3d.py +# -------------------------------------------------------- +import os.path as osp +import json +import itertools +from collections import deque + +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Co3d(BaseStereoViewDataset): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert mask_bg in (True, False, 'rand') + self.mask_bg = mask_bg + self.dataset_label = 'Co3d_v2' + + # load all scenes + with open(osp.join(self.ROOT, f'selected_seqs_{self.split}.json'), 'r') as f: + self.scenes = json.load(f) + self.scenes = {k: v for k, v in self.scenes.items() if len(v) > 0} + self.scenes = {(k, k2): v2 for k, v in self.scenes.items() + for k2, v2 in v.items()} + self.scene_list = list(self.scenes.keys()) + + # for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees) + # we prepare all combinations such that i-j = +/- [5, 10, .., 90] degrees + self.combinations = [(i, j) + for i, j in itertools.combinations(range(100), 2) + if 0 < abs(i - j) <= 30 and abs(i - j) % 5 == 0] + + self.invalidate = {scene: {} for scene in self.scene_list} + + def __len__(self): + return len(self.scene_list) * len(self.combinations) + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.npz') + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.jpg') + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'depths', f'frame{view_idx:06n}.jpg.geometric.png') + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'masks', f'frame{view_idx:06n}.png') + + def _read_depthmap(self, depthpath, input_metadata): + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = (depthmap.astype(np.float32) / 65535) * np.nan_to_num(input_metadata['maximum_depth']) + return depthmap + + def _get_views(self, idx, resolution, rng): + # choose a scene + obj, instance = self.scene_list[idx // len(self.combinations)] + image_pool = self.scenes[obj, instance] + im1_idx, im2_idx = self.combinations[idx % len(self.combinations)] + + # add a bit of randomness + last = len(image_pool) - 1 + + if resolution not in self.invalidate[obj, instance]: # flag invalid images + self.invalidate[obj, instance][resolution] = [False for _ in range(len(image_pool))] + + # decide now if we mask the bg + mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2)) + + views = [] + imgs_idxs = [max(0, min(im_idx + rng.integers(-4, 5), last)) for im_idx in [im2_idx, im1_idx]] + imgs_idxs = deque(imgs_idxs) + while len(imgs_idxs) > 0: # some images (few) have zero depth + im_idx = imgs_idxs.pop() + + if self.invalidate[obj, instance][resolution][im_idx]: + # search for a valid image + random_direction = 2 * rng.choice(2) - 1 + for offset in range(1, len(image_pool)): + tentative_im_idx = (im_idx + (random_direction * offset)) % len(image_pool) + if not self.invalidate[obj, instance][resolution][tentative_im_idx]: + im_idx = tentative_im_idx + break + + view_idx = image_pool[im_idx] + + impath = self._get_impath(obj, instance, view_idx) + depthpath = self._get_depthpath(obj, instance, view_idx) + + # load camera params + metadata_path = self._get_metadatapath(obj, instance, view_idx) + input_metadata = np.load(metadata_path) + camera_pose = input_metadata['camera_pose'].astype(np.float32) + intrinsics = input_metadata['camera_intrinsics'].astype(np.float32) + + # load image and depth + rgb_image = imread_cv2(impath) + depthmap = self._read_depthmap(depthpath, input_metadata) + + if mask_bg: + # load object mask + maskpath = self._get_maskpath(obj, instance, view_idx) + maskmap = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + + # update the depthmap with mask + depthmap *= maskmap + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath) + + num_valid = (depthmap > 0.0).sum() + if num_valid == 0: + # problem, invalidate image and retry + self.invalidate[obj, instance][resolution][im_idx] = True + imgs_idxs.append(im_idx) + continue + + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=osp.join(obj, instance), + instance=osp.split(impath)[1], + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Co3d(split='train', ROOT="data/co3d_subset_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/habitat.py b/dust3r/datasets/habitat.py new file mode 100644 index 0000000000000000000000000000000000000000..11ce8a0ffb2134387d5fb794df89834db3ea8c9f --- /dev/null +++ b/dust3r/datasets/habitat.py @@ -0,0 +1,107 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed habitat +# dataset at https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +# See datasets_preprocess/habitat for more details +# -------------------------------------------------------- +import os.path as osp +import os +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # noqa +import cv2 # noqa +import numpy as np +from PIL import Image +import json + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset + + +class Habitat(BaseStereoViewDataset): + def __init__(self, size, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split is not None + # loading list of scenes + with open(osp.join(self.ROOT, f'Habitat_{size}_scenes_{self.split}.txt')) as f: + self.scenes = f.read().splitlines() + self.instances = list(range(1, 5)) + + def filter_scene(self, label, instance=None): + if instance: + subscene, instance = instance.split('_') + label += '/' + subscene + self.instances = [int(instance) - 1] + valid = np.bool_([scene.startswith(label) for scene in self.scenes]) + assert sum(valid), 'no scene was selected for {label=} {instance=}' + self.scenes = [scene for i, scene in enumerate(self.scenes) if valid[i]] + + def _get_views(self, idx, resolution, rng): + scene = self.scenes[idx] + data_path, key = osp.split(osp.join(self.ROOT, scene)) + views = [] + two_random_views = [0, rng.choice(self.instances)] # view 0 is connected with all other views + for view_index in two_random_views: + # load the view (and use the next one if this one's broken) + for ii in range(view_index, view_index + 5): + image, depthmap, intrinsics, camera_pose = self._load_one_view(data_path, key, ii % 5, resolution, rng) + if np.isfinite(camera_pose).all(): + break + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='Habitat', + label=osp.relpath(data_path, self.ROOT), + instance=f"{key}_{view_index}")) + return views + + def _load_one_view(self, data_path, key, view_index, resolution, rng): + view_index += 1 # file indices starts at 1 + impath = osp.join(data_path, f"{key}_{view_index}.jpeg") + image = Image.open(impath) + + depthmap_filename = osp.join(data_path, f"{key}_{view_index}_depth.exr") + depthmap = cv2.imread(depthmap_filename, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH) + + camera_params_filename = osp.join(data_path, f"{key}_{view_index}_camera_params.json") + with open(camera_params_filename, 'r') as f: + camera_params = json.load(f) + + intrinsics = np.float32(camera_params['camera_intrinsics']) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params['R_cam2world'] + camera_pose[:3, 3] = camera_params['t_cam2world'] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=impath) + return image, depthmap, intrinsics, camera_pose + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Habitat(1_000_000, split='train', ROOT="data/habitat_processed", + resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/megadepth.py b/dust3r/datasets/megadepth.py new file mode 100644 index 0000000000000000000000000000000000000000..8131498b76d855e5293fe79b3686fc42bf87eea8 --- /dev/null +++ b/dust3r/datasets/megadepth.py @@ -0,0 +1,123 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed MegaDepth +# dataset at https://www.cs.cornell.edu/projects/megadepth/ +# See datasets_preprocess/preprocess_megadepth.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class MegaDepth(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self.loaded_data = self._load_data(self.split) + + if self.split is None: + pass + elif self.split == 'train': + self.select_scene(('0015', '0022'), opposite=True) + elif self.split == 'val': + self.select_scene(('0015', '0022')) + else: + raise ValueError(f'bad {self.split=}') + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, 'all_metadata.npz')) as data: + self.all_scenes = data['scenes'] + self.all_images = data['images'] + self.pairs = data['pairs'] + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.all_scenes)} scenes' + + def select_scene(self, scene, *instances, opposite=False): + scenes = (scene,) if isinstance(scene, str) else tuple(scene) + scene_id = [s.startswith(scenes) for s in self.all_scenes] + assert any(scene_id), 'no scene found' + + valid = np.in1d(self.pairs['scene_id'], np.nonzero(scene_id)[0]) + if instances: + image_id = [i.startswith(instances) for i in self.all_images] + image_id = np.nonzero(image_id)[0] + assert len(image_id), 'no instance found' + # both together? + if len(instances) == 2: + valid &= np.in1d(self.pairs['im1_id'], image_id) & np.in1d(self.pairs['im2_id'], image_id) + else: + valid &= np.in1d(self.pairs['im1_id'], image_id) | np.in1d(self.pairs['im2_id'], image_id) + + if opposite: + valid = ~valid + assert valid.any() + self.pairs = self.pairs[valid] + + def _get_views(self, pair_idx, resolution, rng): + scene_id, im1_id, im2_id, score = self.pairs[pair_idx] + + scene, subscene = self.all_scenes[scene_id].split() + seq_path = osp.join(self.ROOT, scene, subscene) + + views = [] + + for im_id in [im1_id, im2_id]: + img = self.all_images[im_id] + try: + image = imread_cv2(osp.join(seq_path, img + '.jpg')) + depthmap = imread_cv2(osp.join(seq_path, img + ".exr")) + camera_params = np.load(osp.join(seq_path, img + ".npz")) + except Exception as e: + raise OSError(f'cannot load {img}, got exception {e}') + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.float32(camera_params['cam2world']) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, img)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='MegaDepth', + label=osp.relpath(seq_path, self.ROOT), + instance=img)) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = MegaDepth(split='train', ROOT="data/megadepth_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/my_PointOdyssey.py b/dust3r/datasets/my_PointOdyssey.py new file mode 100644 index 0000000000000000000000000000000000000000..dda8a8cf6be4de849430b61e41075a3df7747856 --- /dev/null +++ b/dust3r/datasets/my_PointOdyssey.py @@ -0,0 +1,152 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for Spring +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 +import os + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +class PointodysseyDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/tyhuang/T9/videodepth_data/spring_proc/train" + super().__init__(*args, **kwargs) + + self.dataset_label = 'Pointodyssey' + #test_scenes = ["0001", "0013", "0025", "0032", "0043"] + scene_list = [] + for scene in os.listdir(ROOT): + scene_list.append(osp.join(ROOT, scene)) + + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + imgs = sorted(glob(osp.join(scene, '*_rgb.jpg'))) + + len_imgs = len(imgs) + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 10 or (abs(i - j) <= 20 and abs(i - j) % 3 == 0)] + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10] + + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm') + mask_path = img_path.replace('_rgb.jpg', '_mask.png') + metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz') + pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px'] + pred_depth = pred_depth['depth'] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + depthmap = readPFM(depthmap_path) + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + + metadata = np.load(metadata_path) + intrinsics = np.float32(metadata['camera_intrinsics']) + camera_pose = np.linalg.inv(np.float32(metadata['camera_pose'])) + + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + #print(depthmap.shape, pred_depth.shape) + num_valid = (depthmap > 0.0).sum() + + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = SpringDatasets(split='train', ROOT="/media/8TB/tyhuang/video_depth/spring_proc/train", resolution=512, aug_crop=16) + + a = len(dataset) + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() \ No newline at end of file diff --git a/dust3r/datasets/my_Tartanair.py b/dust3r/datasets/my_Tartanair.py new file mode 100644 index 0000000000000000000000000000000000000000..28695ae8514390314bdfbd3e85584364a5d7454e --- /dev/null +++ b/dust3r/datasets/my_Tartanair.py @@ -0,0 +1,169 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for Spring +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 +import os + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +class TartanairDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/tyhuang/T9/videodepth_data/spring_proc/train" + super().__init__(*args, **kwargs) + + self.dataset_label = 'Tartanair' + test_scenes = [] + + scene_list = [] + for scene in os.listdir(ROOT): + #scene_list.append(osp.join(ROOT, scene)) + if scene not in test_scenes and split == 'train': + if 'Hard' not in scene: + scene_list.append(osp.join(ROOT, scene)) + if scene in test_scenes and split == 'test': + if 'Hard' not in scene: + scene_list.append(osp.join(ROOT, scene)) + + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + imgs = sorted(glob(osp.join(scene, '*_rgb.jpg'))) + + len_imgs = len(imgs) + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 10 or (abs(i - j) <= 20 and abs(i - j) % 3 == 0)] + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10 ] + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm') + mask_path = img_path.replace('_rgb.jpg', '_mask.png') + metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz') + pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px'] + pred_depth = pred_depth['depth'] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + depthmap = readPFM(depthmap_path) + + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + + metadata = np.load(metadata_path) + intrinsics = np.float32(metadata['camera_intrinsics']) + camera_pose = np.float32(metadata['camera_pose']) + # max_depth = np.float32(metadata['maximum_depth']) + #pred_depth = depthmap.copy() + # depthmap = (depthmap.astype(np.float32) / 10.0) + # pred_depth = pred_depth#/20.0 + # camera_pose[:3, 3] /= 10.0 + + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + + num_valid = (depthmap > 0.0).sum() + # if num_valid==0: + # depthmap +=1 + #assert num_valid > 0 + # if num_valid==0: + # depthmap +=0.001 + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = SpringDatasets(split='train', ROOT="/media/8TB/tyhuang/video_depth/spring_proc/train", resolution=512, aug_crop=16) + + a = len(dataset) + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() \ No newline at end of file diff --git a/dust3r/datasets/my_sceneflow.py b/dust3r/datasets/my_sceneflow.py new file mode 100644 index 0000000000000000000000000000000000000000..b477703ef907176a855ed2c9558abd9b2e9a1664 --- /dev/null +++ b/dust3r/datasets/my_sceneflow.py @@ -0,0 +1,233 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for SceneFlow +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +# +# +# split = 'train' +# +# ROOT = "/media/8TB/tyhuang/video_depth/SceneFlow" +# +# outscene_list = ["Monkaa_proc"] +# +# # if split == 'train': +# # outscene_list = ["FlyingThings3D_proc", "Driving_proc", "Monkaa_proc"] +# # elif split == 'test': +# # outscene_list = ["FlyingThings3D_proc"] +# +# scene_list = [] +# for outscene in outscene_list: +# if outscene == "FlyingThings3D_proc": +# split_folder = "TRAIN" if split == 'train' else "TEST" +# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, split_folder, '*/*/*')))) +# if outscene == "Driving_proc": +# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*/*/*')))) +# if outscene == "Monkaa_proc": +# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*')))) +# +# +# pair_dict = {} +# pair_num = 0 +# for scene in scene_list: +# depth_files = sorted(glob(osp.join(scene, '*_depth.pfm'))) +# mask_files = sorted(glob(osp.join(scene, '*_mask.png'))) +# +# max_depth = 0 +# +# for depth_file, mask_file in zip(depth_files, mask_files): +# +# depth = readPFM(depth_file) +# +# maskmap = imread_cv2(mask_file, cv2.IMREAD_UNCHANGED).astype(np.float32) +# maskmap = (maskmap / 255.0) > 0.1 +# # update the depthmap with mask +# +# maskmap = (maskmap * (depth<400)).astype(np.float32) +# cv2.imwrite(mask_file, (maskmap * 255).astype(np.uint8)) +# +# # depth *= maskmap +# # +# # maxdepth = np.max(depth) if np.max(depth) > max_depth else max_depth + + + + + + +class SceneFlowDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/tyhuang/T9/videodepth_data/SceneFlow" + super().__init__(*args, **kwargs) + + self.dataset_label = 'SceneFlow' + + if split == 'train': + self.outscene_list = ["Driving_proc", "Monkaa_proc","FlyingThings3D_proc"] + elif split == 'test': + self.outscene_list = ["FlyingThings3D_proc"] + + scene_list = [] + for outscene in self.outscene_list: + if outscene == "FlyingThings3D_proc": + split_folder = "TRAIN" if split == 'train' else "TEST" + scene_list.extend(sorted(glob(osp.join(ROOT, outscene, split_folder, '*/*/*')))) + if outscene == "Driving_proc": + scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*/*/*')))) + if outscene == "Monkaa_proc": + scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*')))) + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + + imgs = sorted(glob(osp.join(scene, '*_rgb.jpg'))) + + len_imgs = len(imgs) + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10 ] + # if "FlyingThings3D_proc" in scene: + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)] + # if "Driving_proc" in scene: + # if "fast" in scene: + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if 0 < abs(i - j) <= 8 or (abs(i - j) <= 20 and abs(i - j) % 5 == 0)] + # elif "slow" in scene: + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 12 or (abs(i - j) <= 25 and abs(i - j) % 5 == 0)] + # if "Monkaa_proc" in scene: + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 12 or (abs(i - j) <= 25 and abs(i - j) % 5 == 0)] + + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm') + mask_path = img_path.replace('_rgb.jpg', '_mask.png') + metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz') + depthmap = readPFM(depthmap_path) + pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px']#[0][0] + pred_depth = pred_depth['depth'] + if focal_length_px.shape == (3,3): + focal_length_px = focal_length_px[0][0] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + + #pred_depth = pred_depth#/20.0 + metadata = np.load(metadata_path) + intrinsics = np.float32(metadata['camera_intrinsics']) + camera_pose = np.float32(metadata['camera_pose']) + # max_depth = np.float32(metadata['maximum_depth']) + # + # depthmap = (depthmap.astype(np.float32) / 10.0) + # camera_pose[:3, 3] /= 10.0 + + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + + num_valid = (depthmap > 0.0).sum() + # assert num_valid > 0 + # if num_valid==0: + # depthmap +=0.001 + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = SceneFlowDatasets(split='train', ROOT="/media/tyhuang/T9/videodepth_data/SceneFlow", resolution=512, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() \ No newline at end of file diff --git a/dust3r/datasets/my_sintel.py b/dust3r/datasets/my_sintel.py new file mode 100644 index 0000000000000000000000000000000000000000..6265dfcad1aff931e140a9371eae83caf897cdf8 --- /dev/null +++ b/dust3r/datasets/my_sintel.py @@ -0,0 +1,164 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for Spring +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 +import os +import sys +sys.path.append('/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train') +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 +TAG_FLOAT = 202021.25 +def depth_read(filename): + """Read depth data from file, return as numpy array.""" + f = open(filename, "rb") + check = np.fromfile(f, dtype=np.float32, count=1)[0] + assert ( + check == TAG_FLOAT + ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( + TAG_FLOAT, check + ) + width = np.fromfile(f, dtype=np.int32, count=1)[0] + height = np.fromfile(f, dtype=np.int32, count=1)[0] + size = width * height + assert ( + width > 0 and height > 0 and size > 1 and size < 100000000 + ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format( + width, height + ) + depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width)) + return depth + +def cam_read(filename): + """ Read camera data, return (M,N) tuple. + + M is the intrinsic matrix, N is the extrinsic matrix, so that + + x = M*N*X, + with x being a point in homogeneous image pixel coordinates, X being a + point in homogeneous world coordinates. + """ + f = open(filename,'rb') + check = np.fromfile(f,dtype=np.float32,count=1)[0] + assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) + M = np.fromfile(f,dtype='float64',count=9).reshape((3,3)) + N = np.fromfile(f,dtype='float64',count=12).reshape((3,4)) + return M,N + +class SintelDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/8TB/tyhuang/video_depth/vkitti_2.0.3_proc" + super().__init__(*args, **kwargs) + + self.dataset_label = 'Sintel' + test_scenes = [] + + scene_list = [] + for scene in os.listdir(ROOT): + scene_list.append(osp.join(ROOT, scene)) + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + imgs = sorted(glob(osp.join(scene, '*.png'))) + + len_imgs = len(imgs) + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 15 or (abs(i - j) <= 30 and abs(i - j) % 5 == 0)] + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 3] + + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','depth/').replace('.png','.dpt') + mask_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','dynamic_label_perfect/') + metadata_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','camdata_left/').replace('.png','.cam') + + pred_depth = np.load(img_path.replace('final','depth_prediction_' + self.depth_prior_name).replace('.png', '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px'] + pred_depth = pred_depth['depth'] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + depthmap = depth_read(depthmap_path) + if os.path.exists(mask_path): + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #print(maskmap.max()) + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + intrinsics, extrinsics = cam_read(metadata_path) + intrinsics, extrinsics = np.array(intrinsics, dtype=np.float32), np.array(extrinsics, dtype=np.float32) + R = extrinsics[:3,:3] + t = extrinsics[:3,3] + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3,:3] = R.T + camera_pose[:3,3] = -R.T @ t + #camera_pose = np.linalg.inv(camera_pose) + # max_depth = np.float32(metadata['maximum_depth']) + + # depthmap = (depthmap.astype(np.float32) / 20.0) + # camera_pose[:3, 3] /= 20.0 + # pred_depth = pred_depth/20.0 + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + + num_valid = (depthmap > 0.0).sum() + # assert num_valid > 0 + # if num_valid==0: + # depthmap +=0.001 + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = SintelDatasets(split='train', ROOT="/data/lipeng/ljh_data/MPI-Sintel/MPI-Sintel/MPI-Sintel-training_images/training/final", resolution=512, aug_crop=16) + + a = len(dataset) + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + # viz.add_pointcloud(pts3d, colors, valid_mask) + # viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + # focal=views[view_idx]['camera_intrinsics'][0, 0], + # color=(idx * 255, (1 - idx) * 255, 0), + # image=colors, + # cam_size=cam_size) + # viz.show() \ No newline at end of file diff --git a/dust3r/datasets/my_spring.py b/dust3r/datasets/my_spring.py new file mode 100644 index 0000000000000000000000000000000000000000..c711420560c9df5528e4ec53f9acbf733e79d65b --- /dev/null +++ b/dust3r/datasets/my_spring.py @@ -0,0 +1,164 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for Spring +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 +import os + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +class SpringDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/tyhuang/T9/videodepth_data/spring_proc/train" + super().__init__(*args, **kwargs) + + self.dataset_label = 'Spring' + test_scenes = [] + + scene_list = [] + for scene in os.listdir(ROOT): + if scene not in test_scenes and split == 'train': + scene_list.append(osp.join(ROOT, scene)) + if scene in test_scenes and split == 'test': + scene_list.append(osp.join(ROOT, scene)) + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + imgs = sorted(glob(osp.join(scene, '*_rgb.jpg'))) + + len_imgs = len(imgs) + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 20 or (abs(i - j) <= 60 and abs(i - j) % 3 == 0)] + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10 ] + + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm') + mask_path = img_path.replace('_rgb.jpg', '_mask.png') + metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz') + pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px'] + pred_depth = pred_depth['depth'] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + depthmap = readPFM(depthmap_path) + #scale = depthmap.min()+depthmap.min() + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + + metadata = np.load(metadata_path) + intrinsics = np.float32(metadata['camera_intrinsics']) + camera_pose = np.float32(metadata['camera_pose']) + # max_depth = np.float32(metadata['maximum_depth']) + + # depthmap = (depthmap.astype(np.float32) / 200.0) + # pred_depth = pred_depth/200.0 + # camera_pose[:3, 3] /= 200.0 + + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + + num_valid = (depthmap > 0.0).sum() + # assert num_valid > 0 + # if num_valid==0: + # depthmap +=0.001 + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = SpringDatasets(split='train', ROOT="/media/8TB/tyhuang/video_depth/spring_proc/train", resolution=512, aug_crop=16) + + a = len(dataset) + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() \ No newline at end of file diff --git a/dust3r/datasets/my_vkitti2.py b/dust3r/datasets/my_vkitti2.py new file mode 100644 index 0000000000000000000000000000000000000000..ed2a713814b442dd386bf810dafb588ee3e5a614 --- /dev/null +++ b/dust3r/datasets/my_vkitti2.py @@ -0,0 +1,164 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for Spring +# -------------------------------------------------------- +import os.path as osp +from glob import glob +import itertools +import numpy as np +import re +import cv2 +import os + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +class VkittiDatasets(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT # ROOT = "/media/8TB/tyhuang/video_depth/vkitti_2.0.3_proc" + super().__init__(*args, **kwargs) + + self.dataset_label = 'Vkitti' + test_scenes = [] + + scene_list = [] + for scene in os.listdir(ROOT): + scene_list.append(osp.join(ROOT, scene)) + if scene not in test_scenes and split == 'train': + scene_list.append(osp.join(ROOT, scene)) + if scene in test_scenes and split == 'test': + scene_list.append(osp.join(ROOT, scene)) + + self.pair_dict = {} + pair_num = 0 + for scene in scene_list: + imgs = sorted(glob(osp.join(scene, '*_rgb.jpg'))) + + len_imgs = len(imgs) + # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) + # if abs(i - j) <= 15 or (abs(i - j) <= 30 and abs(i - j) % 5 == 0)] + combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10] + + for (i, j) in combinations: + self.pair_dict[pair_num] = [imgs[i], imgs[j]] + pair_num += 1 + + def __len__(self): + return len(self.pair_dict) + + + def _get_views(self, idx, resolution, rng): + + views = [] + for img_path in self.pair_dict[idx]: + rgb_image = imread_cv2(img_path) + + depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm') + mask_path = img_path.replace('_rgb.jpg', '_mask.png') + metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz') + pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth'] + focal_length_px = pred_depth['focallength_px'] + pred_depth = pred_depth['depth'] + pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) + depthmap = readPFM(depthmap_path) + + maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + #maskmap = maskmap * (depthmap<100) + depthmap *= maskmap + + metadata = np.load(metadata_path) + intrinsics = np.float32(metadata['camera_intrinsics']) + camera_pose = np.float32(metadata['camera_pose']) + # max_depth = np.float32(metadata['maximum_depth']) + + # depthmap = (depthmap.astype(np.float32) / 20.0) + # camera_pose[:3, 3] /= 20.0 + # pred_depth = pred_depth/20.0 + rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) + + num_valid = (depthmap > 0.0).sum() + # assert num_valid > 0 + # if num_valid==0: + # depthmap +=0.001 + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=img_path, + instance=img_path, + pred_depth=pred_depth + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = VkittiDatasets(split='train', ROOT="/media/8TB/tyhuang/video_depth/vkitti_2.0.3_proc", resolution=512, aug_crop=16) + + a = len(dataset) + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() \ No newline at end of file diff --git a/dust3r/datasets/scannetpp.py b/dust3r/datasets/scannetpp.py new file mode 100644 index 0000000000000000000000000000000000000000..520deedd0eb8cba8663af941731d89e0b2e71a80 --- /dev/null +++ b/dust3r/datasets/scannetpp.py @@ -0,0 +1,96 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed scannet++ +# dataset at https://github.com/scannetpp/scannetpp - non-commercial research and educational purposes +# https://kaldir.vc.in.tum.de/scannetpp/static/scannetpp-terms-of-use.pdf +# See datasets_preprocess/preprocess_scannetpp.py +# -------------------------------------------------------- +import os.path as osp +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ScanNetpp(BaseStereoViewDataset): + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split == 'train' + self.loaded_data = self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, 'all_metadata.npz')) as data: + self.scenes = data['scenes'] + self.sceneids = data['sceneids'] + self.images = data['images'] + self.intrinsics = data['intrinsics'].astype(np.float32) + self.trajectories = data['trajectories'].astype(np.float32) + self.pairs = data['pairs'][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2(osp.join(scene_dir, 'images', basename + '.jpg')) + # Load depthmap + depthmap = imread_cv2(osp.join(scene_dir, 'depth', basename + '.png'), cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx) + + views.append(dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset='ScanNet++', + label=self.scenes[scene_id] + '_' + basename, + instance=f'{str(idx)}_{str(view_idx)}', + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = ScanNetpp(split='train', ROOT="data/scannetpp_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx*255, (1 - idx)*255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/staticthings3d.py b/dust3r/datasets/staticthings3d.py new file mode 100644 index 0000000000000000000000000000000000000000..e7f70f0ee7bf8c8ab6bb1702aa2481f3d16df413 --- /dev/null +++ b/dust3r/datasets/staticthings3d.py @@ -0,0 +1,96 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed StaticThings3D +# dataset at https://github.com/lmb-freiburg/robustmvd/ +# See datasets_preprocess/preprocess_staticthings3d.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class StaticThings3D (BaseStereoViewDataset): + """ Dataset of indoor scenes, 5 images each time + """ + def __init__(self, ROOT, *args, mask_bg='rand', **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + + assert mask_bg in (True, False, 'rand') + self.mask_bg = mask_bg + + # loading all pairs + assert self.split is None + self.pairs = np.load(osp.join(ROOT, 'staticthings_pairs.npy')) + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs' + + def _get_views(self, pair_idx, resolution, rng): + scene, seq, cam1, im1, cam2, im2 = self.pairs[pair_idx] + seq_path = osp.join('TRAIN', scene.decode('ascii'), f'{seq:04d}') + + views = [] + + mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2)) + + CAM = {b'l':'left', b'r':'right'} + for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]: + num = f"{idx:04n}" + img = num+"_clean.jpg" if rng.choice(2) else num+"_final.jpg" + image = imread_cv2(osp.join(self.ROOT, seq_path, cam, img)) + depthmap = imread_cv2(osp.join(self.ROOT, seq_path, cam, num+".exr")) + camera_params = np.load(osp.join(self.ROOT, seq_path, cam, num+".npz")) + + intrinsics = camera_params['intrinsics'] + camera_pose = camera_params['cam2world'] + + if mask_bg: + depthmap[depthmap > 200] = 0 + + image, depthmap, intrinsics = self._crop_resize_if_necessary(image, depthmap, intrinsics, resolution, rng, info=(seq_path,cam,img)) + + views.append(dict( + img = image, + depthmap = depthmap, + camera_pose = camera_pose, # cam2world + camera_intrinsics = intrinsics, + dataset = 'StaticThings3D', + label = seq_path, + instance = cam+'_'+img)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = StaticThings3D(ROOT="data/staticthings3d_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx*255, (1 - idx)*255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/utils/__init__.py b/dust3r/datasets/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/dust3r/datasets/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/dust3r/datasets/utils/__pycache__/__init__.cpython-311.pyc b/dust3r/datasets/utils/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6211b0a60c51e3baa1e2fcafa4fbb67e1e773cd6 Binary files /dev/null and b/dust3r/datasets/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/datasets/utils/__pycache__/cropping.cpython-311.pyc b/dust3r/datasets/utils/__pycache__/cropping.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aaa63eb8a773a108934abf6de34e245158a3fa09 Binary files /dev/null and b/dust3r/datasets/utils/__pycache__/cropping.cpython-311.pyc differ diff --git a/dust3r/datasets/utils/__pycache__/transforms.cpython-311.pyc b/dust3r/datasets/utils/__pycache__/transforms.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18957b9b1d46e6486725080d82524a673781fc9e Binary files /dev/null and b/dust3r/datasets/utils/__pycache__/transforms.cpython-311.pyc differ diff --git a/dust3r/datasets/utils/cropping.py b/dust3r/datasets/utils/cropping.py new file mode 100644 index 0000000000000000000000000000000000000000..d408090c439bce3843f9226a2aa1469aae7c623b --- /dev/null +++ b/dust3r/datasets/utils/cropping.py @@ -0,0 +1,190 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# croppping utilities +# -------------------------------------------------------- +import PIL.Image +import os +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa +import numpy as np # noqa +from dust3r.utils.geometry import colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics # noqa +try: + lanczos = PIL.Image.Resampling.LANCZOS + bicubic = PIL.Image.Resampling.BICUBIC +except AttributeError: + lanczos = PIL.Image.LANCZOS + bicubic = PIL.Image.BICUBIC + + +class ImageList: + """ Convenience class to aply the same operation to a whole set of images. + """ + + def __init__(self, images): + if not isinstance(images, (tuple, list, set)): + images = [images] + self.images = [] + for image in images: + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + self.images.append(image) + + def __len__(self): + return len(self.images) + + def to_pil(self): + return tuple(self.images) if len(self.images) > 1 else self.images[0] + + @property + def size(self): + sizes = [im.size for im in self.images] + assert all(sizes[0] == s for s in sizes) + return sizes[0] + + def resize(self, *args, **kwargs): + return ImageList(self._dispatch('resize', *args, **kwargs)) + + def crop(self, *args, **kwargs): + return ImageList(self._dispatch('crop', *args, **kwargs)) + + def _dispatch(self, func, *args, **kwargs): + return [getattr(im, func)(*args, **kwargs) for im in self.images] + + +def rescale_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, output_resolution, force=True): + """ Jointly rescale a (image, depthmap) + so that (out_width, out_height) >= output_res + """ + image = ImageList(image) + input_resolution = np.array(image.size) # (W,H) + output_resolution = np.array(output_resolution) + if depthmap is not None: + # can also use this with masks instead of depthmaps + assert tuple(depthmap.shape[:2]) == image.size[::-1] + if pred_depth is not None: + # can also use this with masks instead of depthmaps + assert tuple(pred_depth.shape[:2]) == image.size[::-1] + # define output resolution + assert output_resolution.shape == (2,) + scale_final = max(output_resolution / image.size) + 1e-8 + if scale_final >= 1 and not force: # image is already smaller than what is asked + return (image.to_pil(), depthmap, pred_depth, camera_intrinsics) + output_resolution = np.floor(input_resolution * scale_final).astype(int) + output_resolution = list(output_resolution) + # first rescale the image so that it contains the crop + image = image.resize(output_resolution, resample=lanczos if scale_final < 1 else bicubic) + if depthmap is not None: + depthmap = cv2.resize(depthmap, output_resolution, fx=scale_final, + fy=scale_final, interpolation=cv2.INTER_NEAREST) + if pred_depth is not None: + pred_depth = cv2.resize(pred_depth, output_resolution, fx=scale_final, + fy=scale_final, interpolation=cv2.INTER_NEAREST) + + # no offset here; simple rescaling + camera_intrinsics = camera_matrix_of_crop( + camera_intrinsics, input_resolution, output_resolution, scaling=scale_final) + + return image.to_pil(), depthmap, pred_depth, camera_intrinsics + + +def camera_matrix_of_crop(input_camera_matrix, input_resolution, output_resolution, scaling=1, offset_factor=0.5, offset=None): + # Margins to offset the origin + margins = np.asarray(input_resolution) * scaling - output_resolution + assert np.all(margins >= 0.0) + if offset is None: + offset = offset_factor * margins + + # Generate new camera parameters + output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix) + output_camera_matrix_colmap[:2, :] *= scaling + output_camera_matrix_colmap[:2, 2] -= offset + output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap) + + return output_camera_matrix + + +def crop_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, crop_bbox): + """ + Return a crop of the input view. + """ + image = ImageList(image) + l, t, r, b = crop_bbox + + image = image.crop((l, t, r, b)) + depthmap = depthmap[t:b, l:r] + pred_depth = pred_depth[t:b, l:r, :] + camera_intrinsics = camera_intrinsics.copy() + camera_intrinsics[0, 2] -= l + camera_intrinsics[1, 2] -= t + + return image.to_pil(), depthmap, pred_depth, camera_intrinsics + + +def bbox_from_intrinsics_in_out(input_camera_matrix, output_camera_matrix, output_resolution): + out_width, out_height = output_resolution + l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2])) + crop_bbox = (l, t, l + out_width, t + out_height) + return crop_bbox + +def center_crop_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, crop_scale): + """ + Jointly center-crop an image and its depthmap, and adjust the camera intrinsics accordingly. + + Parameters: + - image: PIL.Image or similar, the input image. + - depthmap: np.ndarray, the corresponding depth map. + - camera_intrinsics: np.ndarray, the 3x3 camera intrinsics matrix. + - crop_scale: float between 0 and 1, the fraction of the image to keep. + + Returns: + - cropped_image: PIL.Image, the center-cropped image. + - cropped_depthmap: np.ndarray, the center-cropped depth map. + - adjusted_intrinsics: np.ndarray, the adjusted camera intrinsics matrix. + """ + # Ensure crop_scale is valid + assert 0 < crop_scale <= 1, "crop_scale must be between 0 and 1" + + # Convert image to ImageList for consistent processing + image = ImageList(image) + input_resolution = np.array(image.size) # (width, height) + if depthmap is not None: + # Ensure depthmap matches the image size + assert depthmap.shape[:2] == tuple(image.size[::-1]), "Depthmap size must match image size" + if pred_depth is not None: + # Ensure pred_depth matches the image size + assert pred_depth.shape[:2] == tuple(image.size[::-1]), "pred_depth size must match image size" + # Compute output resolution after cropping + output_resolution = np.floor(input_resolution * crop_scale).astype(int) + # get the correct crop_scale + crop_scale = output_resolution / input_resolution + + # Compute margins (amount to crop from each side) + margins = input_resolution - output_resolution + offset = margins / 2 # Since we are center cropping + + # Calculate the crop bounding box + l, t = offset.astype(int) + r = l + output_resolution[0] + b = t + output_resolution[1] + crop_bbox = (l, t, r, b) + + # Crop the image and depthmap + image = image.crop(crop_bbox) + if depthmap is not None: + depthmap = depthmap[t:b, l:r] + if pred_depth is not None: + pred_depth = pred_depth[t:b, l:r, :] + # Adjust the camera intrinsics + adjusted_intrinsics = camera_intrinsics.copy() + + # Adjust focal lengths (fx, fy) # no need to adjust focal lengths for cropping + # adjusted_intrinsics[0, 0] /= crop_scale[0] # fx + # adjusted_intrinsics[1, 1] /= crop_scale[1] # fy + + # Adjust principal point (cx, cy) + adjusted_intrinsics[0, 2] -= l # cx + adjusted_intrinsics[1, 2] -= t # cy + + return image.to_pil(), depthmap, pred_depth, adjusted_intrinsics diff --git a/dust3r/datasets/utils/transforms.py b/dust3r/datasets/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..eb34f2f01d3f8f829ba71a7e03e181bf18f72c25 --- /dev/null +++ b/dust3r/datasets/utils/transforms.py @@ -0,0 +1,11 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUST3R default transforms +# -------------------------------------------------------- +import torchvision.transforms as tvf +from dust3r.utils.image import ImgNorm + +# define the standard image transforms +ColorJitter = tvf.Compose([tvf.ColorJitter(0.5, 0.5, 0.5, 0.1), ImgNorm]) diff --git a/dust3r/datasets/waymo.py b/dust3r/datasets/waymo.py new file mode 100644 index 0000000000000000000000000000000000000000..b9a135152cd8973532405b491450c22942dcd6ca --- /dev/null +++ b/dust3r/datasets/waymo.py @@ -0,0 +1,93 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WayMo +# dataset at https://github.com/waymo-research/waymo-open-dataset +# See datasets_preprocess/preprocess_waymo.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Waymo (BaseStereoViewDataset): + """ Dataset of outdoor street scenes, 5 images each time + """ + + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, 'waymo_pairs.npz')) as data: + self.scenes = data['scenes'] + self.frames = data['frames'] + self.inv_frames = {frame: i for i, frame in enumerate(data['frames'])} + self.pairs = data['pairs'] # (array of (scene_id, img1_id, img2_id) + assert self.pairs[:, 0].max() == len(self.scenes) - 1 + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.scenes)} scenes' + + def _get_views(self, pair_idx, resolution, rng): + seq, img1, img2 = self.pairs[pair_idx] + seq_path = osp.join(self.ROOT, self.scenes[seq]) + + views = [] + + for view_index in [img1, img2]: + impath = self.frames[view_index] + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.float32(camera_params['cam2world']) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='Waymo', + label=osp.relpath(seq_path, self.ROOT), + instance=impath)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Waymo(split='train', ROOT="data/megadepth_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/datasets/wildrgbd.py b/dust3r/datasets/wildrgbd.py new file mode 100644 index 0000000000000000000000000000000000000000..c41dd0b78402bf8ff1e62c6a50de338aa916e0af --- /dev/null +++ b/dust3r/datasets/wildrgbd.py @@ -0,0 +1,67 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WildRGB-D +# dataset at https://github.com/wildrgbd/wildrgbd/ +# See datasets_preprocess/preprocess_wildrgbd.py +# -------------------------------------------------------- +import os.path as osp + +import cv2 +import numpy as np + +from dust3r.datasets.co3d import Co3d +from dust3r.utils.image import imread_cv2 + + +class WildRGBD(Co3d): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + super().__init__(mask_bg, *args, ROOT=ROOT, **kwargs) + self.dataset_label = 'WildRGBD' + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'metadata', f'{view_idx:0>5d}.npz') + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'rgb', f'{view_idx:0>5d}.jpg') + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'depth', f'{view_idx:0>5d}.png') + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'masks', f'{view_idx:0>5d}.png') + + def _read_depthmap(self, depthpath, input_metadata): + # We store depths in the depth scale of 1000. + # That is, when we load depth image and divide by 1000, we could get depth in meters. + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000.0 + return depthmap + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = WildRGBD(split='train', ROOT="data/wildrgbd_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/dust3r/demo.py b/dust3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..c491be097b71ec38ea981dadf4f456d6e9829d48 --- /dev/null +++ b/dust3r/demo.py @@ -0,0 +1,283 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# gradio demo +# -------------------------------------------------------- +import argparse +import math +import builtins +import datetime +import gradio +import os +import torch +import numpy as np +import functools +import trimesh +import copy +from scipy.spatial.transform import Rotation + +from dust3r.inference import inference +from dust3r.image_pairs import make_pairs +from dust3r.utils.image import load_images, rgb +from dust3r.utils.device import to_numpy +from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes +from dust3r.cloud_opt import global_aligner, GlobalAlignerMode + +import matplotlib.pyplot as pl + + +def get_args_parser(): + parser = argparse.ArgumentParser() + parser_url = parser.add_mutually_exclusive_group() + parser_url.add_argument("--local_network", action='store_true', default=False, + help="make app accessible on local network: address will be set to 0.0.0.0") + parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1") + parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") + parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). " + "If None, will search for an available port starting at 7860."), + default=None) + parser_weights = parser.add_mutually_exclusive_group(required=True) + parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None) + parser_weights.add_argument("--model_name", type=str, help="name of the model weights", + choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt", + "DUSt3R_ViTLarge_BaseDecoder_512_linear", + "DUSt3R_ViTLarge_BaseDecoder_224_linear"]) + parser.add_argument("--device", type=str, default='cuda', help="pytorch device") + parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir") + parser.add_argument("--silent", action='store_true', default=False, + help="silence logs") + return parser + + +def set_print_with_timestamp(time_format="%Y-%m-%d %H:%M:%S"): + builtin_print = builtins.print + + def print_with_timestamp(*args, **kwargs): + now = datetime.datetime.now() + formatted_date_time = now.strftime(time_format) + + builtin_print(f'[{formatted_date_time}] ', end='') # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print_with_timestamp + + +def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, + cam_color=None, as_pointcloud=False, + transparent_cams=False, silent=False): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam(scene, pose_c2w, camera_edge_color, + None if transparent_cams else imgs[i], focals[i], + imsize=imgs[i].shape[1::-1], screen_width=cam_size) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + outfile = os.path.join(outdir, 'scene.glb') + if not silent: + print('(exporting 3D scene to', outfile, ')') + scene.export(file_obj=outfile) + return outfile + + +def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, + clean_depth=False, transparent_cams=False, cam_size=0.05): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene is None: + return None + # post processes + if clean_depth: + scene = scene.clean_pointcloud() + if mask_sky: + scene = scene.mask_sky() + + # get optimized values from scene + rgbimg = scene.imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + # 3D pointcloud from depthmap, poses and intrinsics + pts3d = to_numpy(scene.get_pts3d()) + scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) + msk = to_numpy(scene.get_masks()) + return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) + + +def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, schedule, niter, min_conf_thr, + as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid): + """ + from a list of images, run dust3r inference, global aligner. + then run get_3D_model_from_scene + """ + imgs = load_images(filelist, size=image_size, verbose=not silent) + if len(imgs) == 1: + imgs = [imgs[0], copy.deepcopy(imgs[0])] + imgs[1]['idx'] = 1 + if scenegraph_type == "swin": + scenegraph_type = scenegraph_type + "-" + str(winsize) + elif scenegraph_type == "oneref": + scenegraph_type = scenegraph_type + "-" + str(refid) + + pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) + output = inference(pairs, model, device, batch_size=1, verbose=not silent) + + mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer + scene = global_aligner(output, device=device, mode=mode, verbose=not silent) + lr = 0.01 + + if mode == GlobalAlignerMode.PointCloudOptimizer: + loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr) + + outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size) + + # also return rgb, depth and confidence imgs + # depth is normalized with the max value for all images + # we apply the jet colormap on the confidence maps + rgbimg = scene.imgs + depths = to_numpy(scene.get_depthmaps()) + confs = to_numpy([c for c in scene.im_conf]) + cmap = pl.get_cmap('jet') + depths_max = max([d.max() for d in depths]) + depths = [d / depths_max for d in depths] + confs_max = max([d.max() for d in confs]) + confs = [cmap(d / confs_max) for d in confs] + + imgs = [] + for i in range(len(rgbimg)): + imgs.append(rgbimg[i]) + imgs.append(rgb(depths[i])) + imgs.append(rgb(confs[i])) + + return scene, outfile, imgs + + +def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): + num_files = len(inputfiles) if inputfiles is not None else 1 + max_winsize = max(1, math.ceil((num_files - 1) / 2)) + if scenegraph_type == "swin": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=True) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + elif scenegraph_type == "oneref": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=True) + else: + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + return winsize, refid + + +def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False): + recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size) + model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) + with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: + # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference + scene = gradio.State(None) + gradio.HTML('

DUSt3R Demo

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + with gradio.Row(): + schedule = gradio.Dropdown(["linear", "cosine"], + value='linear', label="schedule", info="For global alignment!") + niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000, + label="num_iterations", info="For global alignment!") + scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), + ("swin: sliding window", "swin"), + ("oneref: match one image with all", "oneref")], + value='complete', label="Scenegraph", + info="Define how to make pairs", + interactive=True) + winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, + minimum=1, maximum=1, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) + + run_btn = gradio.Button("Run") + + with gradio.Row(): + # adjust the confidence threshold + min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1) + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud") + # two post process implemented + mask_sky = gradio.Checkbox(value=False, label="Mask sky") + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") + transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") + + outmodel = gradio.Model3D() + outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%") + + # events + scenegraph_type.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + inputfiles.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + run_btn.click(fn=recon_fun, + inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud, + mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid], + outputs=[scene, outmodel, outgallery]) + min_conf_thr.release(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + cam_size.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + as_pointcloud.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + mask_sky.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + clean_depth.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + transparent_cams.change(model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + demo.launch(share=False, server_name=server_name, server_port=server_port) diff --git a/dust3r/heads/__init__.py b/dust3r/heads/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..53d0aa5610cae95f34f96bdb3ff9e835a2d6208e --- /dev/null +++ b/dust3r/heads/__init__.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# head factory +# -------------------------------------------------------- +from .linear_head import LinearPts3d +from .dpt_head import create_dpt_head + + +def head_factory(head_type, output_mode, net, has_conf=False): + """" build a prediction head for the decoder + """ + if head_type == 'linear' and output_mode == 'pts3d': + return LinearPts3d(net, has_conf) + elif head_type == 'dpt' and output_mode == 'pts3d': + return create_dpt_head(net, has_conf=has_conf) + else: + raise NotImplementedError(f"unexpected {head_type=} and {output_mode=}") diff --git a/dust3r/heads/__pycache__/__init__.cpython-311.pyc b/dust3r/heads/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16d74ccab296cb67704cc6a79184220a3647bdae Binary files /dev/null and b/dust3r/heads/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/heads/__pycache__/dpt_head.cpython-311.pyc b/dust3r/heads/__pycache__/dpt_head.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd9a4e1b6f05b266314bfcb575310cfbec7436ea Binary files /dev/null and b/dust3r/heads/__pycache__/dpt_head.cpython-311.pyc differ diff --git a/dust3r/heads/__pycache__/linear_head.cpython-311.pyc b/dust3r/heads/__pycache__/linear_head.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34458ab5d7c86e605c58429c9f1d798c98d249e2 Binary files /dev/null and b/dust3r/heads/__pycache__/linear_head.cpython-311.pyc differ diff --git a/dust3r/heads/__pycache__/postprocess.cpython-311.pyc b/dust3r/heads/__pycache__/postprocess.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7839c667570b20420a0699aa08240f3c0d81ac23 Binary files /dev/null and b/dust3r/heads/__pycache__/postprocess.cpython-311.pyc differ diff --git a/dust3r/heads/dpt_head.py b/dust3r/heads/dpt_head.py new file mode 100644 index 0000000000000000000000000000000000000000..cc81896f1dbba6e321dc4e883d7377086e8ec461 --- /dev/null +++ b/dust3r/heads/dpt_head.py @@ -0,0 +1,116 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dpt head implementation for DUST3R +# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; +# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True +# the forward function also takes as input a dictionnary img_info with key "height" and "width" +# for PixelwiseTask, the output will be of dimension B x num_channels x H x W +# -------------------------------------------------------- +from einops import rearrange +from typing import List +import torch +import torch.nn as nn +from dust3r.heads.postprocess import postprocess +import dust3r.utils.path_to_croco # noqa: F401 +from models.dpt_block import DPTOutputAdapter # noqa + + +class DPTOutputAdapter_fix(DPTOutputAdapter): + """ + Adapt croco's DPTOutputAdapter implementation for dust3r: + remove duplicated weigths, and fix forward for dust3r + """ + + def init(self, dim_tokens_enc=768): + super().init(dim_tokens_enc) + # these are duplicated weights + del self.act_1_postprocess + del self.act_2_postprocess + del self.act_3_postprocess + del self.act_4_postprocess + + def forward(self, encoder_tokens: List[torch.Tensor], image_size=None): + assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' + # H, W = input_info['image_size'] + image_size = self.image_size if image_size is None else image_size + H, W = image_size + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + #pred_mask = self.mask_head(path_1).sigmoid() + pred_mask = 0 + return out, pred_mask + + +class PixelwiseTaskWithDPT(nn.Module): + """ DPT module for dust3r, can return 3D points + confidence for all pixels""" + + def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, + output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_layers = True # backbone needs to return all layers + self.postprocess = postprocess + self.depth_mode = depth_mode + self.conf_mode = conf_mode + + assert n_cls_token == 0, "Not implemented" + dpt_args = dict(output_width_ratio=output_width_ratio, + num_channels=num_channels, + **kwargs) + if hooks_idx is not None: + dpt_args.update(hooks=hooks_idx) + self.dpt = DPTOutputAdapter_fix(**dpt_args) + dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} + self.dpt.init(**dpt_init_args) + + def forward(self, x, img_info): + out, pred_mask = self.dpt(x, image_size=(img_info[0], img_info[1])) + if self.postprocess: + out = self.postprocess(out, pred_mask, self.depth_mode, self.conf_mode) + return out + + +def create_dpt_head(net, has_conf=False): + """ + return PixelwiseTaskWithDPT for given net params + """ + assert net.dec_depth > 9 + l2 = net.dec_depth + feature_dim = 256 + last_dim = feature_dim//2 + out_nchan = 3 + ed = net.enc_embed_dim + dd = net.dec_embed_dim + return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf, + feature_dim=feature_dim, + last_dim=last_dim, + hooks_idx=[0, l2*2//4, l2*3//4, l2], + dim_tokens=[ed, dd, dd, dd], + postprocess=postprocess, + depth_mode=net.depth_mode, + conf_mode=net.conf_mode, + head_type='regression') diff --git a/dust3r/heads/linear_head.py b/dust3r/heads/linear_head.py new file mode 100644 index 0000000000000000000000000000000000000000..5b00c52eb8ef7c6da2f4d7778b280aed566bd833 --- /dev/null +++ b/dust3r/heads/linear_head.py @@ -0,0 +1,41 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# linear head implementation for DUST3R +# -------------------------------------------------------- +import torch.nn as nn +import torch.nn.functional as F +from dust3r.heads.postprocess import postprocess + + +class LinearPts3d (nn.Module): + """ + Linear head for dust3r + Each token outputs: - 16x16 3D points (+ confidence) + """ + + def __init__(self, net, has_conf=False): + super().__init__() + self.patch_size = net.patch_embed.patch_size[0] + self.depth_mode = net.depth_mode + self.conf_mode = net.conf_mode + self.has_conf = has_conf + + self.proj = nn.Linear(net.dec_embed_dim, (3 + has_conf)*self.patch_size**2) + + def setup(self, croconet): + pass + + def forward(self, decout, img_shape): + H, W = img_shape + tokens = decout[-1] + B, S, D = tokens.shape + + # extract 3D points + feat = self.proj(tokens) # B,S,D + feat = feat.transpose(-1, -2).view(B, -1, H//self.patch_size, W//self.patch_size).contiguous() + feat = F.pixel_shuffle(feat, self.patch_size) # B,3,H,W + + # permute + norm depth + return postprocess(feat, self.depth_mode, self.conf_mode) diff --git a/dust3r/heads/postprocess.py b/dust3r/heads/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..4e918196d01c426f931ad44ff748a909ad800f67 --- /dev/null +++ b/dust3r/heads/postprocess.py @@ -0,0 +1,58 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# post process function for all heads: extract 3D points/confidence from output +# -------------------------------------------------------- +import torch + + +def postprocess(out, pred_mask, depth_mode, conf_mode): + """ + extract 3D points/confidence from prediction head output + """ + fmap = out.permute(0, 2, 3, 1) # B,H,W,3 + res = dict(pts3d=reg_dense_depth(fmap[:, :, :, 0:3], mode=depth_mode), pred_mask=pred_mask) + + if conf_mode is not None: + res['conf'] = reg_dense_conf(fmap[:, :, :, 3], mode=conf_mode) + return res + + +def reg_dense_depth(xyz, mode): + """ + extract 3D points from prediction head output + """ + mode, vmin, vmax = mode + + no_bounds = (vmin == -float('inf')) and (vmax == float('inf')) + assert no_bounds + + if mode == 'linear': + if no_bounds: + return xyz # [-inf, +inf] + return xyz.clip(min=vmin, max=vmax) + + # distance to origin + d = xyz.norm(dim=-1, keepdim=True) + xyz = xyz / d.clip(min=1e-8) + + if mode == 'square': + return xyz * d.square() + + if mode == 'exp': + return xyz * torch.expm1(d) + + raise ValueError(f'bad {mode=}') + + +def reg_dense_conf(x, mode): + """ + extract confidence from prediction head output + """ + mode, vmin, vmax = mode + if mode == 'exp': + return vmin + x.exp().clip(max=vmax-vmin) + if mode == 'sigmoid': + return (vmax - vmin) * torch.sigmoid(x) + vmin + raise ValueError(f'bad {mode=}') diff --git a/dust3r/image_pairs.py b/dust3r/image_pairs.py new file mode 100644 index 0000000000000000000000000000000000000000..f23a53ba09edfdcf800af23f2489b1bacd004ee1 --- /dev/null +++ b/dust3r/image_pairs.py @@ -0,0 +1,111 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed to load image pairs +# -------------------------------------------------------- +import numpy as np +import torch + + +def make_pairs(imgs, scene_graph='complete', prefilter=None, symmetrize=True): + pairs = [] + if scene_graph == 'complete': # complete graph + for i in range(len(imgs)): + for j in range(i): + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('swin'): + iscyclic = not scene_graph.endswith('noncyclic') + try: + winsize = int(scene_graph.split('-')[1]) + except Exception as e: + winsize = 3 + pairsid = set() + if scene_graph.startswith('swinstride'): + stride = 2 + elif scene_graph.startswith('swin2stride'): + stride = 3 + else: + stride = 1 + print(stride) + for i in range(len(imgs)): + for j in range(1, stride*winsize + 1, stride): + idx = (i + j) + if iscyclic: + idx = idx % len(imgs) # explicit loop closure + if idx >= len(imgs): + continue + pairsid.add((i, idx) if i < idx else (idx, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('logwin'): + iscyclic = not scene_graph.endswith('noncyclic') + try: + winsize = int(scene_graph.split('-')[1]) + except Exception as e: + winsize = 3 + offsets = [2**i for i in range(winsize)] + pairsid = set() + for i in range(len(imgs)): + ixs_l = [i - off for off in offsets] #[i-1,i-2,i-4] + ixs_r = [i + off for off in offsets] #[i+1,i+2,i+4] + for j in ixs_l + ixs_r:#[i-1,i-2,i-4,i+1,i+2,i+4] + if iscyclic: + j = j % len(imgs) # Explicit loop closure + if j < 0 or j >= len(imgs) or j == i: + continue + pairsid.add((i, j) if i < j else (j, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('oneref'): + refid = int(scene_graph.split('-')[1]) if '-' in scene_graph else 0 + for j in range(len(imgs)): + if j != refid: + pairs.append((imgs[refid], imgs[j])) + if symmetrize: + pairs += [(img2, img1) for img1, img2 in pairs] + + # now, remove edges + if isinstance(prefilter, str) and prefilter.startswith('seq'): + pairs = filter_pairs_seq(pairs, int(prefilter[3:])) + + if isinstance(prefilter, str) and prefilter.startswith('cyc'): + pairs = filter_pairs_seq(pairs, int(prefilter[3:]), cyclic=True) + + return pairs + + +def sel(x, kept): + if isinstance(x, dict): + return {k: sel(v, kept) for k, v in x.items()} + if isinstance(x, (torch.Tensor, np.ndarray)): + return x[kept] + if isinstance(x, (tuple, list)): + return type(x)([x[k] for k in kept]) + + +def _filter_edges_seq(edges, seq_dis_thr, cyclic=False): + # number of images + n = max(max(e) for e in edges) + 1 + + kept = [] + for e, (i, j) in enumerate(edges): + dis = abs(i - j) + if cyclic: + dis = min(dis, abs(i + n - j), abs(i - n - j)) + if dis <= seq_dis_thr: + kept.append(e) + return kept + + +def filter_pairs_seq(pairs, seq_dis_thr, cyclic=False): + edges = [(img1['idx'], img2['idx']) for img1, img2 in pairs] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + return [pairs[i] for i in kept] + + +def filter_edges_seq(view1, view2, pred1, pred2, seq_dis_thr, cyclic=False): + edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + print(f'>> Filtering edges more than {seq_dis_thr} frames apart: kept {len(kept)}/{len(edges)} edges') + return sel(view1, kept), sel(view2, kept), sel(pred1, kept), sel(pred2, kept) diff --git a/dust3r/inference.py b/dust3r/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..90540486b077add90ca50f62a5072e082cb2f2d7 --- /dev/null +++ b/dust3r/inference.py @@ -0,0 +1,150 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed for the inference +# -------------------------------------------------------- +import tqdm +import torch +from dust3r.utils.device import to_cpu, collate_with_cat +from dust3r.utils.misc import invalid_to_nans +from dust3r.utils.geometry import depthmap_to_pts3d, geotrf + + +def _interleave_imgs(img1, img2): + res = {} + for key, value1 in img1.items(): + value2 = img2[key] + if isinstance(value1, torch.Tensor): + value = torch.stack((value1, value2), dim=1).flatten(0, 1) + else: + value = [x for pair in zip(value1, value2) for x in pair] + res[key] = value + return res + + +def make_batch_symmetric(batch): + view1, view2 = batch + view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) + return view1, view2 + + +def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None): + view1, view2 = batch + ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng']) + for view in batch: + for name in view.keys(): # pseudo_focal + if name in ignore_keys: + continue + view[name] = view[name].to(device, non_blocking=True) + + if symmetrize_batch: + view1, view2 = make_batch_symmetric(batch) + + with torch.cuda.amp.autocast(enabled=bool(use_amp)): + pred1, pred2 = model(view1, view2) + + # loss is supposed to be symmetric + with torch.cuda.amp.autocast(enabled=False): + loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None + + result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) + return result[ret] if ret else result + + +@torch.no_grad() +def inference(pairs, model, device, batch_size=8, verbose=True): + if verbose: + print(f'>> Inference with model on {len(pairs)} image pairs') + result = [] + + # first, check if all images have the same size + multiple_shapes = not (check_if_same_size(pairs)) + if multiple_shapes: # force bs=1 + batch_size = 1 + + for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): + res = loss_of_one_batch(collate_with_cat(pairs[i:i + batch_size]), model, None, device) + result.append(to_cpu(res)) + + result = collate_with_cat(result, lists=multiple_shapes) + + return result + + +def check_if_same_size(pairs): + shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs] + shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs] + return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2) + + +def get_pred_pts3d(gt, pred, use_pose=False): + if 'depth' in pred and 'pseudo_focal' in pred: + try: + pp = gt['camera_intrinsics'][..., :2, 2] + except KeyError: + pp = None + pts3d = depthmap_to_pts3d(**pred, pp=pp) + + elif 'pts3d' in pred: + # pts3d from my camera + pts3d = pred['pts3d'] + + elif 'pts3d_in_other_view' in pred: + # pts3d from the other camera, already transformed + assert use_pose is True + return pred['pts3d_in_other_view'] # return! + + if use_pose: + camera_pose = pred.get('camera_pose') + assert camera_pose is not None + pts3d = geotrf(camera_pose, pts3d) + + return pts3d + + +def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None): + assert gt_pts1.ndim == pr_pts1.ndim == 4 + assert gt_pts1.shape == pr_pts1.shape + if gt_pts2 is not None: + assert gt_pts2.ndim == pr_pts2.ndim == 4 + assert gt_pts2.shape == pr_pts2.shape + + # concat the pointcloud + nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) + nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None + + pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) + pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None + + all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1 + all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 + + dot_gt_pr = (all_pr * all_gt).sum(dim=-1) + dot_gt_gt = all_gt.square().sum(dim=-1) + + if fit_mode.startswith('avg'): + # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1) + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + elif fit_mode.startswith('median'): + scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values + elif fit_mode.startswith('weiszfeld'): + # init scaling with l2 closed form + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip_(min=1e-8).reciprocal() + # update the scaling with the new weights + scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) + else: + raise ValueError(f'bad {fit_mode=}') + + if fit_mode.endswith('stop_grad'): + scaling = scaling.detach() + + scaling = scaling.clip(min=1e-3) + # assert scaling.isfinite().all(), bb() + return scaling diff --git a/dust3r/losses.py b/dust3r/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..25e9521a3fab0c150971907480c4184bd3160189 --- /dev/null +++ b/dust3r/losses.py @@ -0,0 +1,347 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Implementation of DUSt3R training losses +# -------------------------------------------------------- +from copy import copy, deepcopy +import torch +import torch.nn as nn +import torch.nn.functional as F +from dust3r.inference import get_pred_pts3d, find_opt_scaling +from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud +from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale + + +def Sum(*losses_and_masks): + loss, mask = losses_and_masks[0] + if loss.ndim > 0: + # we are actually returning the loss for every pixels + return losses_and_masks + else: + # we are returning the global loss + for loss2, mask2 in losses_and_masks[1:]: + loss = loss + loss2 + return loss + + +class BaseCriterion(nn.Module): + def __init__(self, reduction='mean'): + super().__init__() + self.reduction = reduction + + +class LLoss (BaseCriterion): + """ L-norm loss + """ + + def forward(self, a, b): + assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}' + dist = self.distance(a, b) + assert dist.ndim == a.ndim - 1 # one dimension less + if self.reduction == 'none': + return dist + if self.reduction == 'sum': + return dist.sum() + if self.reduction == 'mean': + return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) + raise ValueError(f'bad {self.reduction=} mode') + + def distance(self, a, b): + raise NotImplementedError() + +class WeightedL21Loss(LLoss): + """ Euclidean distance between 3D points with weighted loss based on 1/z """ + + def distance(self, a, b, z): + """ + Compute the weighted Euclidean distance between two 3D points. + + a: tensor of shape (B, H, W, 3), 3D points of prediction + b: tensor of shape (B, H, W, 3), 3D points of target + """ + # Calculate the Euclidean distance (L2 norm) between the points + dist = torch.norm(a - b, dim=-1) # (B, H, W) + + # Extract the z values from b (the third dimension, i.e., b[..., 2]) + #z = b[..., 2] # (B, H, W) + + # Apply weight based on 1/z + weight = torch.clamp(1.0 / (z + 1e-8), min=0, max=1) # To prevent division by zero, add a small epsilon + + #print(weight.max(), weight.min()) + # Apply the weight to the distance + weighted_dist = 10 * dist * weight # Element-wise multiplication (B, H, W) + + return weighted_dist + + def forward(self, a, b, z): + assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}' + dist = self.distance(a, b, z) + assert dist.ndim == a.ndim - 1 # one dimension less + if self.reduction == 'none': + return dist + if self.reduction == 'sum': + return dist.sum() + if self.reduction == 'mean': + return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) + raise ValueError(f'bad {self.reduction=} mode') + +class L21Loss (LLoss): + """ Euclidean distance between 3d points """ + + def distance(self, a, b): + return torch.norm(a - b, dim=-1) # normalized L2 distance + + +L21 = L21Loss() +WeightedL21 = WeightedL21Loss() + +class Criterion (nn.Module): + def __init__(self, criterion=None): + super().__init__() + assert isinstance(criterion, BaseCriterion), f'{criterion} is not a proper criterion!' + self.criterion = copy(criterion) + + def get_name(self): + return f'{type(self).__name__}({self.criterion})' + + def with_reduction(self, mode='none'): + res = loss = deepcopy(self) + while loss is not None: + assert isinstance(loss, Criterion) + loss.criterion.reduction = mode # make it return the loss for each sample + loss = loss._loss2 # we assume loss is a Multiloss + return res + + +class MultiLoss (nn.Module): + """ Easily combinable losses (also keep track of individual loss values): + loss = MyLoss1() + 0.1*MyLoss2() + Usage: + Inherit from this class and override get_name() and compute_loss() + """ + + def __init__(self): + super().__init__() + self._alpha = 1 + self._loss2 = None + + def compute_loss(self, *args, **kwargs): + raise NotImplementedError() + + def get_name(self): + raise NotImplementedError() + + def __mul__(self, alpha): + assert isinstance(alpha, (int, float)) + res = copy(self) + res._alpha = alpha + return res + __rmul__ = __mul__ # same + + def __add__(self, loss2): + assert isinstance(loss2, MultiLoss) + res = cur = copy(self) + # find the end of the chain + while cur._loss2 is not None: + cur = cur._loss2 + cur._loss2 = loss2 + return res + + def __repr__(self): + name = self.get_name() + if self._alpha != 1: + name = f'{self._alpha:g}*{name}' + if self._loss2: + name = f'{name} + {self._loss2}' + return name + + def forward(self, *args, **kwargs): + loss = self.compute_loss(*args, **kwargs) + if isinstance(loss, tuple): + loss, details = loss + elif loss.ndim == 0: + details = {self.get_name(): float(loss)} + else: + details = {} + loss = loss * self._alpha + + if self._loss2: + loss2, details2 = self._loss2(*args, **kwargs) + loss = loss + loss2 + details |= details2 + + return loss, details + + +class Regr3D (Criterion, MultiLoss): + """ Ensure that all 3D points are correct. + Asymmetric loss: view1 is supposed to be the anchor. + + P1 = RT1 @ D1 + P2 = RT2 @ D2 + loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) + loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) + = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) + """ + + def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False): + super().__init__(criterion) + self.norm_mode = norm_mode + self.gt_scale = gt_scale + + def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): + # everything is normalized w.r.t. camera of view1 + in_camera1 = inv(gt1['camera_pose']) + gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3 + gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3 + + valid1 = gt1['valid_mask'][..., 0].clone() + valid2 = gt2['valid_mask'][..., 0].clone() + + if dist_clip is not None: + # points that are too far-away == invalid + dis1 = gt_pts1.norm(dim=-1) # (B, H, W) + dis2 = gt_pts2.norm(dim=-1) # (B, H, W) + valid1 = valid1 & (dis1 <= dist_clip) + valid2 = valid2 & (dis2 <= dist_clip) + + pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False) + pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True) + #gt_pts11 = gt_pts1.clone() + #gt_pts21 = gt_pts2.clone() + # normalize 3d points + if self.norm_mode: + pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2) + if self.norm_mode and not self.gt_scale: + gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2) + #print(gt_pts1.shape) + return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {}#, gt_pts11[..., 2], gt_pts21[..., 2] + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + #print(gt2['valid_mask'].shape) + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ + self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) + # loss on img1 side + + l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1]) + # loss on gt2 side + l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2]) + #print((gt1['pts3d'][...,-1]==0).sum()) + #print((gt1['valid_mask'][..., 1]==0).sum(), (gt1['valid_mask'][..., 0]==0).sum()) + l_mask1 = torch.tensor(0.0).cuda()#F.mse_loss(pred1['pred_mask'].permute(0, 2, 3, 1)[..., 0], gt1['valid_mask'][..., 1].float()) + l_mask2 = torch.tensor(0.0).cuda()#F.mse_loss(pred2['pred_mask'].permute(0, 2, 3, 1)[..., 0], gt2['valid_mask'][..., 1].float()) + self_name = type(self).__name__ + details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean()), 'mask_loss_1': float(l_mask1.mean()), 'mask_loss_2': float(l_mask2.mean())} + #l1 = l1 + l_mask1 + #l2 = l2 + l_mask2 + return Sum((l1, mask1), (l2, mask2)), (details | monitoring) + + +class ConfLoss (MultiLoss): + """ Weighted regression by learned confidence. + Assuming the input pixel_loss is a pixel-level regression loss. + + Principle: + high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) + low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) + + alpha: hyperparameter + """ + + def __init__(self, pixel_loss, alpha=1): + super().__init__() + assert alpha > 0 + self.alpha = alpha + self.pixel_loss = pixel_loss.with_reduction('none') + + def get_name(self): + return f'ConfLoss({self.pixel_loss})' + + def get_conf_log(self, x): + return x, torch.log(x) + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + # compute per-pixel loss + ((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) + if loss1.numel() == 0: + print('NO VALID POINTS in img1', force=True) + if loss2.numel() == 0: + print('NO VALID POINTS in img2', force=True) + + # weight by confidence + conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1]) + conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2]) + + conf_loss1 = loss1 * conf1 - self.alpha * log_conf1 + conf_loss2 = loss2 * conf2 - self.alpha * log_conf2 + #print('11') + # conf_loss1 = loss1 #* conf1 - self.alpha * log_conf1 + # conf_loss2 = loss2 #* conf2 - self.alpha * log_conf2 + # average + nan protection (in case of no valid pixels at all) + conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0 + conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0 + + return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details) + + +class Regr3D_ShiftInv (Regr3D): + """ Same than Regr3D but invariant to depth shift. + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute unnormalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ + super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # compute median depth + gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] + pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] + gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] + pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] + + # subtract the median depth + gt_z1 -= gt_shift_z + gt_z2 -= gt_shift_z + pred_z1 -= pred_shift_z + pred_z2 -= pred_shift_z + + # monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring#, gt_z1, gt_z2 + + +class Regr3D_ScaleInv (Regr3D): + """ Same than Regr3D but invariant to depth shift. + if gt_scale == True: enforce the prediction to take the same scale than GT + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute depth-normalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # measure scene scale + _, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) + _, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) + + # prevent predictions to be in a ridiculous range + pred_scale = pred_scale.clip(min=1e-3, max=1e3) + + # subtract the median depth + if self.gt_scale: + pred_pts1 *= gt_scale / pred_scale + pred_pts2 *= gt_scale / pred_scale + # monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) + else: + gt_pts1 /= gt_scale + gt_pts2 /= gt_scale + pred_pts1 /= pred_scale + pred_pts2 /= pred_scale + # monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) + + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring#, gt_z1, gt_z2 + + +class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): + # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv + pass diff --git a/dust3r/model.py b/dust3r/model.py new file mode 100644 index 0000000000000000000000000000000000000000..31ca073f6713b0a012389f05015687f85ef3e18a --- /dev/null +++ b/dust3r/model.py @@ -0,0 +1,257 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUSt3R model class +# -------------------------------------------------------- +from copy import deepcopy +import torch +import os +from packaging import version +import huggingface_hub +import torch.nn as nn +from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape +from .heads import head_factory +from dust3r.patch_embed import get_patch_embed + +import dust3r.utils.path_to_croco # noqa: F401 +from models.croco import CroCoNet # noqa + +inf = float('inf') + +hf_version_number = huggingface_hub.__version__ +assert version.parse(hf_version_number) >= version.parse("0.22.0"), ("Outdated huggingface_hub version, " + "please reinstall requirements.txt") + + +def load_model(model_path, device, verbose=True): + if verbose: + print('... loading model from', model_path) + ckpt = torch.load(model_path, map_location='cpu') + args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") + if 'landscape_only' not in args: + args = args[:-1] + ', landscape_only=False)' + else: + args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False') + assert "landscape_only=False" in args + if verbose: + print(f"instantiating : {args}") + net = eval(args) + s = net.load_state_dict(ckpt['model'], strict=False) + if verbose: + print(s) + return net.to(device) + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + +class AsymmetricCroCo3DStereo ( + CroCoNet, + huggingface_hub.PyTorchModelHubMixin, + library_name="align3r", + repo_url="https://github.com/jiah-cloud/Align3R", + tags=["image-to-3d"], +): + """ Two siamese encoders, followed by two decoders. + The goal is to output 3d points directly, both images in view1's frame + (hence the asymmetry). + """ + + def __init__(self, + output_mode='pts3d', + head_type='linear', + depth_mode=('exp', -inf, inf), + conf_mode=('exp', 1, inf), + freeze='none', + landscape_only=True, + patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed + **croco_kwargs): + self.patch_embed_cls = patch_embed_cls + self.croco_args = fill_default_args(croco_kwargs, super().__init__) + super().__init__(**croco_kwargs) + + # dust3r specific initialization + self.dec_blocks2 = deepcopy(self.dec_blocks) + self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs) + self.set_freeze(freeze) + self.zero_convs = [] + for i in range(len(self.dec_blocks_pc) + 1): + self.zero_convs.append(self.make_zero_conv(self.dec_embed_dim).cuda()) + self.zero_convs = nn.ModuleList(self.zero_convs) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kw): + if os.path.isfile(pretrained_model_name_or_path): + return load_model(pretrained_model_name_or_path, device='cpu') + else: + try: + model = super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw) + except TypeError as e: + raise Exception(f'tried to load {pretrained_model_name_or_path} from huggingface, but failed') + return model + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim) + self.patch_embed_point_cloud = get_patch_embed(self.patch_embed_cls, img_size, patch_size, self.dec_embed_dim) + + def load_state_dict(self, ckpt, **kw): + # duplicate all weights for the second decoder if not present + new_ckpt = dict(ckpt) + if not any(k.startswith('dec_blocks2') for k in ckpt): + for key, value in ckpt.items(): + if key.startswith('dec_blocks'): + new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value + return super().load_state_dict(new_ckpt, **kw) + + def set_freeze(self, freeze): # this is for use by downstream models + self.freeze = freeze + to_be_frozen = { + 'none': [], + 'mask': [self.mask_token], + 'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], + } + freeze_all_params(to_be_frozen[freeze]) + + def _set_prediction_head(self, *args, **kwargs): + """ No prediction head """ + return + + def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, + **kw): + assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \ + f'{img_size=} must be multiple of {patch_size=}' + self.output_mode = output_mode + self.head_type = head_type + self.depth_mode = depth_mode + self.conf_mode = conf_mode + # allocate heads + self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + # magic wrapper + self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only) + self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only) + + def _encode_image(self, image, true_shape): + # embed the image into patches (x has size B x Npatches x C) + x, pos = self.patch_embed(image, true_shape=true_shape) + #print(x.shape) + # add positional embedding without cls token + assert self.enc_pos_embed is None + + # now apply the transformer encoder and normalization + for blk in self.enc_blocks: + x = blk(x, pos) + + x = self.enc_norm(x) + return x, pos, None + + def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2): + if img1.shape[-2:] == img2.shape[-2:]: + out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), + torch.cat((true_shape1, true_shape2), dim=0)) + out, out2 = out.chunk(2, dim=0) + pos, pos2 = pos.chunk(2, dim=0) + else: + out, pos, _ = self._encode_image(img1, true_shape1) + out2, pos2, _ = self._encode_image(img2, true_shape2) + return out, out2, pos, pos2 + + def _encode_symmetrized(self, view1, view2): + img1 = view1['img'] + img2 = view2['img'] + B = img1.shape[0] + #print(img1.shape,img2.shape) + # Recover true_shape when available, otherwise assume that the img shape is the true one + shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1)) + shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) + # warning! maybe the images have different portrait/landscape orientations + #print(img1.shape,pred_depth1.shape) + # img1 = torch.cat([img1, pred_depth1[:,None,:,:]], dim=1) + # img2 = torch.cat([img2, pred_depth2[:,None,:,:]], dim=1) + if is_symmetrized(view1, view2): + # computing half of forward pass!' + feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2]) + feat1, feat2 = interleave(feat1, feat2) + pos1, pos2 = interleave(pos1, pos2) + else: + feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2) + + return (shape1, shape2), (feat1, feat2), (pos1, pos2) + + def make_zero_conv(self, channels): + return nn.Sequential(zero_module(conv_nd(1, channels, channels, 1, padding=0))) + + def _decoder(self, f1, pos1, f2, pos2, point_cloud, point_cloud_pos): + final_output = [(f1, f2)] # before projection + + # project to decoder dim + f1 = self.decoder_embed(f1) + f2 = self.decoder_embed(f2) + + # incorporate point maps + f1 = f1 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[0].transpose(-1,-2)).transpose(-1,-2) + f2 = f2 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[1].transpose(-1,-2)).transpose(-1,-2) + + final_output.append((f1, f2)) + + for i in range(len(self.dec_blocks)): + blk1 = self.dec_blocks[i] + blk2 = self.dec_blocks2[i] + # img1 side + f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) + # img2 side + f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) + + # incorporate point maps + if i B,S,D + (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2) + point_cloud1 = view1['pred_depth'].permute(0,3,1,2) + point_cloud2 = view2['pred_depth'].permute(0,3,1,2) + + # patch_embed point maps + point_cloud, point_cloud_pos = self.patch_embed_point_cloud(torch.cat((point_cloud1, point_cloud2), dim=0), true_shape=torch.cat((shape1, shape2), dim=0)) + + dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2, point_cloud, point_cloud_pos) + + with torch.cuda.amp.autocast(enabled=False): + res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) + res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2) + #print(res1) + res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame + return res1, res2 diff --git a/dust3r/optim_factory.py b/dust3r/optim_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9c16e0e0fda3fd03c3def61abc1f354f75c584 --- /dev/null +++ b/dust3r/optim_factory.py @@ -0,0 +1,14 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# optimization functions +# -------------------------------------------------------- + + +def adjust_learning_rate_by_lr(optimizer, lr): + for param_group in optimizer.param_groups: + if "lr_scale" in param_group: + param_group["lr"] = lr * param_group["lr_scale"] + else: + param_group["lr"] = lr diff --git a/dust3r/patch_embed.py b/dust3r/patch_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..700e45661738217c6acf730ed60d998005137db4 --- /dev/null +++ b/dust3r/patch_embed.py @@ -0,0 +1,70 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# PatchEmbed implementation for DUST3R, +# in particular ManyAR_PatchEmbed that Handle images with non-square aspect ratio +# -------------------------------------------------------- +import torch +import dust3r.utils.path_to_croco # noqa: F401 +from models.blocks import PatchEmbed # noqa + + +def get_patch_embed(patch_embed_cls, img_size, patch_size, enc_embed_dim): + assert patch_embed_cls in ['PatchEmbedDust3R', 'ManyAR_PatchEmbed'] + patch_embed = eval(patch_embed_cls)(img_size, patch_size, 3, enc_embed_dim) + return patch_embed + + +class PatchEmbedDust3R(PatchEmbed): + def forward(self, x, **kw): + B, C, H, W = x.shape + assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2).contiguous() # BCHW -> BNC + x = self.norm(x) + return x, pos + + +class ManyAR_PatchEmbed (PatchEmbed): + """ Handle images with non-square aspect ratio. + All images in the same batch have the same aspect ratio. + true_shape = [(height, width) ...] indicates the actual shape of each image. + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): + self.embed_dim = embed_dim + super().__init__(img_size, patch_size, in_chans, embed_dim, norm_layer, flatten) + + def forward(self, img, true_shape): + B, C, H, W = img.shape + assert W >= H, f'img should be in landscape mode, but got {W=} {H=}' + assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + assert true_shape.shape == (B, 2), f"true_shape has the wrong shape={true_shape.shape}" + + # size expressed in tokens + W //= self.patch_size[0] + H //= self.patch_size[1] + n_tokens = H * W + + height, width = true_shape.T + is_landscape = (width >= height) + is_portrait = ~is_landscape + + # allocate result + x = img.new_zeros((B, n_tokens, self.embed_dim)) + pos = img.new_zeros((B, n_tokens, 2), dtype=torch.int64) + + # linear projection, transposed if necessary + x[is_landscape] = self.proj(img[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2).float() + x[is_portrait] = self.proj(img[is_portrait].swapaxes(-1, -2)).permute(0, 2, 3, 1).flatten(1, 2).float() + + pos[is_landscape] = self.position_getter(1, H, W, pos.device) + pos[is_portrait] = self.position_getter(1, W, H, pos.device) + + x = self.norm(x) + return x, pos diff --git a/dust3r/post_process.py b/dust3r/post_process.py new file mode 100644 index 0000000000000000000000000000000000000000..550a9b41025ad003228ef16f97d045fc238746e4 --- /dev/null +++ b/dust3r/post_process.py @@ -0,0 +1,60 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities for interpreting the DUST3R output +# -------------------------------------------------------- +import numpy as np +import torch +from dust3r.utils.geometry import xy_grid + + +def estimate_focal_knowing_depth(pts3d, pp, focal_mode='median', min_focal=0., max_focal=np.inf): + """ Reprojection method, for when the absolute depth is known: + 1) estimate the camera focal using a robust estimator + 2) reproject points onto true rays, minimizing a certain error + """ + B, H, W, THREE = pts3d.shape + assert THREE == 3 + + # centered pixel grid + pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2 + pts3d = pts3d.flatten(1, 2) # (B, HW, 3) + + if focal_mode == 'median': + with torch.no_grad(): + # direct estimation of focal + u, v = pixels.unbind(dim=-1) + x, y, z = pts3d.unbind(dim=-1) + fx_votes = (u * z) / x + fy_votes = (v * z) / y + + # assume square pixels, hence same focal for X and Y + f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) + focal = torch.nanmedian(f_votes, dim=-1).values + + elif focal_mode == 'weiszfeld': + # init focal with l2 closed form + # we try to find focal = argmin Sum | pixel - focal * (x,y)/z| + xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1) + + dot_xy_px = (xy_over_z * pixels).sum(dim=-1) + dot_xy_xy = xy_over_z.square().sum(dim=-1) + + focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) + + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip(min=1e-8).reciprocal() + # update the scaling with the new weights + focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) + else: + raise ValueError(f'bad {focal_mode=}') + + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base) + # print(focal) + return focal diff --git a/dust3r/training.py b/dust3r/training.py new file mode 100644 index 0000000000000000000000000000000000000000..101652f03c7d3d0f747a4e6dd889103ba75c4c60 --- /dev/null +++ b/dust3r/training.py @@ -0,0 +1,405 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# training code for DUSt3R +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time +import math +from collections import defaultdict +from pathlib import Path +from typing import Sized + +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 +torch.autograd.set_detect_anomaly(True) +from dust3r.model import AsymmetricCroCo3DStereo, inf # noqa: F401, needed when loading the model +from dust3r.datasets import get_data_loader # noqa +from dust3r.losses import * # noqa: F401, needed when loading the model +from dust3r.inference import loss_of_one_batch # noqa + +import dust3r.utils.path_to_croco # noqa: F401 +import croco.utils.misc as misc # noqa +from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa + + +def get_args_parser(): + parser = argparse.ArgumentParser('DUST3R training', add_help=False) + # model and criterion + parser.add_argument('--model', default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')", + type=str, help="string containing the model to build") + parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint') + parser.add_argument('--train_criterion', default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)", + type=str, help="train criterion") + parser.add_argument('--test_criterion', default=None, type=str, help="test criterion") + + # dataset + parser.add_argument('--train_dataset', required=True, type=str, help="training set") + parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set") + + # training + parser.add_argument('--seed', default=0, type=int, help="Random seed") + parser.add_argument('--batch_size', default=64, type=int, + help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") + parser.add_argument('--accum_iter', default=1, type=int, + help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") + parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") + + parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") + parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', + help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0') + parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') + + parser.add_argument('--amp', type=int, default=0, + choices=[0, 1], help="Use Automatic Mixed Precision for pretraining") + parser.add_argument("--disable_cudnn_benchmark", action='store_true', default=False, + help="set cudnn.benchmark = False") + # others + parser.add_argument('--num_workers', default=8, type=int) + parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') + + parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency') + parser.add_argument('--save_freq', default=1, type=int, + help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') + parser.add_argument('--keep_freq', default=20, type=int, + help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') + parser.add_argument('--print_freq', default=20, type=int, + help='frequence (number of iterations) to print infos while training') + + # output dir + parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") + return parser + + +def train(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: " + args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + print("****************************************") + print(args.resume) + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = not args.disable_cudnn_benchmark + + # training dataset and loader + print('Building train dataset {:s}'.format(args.train_dataset)) + # dataset and loader + data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False) + print('Building test dataset {:s}'.format(args.train_dataset)) + data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size, args.num_workers, test=True) + for dataset in args.test_dataset.split('+')} + + # model + print('Loading model: {:s}'.format(args.model)) + model = eval(args.model) + print(f'>> Creating train criterion = {args.train_criterion}') + train_criterion = eval(args.train_criterion).to(device) + print(f'>> Creating test criterion = {args.test_criterion or args.train_criterion}') + test_criterion = eval(args.test_criterion or args.criterion).to(device) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + if args.pretrained and not args.resume: + print('Loading pretrained: ', args.pretrained) + ckpt = torch.load(args.pretrained, map_location=device) + # ckpt_state_dict = ckpt['model'] + # # Get the current model's state dictionary + # model_state_dict = model.state_dict() + # # Filter out keys with mismatched shapes + # filtered_ckpt_state_dict = {k: v for k, v in ckpt_state_dict.items() if k in model_state_dict and v.shape == model_state_dict[k].shape} + + # # Load the filtered state dictionary + # model_state_dict.update(filtered_ckpt_state_dict) + # model.load_state_dict(model_state_dict) + print(model.load_state_dict(ckpt['model'], strict=False)) + del ckpt # in case it occupies memory + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + + + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + def write_log_stats(epoch, train_stats, test_stats): + if misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + + log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()}) + for test_name in data_loader_test: + if test_name not in test_stats: + continue + log_stats.update({test_name + '_' + k: v for k, v in test_stats[test_name].items()}) + + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + def save_model(epoch, fname, best_so_far): + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far) + + best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, + optimizer=optimizer, loss_scaler=loss_scaler) + if best_so_far is None: + best_so_far = float('inf') + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + train_stats = test_stats = {} + for epoch in range(args.start_epoch, args.epochs + 1): + + # Save immediately the last checkpoint + if epoch > args.start_epoch: + if args.save_freq and epoch % args.save_freq == 0 or epoch == args.epochs: + save_model(epoch - 1, 'last', best_so_far) + + # Test on multiple datasets + new_best = False + if (epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0): + test_stats = {} + for test_name, testset in data_loader_test.items(): + stats = test_one_epoch(model, test_criterion, testset, + device, epoch, log_writer=log_writer, args=args, prefix=test_name) + test_stats[test_name] = stats + + # Save best of all + if stats['loss_med'] < best_so_far: + best_so_far = stats['loss_med'] + new_best = True + + # Save more stuff + write_log_stats(epoch, train_stats, test_stats) + + if epoch > args.start_epoch: + if args.keep_freq and epoch % args.keep_freq == 0: + save_model(epoch - 1, str(epoch), best_so_far) + if new_best: + save_model(epoch - 1, 'best', best_so_far) + if epoch >= args.epochs: + break # exit after writing last test to disk + + # Train + train_stats = train_one_epoch( + model, train_criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + log_writer=log_writer, + args=args) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + save_final_model(args, args.epochs, model_without_ddp, best_so_far=best_so_far) + + +def save_final_model(args, epoch, model_without_ddp, best_so_far=None): + output_dir = Path(args.output_dir) + checkpoint_path = output_dir / 'checkpoint-final.pth' + to_save = { + 'args': args, + 'model': model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict(), + 'epoch': epoch + } + if best_so_far is not None: + to_save['best_so_far'] = best_so_far + print(f'>> Saving model to {checkpoint_path} ...') + misc.save_on_master(to_save, checkpoint_path) + + +def build_dataset(dataset, batch_size, num_workers, test=False): + split = ['Train', 'Test'][test] + print(f'Building {split} Data loader for dataset: ', dataset) + loader = get_data_loader(dataset, + batch_size=batch_size, + num_workers=num_workers, + pin_mem=True, + shuffle=not (test), + drop_last=not (test)) + + print(f"{split} dataset length: ", len(loader)) + return loader + + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Sized, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + args, + log_writer=None): + assert torch.backends.cuda.matmul.allow_tf32 == True + + model.train(True) + + ################################# only finetune the following module ########################################### + # list_grad = ["downstream_head", "dec_blocks.8", "dec_blocks.9", "dec_blocks.10", "dec_blocks.11", "dec_norm", + # "dec_blocks2.8", "dec_blocks2.9", "dec_blocks2.10", "dec_blocks2.11"] + list_grad = ["downstream_head", "dec_blocks", "dec_norm", + "dec_blocks2",'dec_blocks_pc','patch_embed_point_cloud','zero_convs'] + print(model.named_parameters()) + for name, p in model.named_parameters(): + if not any([grad in name for grad in list_grad]): + p.requires_grad = False + if 'zero_convs' in name: + print(p.requires_grad) + ################################################################################################################# + + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + accum_iter = args.accum_iter + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'): + data_loader.sampler.set_epoch(epoch) + + optimizer.zero_grad() + + for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + epoch_f = epoch + data_iter_step / len(data_loader) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, epoch_f, args) + + loss_tuple = loss_of_one_batch(batch, model, criterion, device, + symmetrize_batch=True, + use_amp=bool(args.amp), ret='loss') + loss, loss_details = loss_tuple # criterion returns two values + loss_value = float(loss) + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value), force=True) + sys.exit(1) + + loss /= accum_iter + # if not isinstance(loss, torch.Tensor): + # loss = torch.tensor(0.0).cuda() + loss_scaler(loss, optimizer, parameters=filter(lambda p: p.requires_grad, model.parameters()), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + del loss + del batch + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(epoch=epoch_f) + metric_logger.update(lr=lr) + metric_logger.update(loss=loss_value, **loss_details) + + if (data_iter_step + 1) % accum_iter == 0 and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0: + loss_value_reduce = misc.all_reduce_mean(loss_value) # MUST BE EXECUTED BY ALL NODES + if log_writer is None: + continue + """ We use epoch_1000x as the x-axis in tensorboard. + This calibrates different curves when batch size changes. + """ + epoch_1000x = int(epoch_f * 1000) + log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('train_lr', lr, epoch_1000x) + log_writer.add_scalar('train_iter', epoch_1000x, epoch_1000x) + for name, val in loss_details.items(): + log_writer.add_scalar('train_' + name, val, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Sized, device: torch.device, epoch: int, + args, log_writer=None, prefix='test'): + + model.eval() + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9)) + header = 'Test Epoch: [{}]'.format(epoch) + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'): + data_loader.sampler.set_epoch(epoch) + + for _, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + loss_tuple = loss_of_one_batch(batch, model, criterion, device, + symmetrize_batch=True, + use_amp=bool(args.amp), ret='loss') + loss_value, loss_details = loss_tuple # criterion returns two values + metric_logger.update(loss=float(loss_value), **loss_details) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + + aggs = [('avg', 'global_avg'), ('med', 'median')] + results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs} + + if log_writer is not None: + for name, val in results.items(): + log_writer.add_scalar(prefix + '_' + name, val, 1000 * epoch) + + return results diff --git a/dust3r/utils/__init__.py b/dust3r/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/dust3r/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/dust3r/utils/__pycache__/__init__.cpython-311.pyc b/dust3r/utils/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4b44437d358157ff5925b6be1ffbf0aa09e3845 Binary files /dev/null and b/dust3r/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/device.cpython-311.pyc b/dust3r/utils/__pycache__/device.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8785892a094b1f409b629039ebcf445610bbbc37 Binary files /dev/null and b/dust3r/utils/__pycache__/device.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/eval_metadata.cpython-311.pyc b/dust3r/utils/__pycache__/eval_metadata.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f7a45c412bdb2c7cda361aee46e4897744e4dc0 Binary files /dev/null and b/dust3r/utils/__pycache__/eval_metadata.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/geometry.cpython-311.pyc b/dust3r/utils/__pycache__/geometry.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55ef411bf5159e1086f424a65cc98766ffb302f1 Binary files /dev/null and b/dust3r/utils/__pycache__/geometry.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/goem_opt.cpython-311.pyc b/dust3r/utils/__pycache__/goem_opt.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..897d28b314002cb04912972ea00e35f7aabed2ab Binary files /dev/null and b/dust3r/utils/__pycache__/goem_opt.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/image.cpython-311.pyc b/dust3r/utils/__pycache__/image.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..724c10fe1f9fe0b1592abf2086d03938702bcbc1 Binary files /dev/null and b/dust3r/utils/__pycache__/image.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/image_pose.cpython-311.pyc b/dust3r/utils/__pycache__/image_pose.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dd908b723476a5ab9583654f61c30788b697bfb9 Binary files /dev/null and b/dust3r/utils/__pycache__/image_pose.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/misc.cpython-311.pyc b/dust3r/utils/__pycache__/misc.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d344bb336d43f50f68baf91e0b32aeff632d470 Binary files /dev/null and b/dust3r/utils/__pycache__/misc.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/path_to_croco.cpython-311.pyc b/dust3r/utils/__pycache__/path_to_croco.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7e5964bda90b42a411863fa9bcab2c2ff9daf9ef Binary files /dev/null and b/dust3r/utils/__pycache__/path_to_croco.cpython-311.pyc differ diff --git a/dust3r/utils/__pycache__/vo_eval.cpython-311.pyc b/dust3r/utils/__pycache__/vo_eval.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73c316efc5df403ccac3bfd36ea49f37d9ea4040 Binary files /dev/null and b/dust3r/utils/__pycache__/vo_eval.cpython-311.pyc differ diff --git a/dust3r/utils/device.py b/dust3r/utils/device.py new file mode 100644 index 0000000000000000000000000000000000000000..e3b6a74dac05a2e1ba3a2b2f0faa8cea08ece745 --- /dev/null +++ b/dust3r/utils/device.py @@ -0,0 +1,76 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import numpy as np +import torch + + +def todevice(batch, device, callback=None, non_blocking=False): + ''' Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy). + + batch: list, tuple, dict of tensors or other things + device: pytorch device or 'numpy' + callback: function that would be called on every sub-elements. + ''' + if callback: + batch = callback(batch) + + if isinstance(batch, dict): + return {k: todevice(v, device) for k, v in batch.items()} + + if isinstance(batch, (tuple, list)): + return type(batch)(todevice(x, device) for x in batch) + + x = batch + if device == 'numpy': + if isinstance(x, torch.Tensor): + x = x.detach().cpu().numpy() + elif x is not None: + if isinstance(x, np.ndarray): + x = torch.from_numpy(x) + if torch.is_tensor(x): + x = x.to(device, non_blocking=non_blocking) + return x + + +to_device = todevice # alias + + +def to_numpy(x): return todevice(x, 'numpy') +def to_cpu(x): return todevice(x, 'cpu') +def to_cuda(x): return todevice(x, 'cuda') + + +def collate_with_cat(whatever, lists=False): + if isinstance(whatever, dict): + return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()} + + elif isinstance(whatever, (tuple, list)): + if len(whatever) == 0: + return whatever + elem = whatever[0] + T = type(whatever) + + if elem is None: + return None + if isinstance(elem, (bool, float, int, str)): + return whatever + if isinstance(elem, tuple): + return T(collate_with_cat(x, lists=lists) for x in zip(*whatever)) + if isinstance(elem, dict): + return {k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem} + + if isinstance(elem, torch.Tensor): + return listify(whatever) if lists else torch.cat(whatever) + if isinstance(elem, np.ndarray): + return listify(whatever) if lists else torch.cat([torch.from_numpy(x) for x in whatever]) + + # otherwise, we just chain lists + return sum(whatever, T()) + + +def listify(elems): + return [x for e in elems for x in e] diff --git a/dust3r/utils/eval_metadata.py b/dust3r/utils/eval_metadata.py new file mode 100644 index 0000000000000000000000000000000000000000..51c78eddd1c09d487a174394570c0bf15b79b542 --- /dev/null +++ b/dust3r/utils/eval_metadata.py @@ -0,0 +1,115 @@ +import os +import glob +from tqdm import tqdm + +# Define the merged dataset metadata dictionary +dataset_metadata = { + 'davis': { + 'img_path': "./data/davis/DAVIS/JPEGImages/480p", + 'mask_path': "./data/davis/DAVIS/Annotations/480p", + 'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq), + 'gt_traj_func': lambda img_path, anno_path, seq: None, + 'traj_format': None, + 'seq_list': None, + 'full_seq': True, + 'mask_path_seq_func': lambda mask_path, seq: os.path.join(mask_path, seq), + 'skip_condition': None, + 'process_func': None, # Not used in mono depth estimation + }, + 'test': { + 'img_path': "./data/test_set", + 'mask_path': None, + 'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq), + 'gt_traj_func': lambda img_path, anno_path, seq: None, + 'traj_format': None, + 'seq_list': None, + 'full_seq': True, + 'mask_path_seq_func': lambda mask_path, seq: None, + 'skip_condition': None, + 'process_func': None, # Not used in mono depth estimation + }, + 'bonn': { + 'img_path': "./data/bonn/rgbd_bonn_dataset", + 'mask_path': None, + 'dir_path_func': lambda img_path, seq: os.path.join(img_path, f'rgbd_bonn_{seq}', 'rgb_110'), + 'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(img_path, f'rgbd_bonn_{seq}', 'groundtruth_110.txt'), + 'traj_format': 'tum', + 'seq_list': ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"], + 'full_seq': False, + 'mask_path_seq_func': lambda mask_path, seq: None, + 'skip_condition': None, + 'process_func': lambda args, img_path: process_bonn(args, img_path), + }, + 'tum': { + 'img_path': "./data/tum", + 'mask_path': None, + 'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq, 'rgb_50'), + 'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(img_path, seq, 'groundtruth_50.txt'), + 'traj_format': 'tum', + 'seq_list': None, + 'full_seq': True, + 'mask_path_seq_func': lambda mask_path, seq: None, + 'skip_condition': None, + 'process_func': None, + }, + 'sintel': { + 'img_path': "./data/MPI-Sintel/MPI-Sintel-training_images/training/final", + 'anno_path': "./data/MPI-Sintel/MPI-Sintel-depth-training/training/camdata_left", + 'mask_path': "./data/MPI-Sintel/MPI-Sintel-depth-training/training/dynamic_label_perfect/", + 'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq), + 'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(anno_path, seq), + 'traj_format': None, + 'seq_list': ["alley_2", "ambush_4", "ambush_5", "ambush_6", "cave_2", "cave_4", "market_2", + "market_5", "market_6", "shaman_3", "sleeping_1", "sleeping_2", "temple_2", "temple_3"], + 'full_seq': False, + 'mask_path_seq_func': lambda mask_path, seq: None, + 'skip_condition': None, + 'process_func': lambda args, img_path: process_sintel(args, img_path), + }, +} + +# Define processing functions for each dataset +def process_kitti(args, img_path): + for dir in tqdm(sorted(glob.glob(f'{img_path}/*'))): + filelist = sorted(glob.glob(f'{dir}/*.png')) + save_dir = f'{args.output_dir}/{os.path.basename(dir)}' + yield filelist, save_dir + +def process_bonn(args, img_path): + if args.full_seq: + for dir in tqdm(sorted(glob.glob(f'{img_path}/*/'))): + filelist = sorted(glob.glob(f'{dir}/rgb/*.png')) + save_dir = f'{args.output_dir}/{os.path.basename(os.path.dirname(dir))}' + yield filelist, save_dir + else: + seq_list = ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"] if args.seq_list is None else args.seq_list + for seq in tqdm(seq_list): + filelist = sorted(glob.glob(f'{img_path}/rgbd_bonn_{seq}/rgb_110/*.png')) + save_dir = f'{args.output_dir}/{seq}' + yield filelist, save_dir + +def process_nyu(args, img_path): + filelist = sorted(glob.glob(f'{img_path}/*.png')) + save_dir = f'{args.output_dir}' + yield filelist, save_dir + +def process_scannet(args, img_path): + seq_list = sorted(glob.glob(f'{img_path}/*')) + for seq in tqdm(seq_list): + filelist = sorted(glob.glob(f'{seq}/color_90/*.jpg')) + save_dir = f'{args.output_dir}/{os.path.basename(seq)}' + yield filelist, save_dir + +def process_sintel(args, img_path): + if args.full_seq: + for dir in tqdm(sorted(glob.glob(f'{img_path}/*/'))): + filelist = sorted(glob.glob(f'{dir}/*.png')) + save_dir = f'{args.output_dir}/{os.path.basename(os.path.dirname(dir))}' + yield filelist, save_dir + else: + seq_list = ["alley_2", "ambush_4", "ambush_5", "ambush_6", "cave_2", "cave_4", "market_2", + "market_5", "market_6", "shaman_3", "sleeping_1", "sleeping_2", "temple_2", "temple_3"] + for seq in tqdm(seq_list): + filelist = sorted(glob.glob(f'{img_path}/{seq}/*.png')) + save_dir = f'{args.output_dir}/{seq}' + yield filelist, save_dir \ No newline at end of file diff --git a/dust3r/utils/geometry.py b/dust3r/utils/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..21a979fe9b489d641eb4e0403b80db0cc2d6b14c --- /dev/null +++ b/dust3r/utils/geometry.py @@ -0,0 +1,372 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# geometry utilitary functions +# -------------------------------------------------------- +import torch +import numpy as np +from scipy.spatial import cKDTree as KDTree + +from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans +from dust3r.utils.device import to_numpy + + +def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw): + """ Output a (H,W,2) array of int32 + with output[j,i,0] = i + origin[0] + output[j,i,1] = j + origin[1] + """ + if device is None: + # numpy + arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones + else: + # torch + arange = lambda *a, **kw: torch.arange(*a, device=device, **kw) + meshgrid, stack = torch.meshgrid, torch.stack + ones = lambda *a: torch.ones(*a, device=device) + + tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)] + grid = meshgrid(tw, th, indexing='xy') + if homogeneous: + grid = grid + (ones((H, W)),) + if unsqueeze is not None: + grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze)) + if cat_dim is not None: + grid = stack(grid, cat_dim) + return grid + + +def geotrf(Trf, pts, ncol=None, norm=False): + """ Apply a geometric transformation to a list of 3-D points. + + H: 3x3 or 4x4 projection matrix (typically a Homography) + p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3) + + ncol: int. number of columns of the result (2 or 3) + norm: float. if != 0, the resut is projected on the z=norm plane. + + Returns an array of projected 2d points. + """ + assert Trf.ndim >= 2 + if isinstance(Trf, np.ndarray): + pts = np.asarray(pts) + elif isinstance(Trf, torch.Tensor): + pts = torch.as_tensor(pts, dtype=Trf.dtype) + + # adapt shape if necessary + output_reshape = pts.shape[:-1] + ncol = ncol or pts.shape[-1] + + # optimized code + if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and + Trf.ndim == 3 and pts.ndim == 4): + d = pts.shape[3] + if Trf.shape[-1] == d: + pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts) + elif Trf.shape[-1] == d + 1: + pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d] + else: + raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}') + else: + if Trf.ndim >= 3: + n = Trf.ndim - 2 + assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match' + Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) + + if pts.ndim > Trf.ndim: + # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d) + pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) + elif pts.ndim == 2: + # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d) + pts = pts[:, None, :] + + if pts.shape[-1] + 1 == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] + elif pts.shape[-1] == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf + else: + pts = Trf @ pts.T + if pts.ndim >= 2: + pts = pts.swapaxes(-1, -2) + + if norm: + pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG + if norm != 1: + pts *= norm + + res = pts[..., :ncol].reshape(*output_reshape, ncol) + return res + + +def inv(mat): + """ Invert a torch or numpy matrix + """ + if isinstance(mat, torch.Tensor): + return torch.linalg.inv(mat) + if isinstance(mat, np.ndarray): + return np.linalg.inv(mat) + raise ValueError(f'bad matrix type = {type(mat)}') + + +def depthmap_to_pts3d(depth, pseudo_focal, pp=None, **_): + """ + Args: + - depthmap (BxHxW array): + - pseudo_focal: [B,H,W] ; [B,2,H,W] or [B,1,H,W] + Returns: + pointmap of absolute coordinates (BxHxWx3 array) + """ + + if len(depth.shape) == 4: + B, H, W, n = depth.shape + else: + B, H, W = depth.shape + n = None + + if len(pseudo_focal.shape) == 3: # [B,H,W] + pseudo_focalx = pseudo_focaly = pseudo_focal + elif len(pseudo_focal.shape) == 4: # [B,2,H,W] or [B,1,H,W] + pseudo_focalx = pseudo_focal[:, 0] + if pseudo_focal.shape[1] == 2: + pseudo_focaly = pseudo_focal[:, 1] + else: + pseudo_focaly = pseudo_focalx + else: + raise NotImplementedError("Error, unknown input focal shape format.") + + assert pseudo_focalx.shape == depth.shape[:3] + assert pseudo_focaly.shape == depth.shape[:3] + grid_x, grid_y = xy_grid(W, H, cat_dim=0, device=depth.device)[:, None] + + # set principal point + if pp is None: + grid_x = grid_x - (W - 1) / 2 + grid_y = grid_y - (H - 1) / 2 + else: + grid_x = grid_x.expand(B, -1, -1) - pp[:, 0, None, None] + grid_y = grid_y.expand(B, -1, -1) - pp[:, 1, None, None] + + if n is None: + pts3d = torch.empty((B, H, W, 3), device=depth.device) + pts3d[..., 0] = depth * grid_x / pseudo_focalx + pts3d[..., 1] = depth * grid_y / pseudo_focaly + pts3d[..., 2] = depth + else: + pts3d = torch.empty((B, H, W, 3, n), device=depth.device) + pts3d[..., 0, :] = depth * (grid_x / pseudo_focalx)[..., None] + pts3d[..., 1, :] = depth * (grid_y / pseudo_focaly)[..., None] + pts3d[..., 2, :] = depth + return pts3d + + +def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels. + """ + camera_intrinsics = np.float32(camera_intrinsics) + H, W = depthmap.shape + + # Compute 3D ray associated with each pixel + # Strong assumption: there are no skew terms + assert camera_intrinsics[0, 1] == 0.0 + assert camera_intrinsics[1, 0] == 0.0 + if pseudo_focal is None: + fu = camera_intrinsics[0, 0] + fv = camera_intrinsics[1, 1] + else: + assert pseudo_focal.shape == (H, W) + fu = fv = pseudo_focal + cu = camera_intrinsics[0, 2] + cv = camera_intrinsics[1, 2] + + u, v = np.meshgrid(np.arange(W), np.arange(H)) + z_cam = depthmap + x_cam = (u - cu) * z_cam / fu + y_cam = (v - cv) * z_cam / fv + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32) + + # Mask for valid coordinates + valid_mask = (depthmap > 0.0) & (depthmap<400) + if valid_mask.sum()==0: + depthmap1 = depthmap.copy() + depthmap1[depthmap1==0] = 10000 + valid_mask[depthmap1==depthmap1.min()] = True + valid_mask_sky = (depthmap > 0.0) + valid_mask = np.concatenate([valid_mask[...,None],valid_mask_sky[...,None]],axis=-1) + return X_cam, valid_mask + + +def depthmap_to_absolute_camera_coordinates(depthmap, camera_intrinsics, camera_pose, **kw): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + - camera_pose: a 4x3 or 4x4 cam2world matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.""" + X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics) + + X_world = X_cam # default + if camera_pose is not None: + # R_cam2world = np.float32(camera_params["R_cam2world"]) + # t_cam2world = np.float32(camera_params["t_cam2world"]).squeeze() + R_cam2world = camera_pose[:3, :3] + t_cam2world = camera_pose[:3, 3] + + # Express in absolute coordinates (invalid depth values) + X_world = np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :] + + return X_world, valid_mask + + +def colmap_to_opencv_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] -= 0.5 + K[1, 2] -= 0.5 + return K + + +def opencv_to_colmap_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] += 0.5 + K[1, 2] += 0.5 + return K + + +def normalize_pointcloud(pts1, pts2, norm_mode='avg_dis', valid1=None, valid2=None, ret_factor=False): + """ renorm pointmaps pts1, pts2 with norm_mode + """ + assert pts1.ndim >= 3 and pts1.shape[-1] == 3 + assert pts2 is None or (pts2.ndim >= 3 and pts2.shape[-1] == 3) + norm_mode, dis_mode = norm_mode.split('_') + + if norm_mode == 'avg': + # gather all points together (joint normalization) + nan_pts1, nnz1 = invalid_to_zeros(pts1, valid1, ndim=3) + nan_pts2, nnz2 = invalid_to_zeros(pts2, valid2, ndim=3) if pts2 is not None else (None, 0) + all_pts = torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + if dis_mode == 'dis': + pass # do nothing + elif dis_mode == 'log1p': + all_dis = torch.log1p(all_dis) + elif dis_mode == 'warp-log1p': + # actually warp input points before normalizing them + log_dis = torch.log1p(all_dis) + warp_factor = log_dis / all_dis.clip(min=1e-8) + H1, W1 = pts1.shape[1:-1] + pts1 = pts1 * warp_factor[:, :W1 * H1].view(-1, H1, W1, 1) + if pts2 is not None: + H2, W2 = pts2.shape[1:-1] + pts2 = pts2 * warp_factor[:, W1 * H1:].view(-1, H2, W2, 1) + all_dis = log_dis # this is their true distance afterwards + else: + raise ValueError(f'bad {dis_mode=}') + + norm_factor = all_dis.sum(dim=1) / (nnz1 + nnz2 + 1e-8) + else: + # gather all points together (joint normalization) + nan_pts1 = invalid_to_nans(pts1, valid1, ndim=3) + nan_pts2 = invalid_to_nans(pts2, valid2, ndim=3) if pts2 is not None else None + all_pts = torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + + if norm_mode == 'avg': + norm_factor = all_dis.nanmean(dim=1) + elif norm_mode == 'median': + norm_factor = all_dis.nanmedian(dim=1).values.detach() + elif norm_mode == 'sqrt': + norm_factor = all_dis.sqrt().nanmean(dim=1)**2 + else: + raise ValueError(f'bad {norm_mode=}') + + norm_factor = norm_factor.clip(min=1e-8) + while norm_factor.ndim < pts1.ndim: + norm_factor.unsqueeze_(-1) + + res = pts1 / norm_factor + if pts2 is not None: + res = (res, pts2 / norm_factor) + if ret_factor: + res = res + (norm_factor,) + return res + + +@torch.no_grad() +def get_joint_pointcloud_depth(z1, z2, valid_mask1, valid_mask2=None, quantile=0.5): + # set invalid points to NaN + _z1 = invalid_to_nans(z1, valid_mask1).reshape(len(z1), -1) + _z2 = invalid_to_nans(z2, valid_mask2).reshape(len(z2), -1) if z2 is not None else None + _z = torch.cat((_z1, _z2), dim=-1) if z2 is not None else _z1 + + # compute median depth overall (ignoring nans) + if quantile == 0.5: + shift_z = torch.nanmedian(_z, dim=-1).values + else: + shift_z = torch.nanquantile(_z, quantile, dim=-1) + return shift_z # (B,) + + +@torch.no_grad() +def get_joint_pointcloud_center_scale(pts1, pts2, valid_mask1=None, valid_mask2=None, z_only=False, center=True): + # set invalid points to NaN + _pts1 = invalid_to_nans(pts1, valid_mask1).reshape(len(pts1), -1, 3) + _pts2 = invalid_to_nans(pts2, valid_mask2).reshape(len(pts2), -1, 3) if pts2 is not None else None + _pts = torch.cat((_pts1, _pts2), dim=1) if pts2 is not None else _pts1 + + # compute median center + _center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3) + if z_only: + _center[..., :2] = 0 # do not center X and Y + + # compute median norm + _norm = ((_pts - _center) if center else _pts).norm(dim=-1) + scale = torch.nanmedian(_norm, dim=1).values + return _center[:, None, :, :], scale[:, None, None, None] + + +def find_reciprocal_matches(P1, P2): + """ + returns 3 values: + 1 - reciprocal_in_P2: a boolean array of size P2.shape[0], a "True" value indicates a match + 2 - nn2_in_P1: a int array of size P2.shape[0], it contains the indexes of the closest points in P1 + 3 - reciprocal_in_P2.sum(): the number of matches + """ + tree1 = KDTree(P1) + tree2 = KDTree(P2) + + _, nn1_in_P2 = tree2.query(P1, workers=8) + _, nn2_in_P1 = tree1.query(P2, workers=8) + + reciprocal_in_P1 = (nn2_in_P1[nn1_in_P2] == np.arange(len(nn1_in_P2))) + reciprocal_in_P2 = (nn1_in_P2[nn2_in_P1] == np.arange(len(nn2_in_P1))) + assert reciprocal_in_P1.sum() == reciprocal_in_P2.sum() + return reciprocal_in_P2, nn2_in_P1, reciprocal_in_P2.sum() + + +def get_med_dist_between_poses(poses): + from scipy.spatial.distance import pdist + return np.median(pdist([to_numpy(p[:3, 3]) for p in poses])) diff --git a/dust3r/utils/goem_opt.py b/dust3r/utils/goem_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..6d1827e587b1fde0edae9fca7ba03b7ce434ce5e --- /dev/null +++ b/dust3r/utils/goem_opt.py @@ -0,0 +1,619 @@ +from matplotlib.pyplot import grid +import torch +from torch import nn +from torch.nn import functional as F +import math +from scipy.spatial.transform import Rotation + +def tum_to_pose_matrix(pose): + # pose: [tx, ty, tz, qw, qx, qy, qz] + assert pose.shape == (7,) + pose_xyzw = pose[[3, 4, 5, 6]] + r = Rotation.from_quat(pose_xyzw) + return np.vstack([np.hstack([r.as_matrix(), pose[:3].reshape(-1, 1)]), [0, 0, 0, 1]]) + +def depth_regularization_si_weighted(depth_pred, depth_init, pixel_wise_weight=None, pixel_wise_weight_scale=1, pixel_wise_weight_bias=1, eps=1e-6, pixel_weight_normalize=False): + # scale compute: + depth_pred = torch.clamp(depth_pred, min=eps) + depth_init = torch.clamp(depth_init, min=eps) + log_d_pred = torch.log(depth_pred) + log_d_init = torch.log(depth_init) + B, _, H, W = depth_pred.shape + scale = torch.sum(log_d_init - log_d_pred, + dim=[1, 2, 3], keepdim=True)/(H*W) + if pixel_wise_weight is not None: + if pixel_weight_normalize: + norm = torch.max(pixel_wise_weight.detach().view( + B, -1), dim=1, keepdim=False)[0] + pixel_wise_weight = pixel_wise_weight / \ + (norm[:, None, None, None]+eps) + pixel_wise_weight = pixel_wise_weight * \ + pixel_wise_weight_scale + pixel_wise_weight_bias + else: + pixel_wise_weight = 1 + si_loss = torch.sum(pixel_wise_weight*(log_d_pred - + log_d_init + scale)**2, dim=[1, 2, 3])/(H*W) + return si_loss.mean() + +class WarpImage(torch.nn.Module): + def __init__(self): + super(WarpImage, self).__init__() + self.base_coord = None + + def init_grid(self, shape, device): + H, W = shape + hh, ww = torch.meshgrid(torch.arange( + H).float(), torch.arange(W).float()) + coord = torch.zeros([1, H, W, 2]) + coord[0, ..., 0] = ww + coord[0, ..., 1] = hh + self.base_coord = coord.to(device) + self.W = W + self.H = H + + def warp_image(self, base_coord, img_1, flow_2_1): + B, C, H, W = flow_2_1.shape + sample_grids = base_coord + flow_2_1.permute([0, 2, 3, 1]) + sample_grids[..., 0] /= (W - 1) / 2 + sample_grids[..., 1] /= (H - 1) / 2 + sample_grids -= 1 + warped_image_2_from_1 = F.grid_sample( + img_1, sample_grids, align_corners=True) + return warped_image_2_from_1 + + def forward(self, img_1, flow_2_1): + B, _, H, W = flow_2_1.shape + if self.base_coord is None: + self.init_grid([H, W], device=flow_2_1.device) + base_coord = self.base_coord.expand([B, -1, -1, -1]) + return self.warp_image(base_coord, img_1, flow_2_1) + + +class CameraIntrinsics(nn.Module): + def __init__(self, init_focal_length=0.45, pixel_size=None): + super().__init__() + self.focal_length = nn.Parameter(torch.tensor(init_focal_length)) + self.pixel_size_buffer = pixel_size + + def register_shape(self, orig_shape, opt_shape) -> None: + self.orig_shape = orig_shape + self.opt_shape = opt_shape + H_orig, W_orig = orig_shape + H_opt, W_opt = opt_shape + if self.pixel_size_buffer is None: + # initialize as 35mm film + pixel_size = 0.433 / (H_orig ** 2 + W_orig ** 2) ** 0.5 + else: + pixel_size = self.pixel_size_buffer + self.register_buffer("pixel_size", torch.tensor(pixel_size)) + intrinsics_mat_buffer = torch.zeros(3, 3) + intrinsics_mat_buffer[0, -1] = (W_opt - 1) / 2 + intrinsics_mat_buffer[1, -1] = (H_opt - 1) / 2 + intrinsics_mat_buffer[2, -1] = 1 + self.register_buffer("intrinsics_mat", intrinsics_mat_buffer) + self.register_buffer("scale_H", torch.tensor( + H_opt / (H_orig * pixel_size))) + self.register_buffer("scale_W", torch.tensor( + W_opt / (W_orig * pixel_size))) + + def get_K_and_inv(self, with_batch_dim=True) -> torch.Tensor: + intrinsics_mat = self.intrinsics_mat.clone() + intrinsics_mat[0, 0] = self.focal_length * self.scale_W + intrinsics_mat[1, 1] = self.focal_length * self.scale_H + inv_intrinsics_mat = torch.linalg.inv(intrinsics_mat) + if with_batch_dim: + return intrinsics_mat[None, ...], inv_intrinsics_mat[None, ...] + else: + return intrinsics_mat, inv_intrinsics_mat + + +@torch.jit.script +def hat(v: torch.Tensor) -> torch.Tensor: + """ + Compute the Hat operator [1] of a batch of 3D vectors. + + Args: + v: Batch of vectors of shape `(minibatch , 3)`. + + Returns: + Batch of skew-symmetric matrices of shape + `(minibatch, 3 , 3)` where each matrix is of the form: + `[ 0 -v_z v_y ] + [ v_z 0 -v_x ] + [ -v_y v_x 0 ]` + + Raises: + ValueError if `v` is of incorrect shape. + + [1] https://en.wikipedia.org/wiki/Hat_operator + """ + + N, dim = v.shape + # if dim != 3: + # raise ValueError("Input vectors have to be 3-dimensional.") + + h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device) + + x, y, z = v.unbind(1) + + h[:, 0, 1] = -z + h[:, 0, 2] = y + h[:, 1, 0] = z + h[:, 1, 2] = -x + h[:, 2, 0] = -y + h[:, 2, 1] = x + + return h + + +@torch.jit.script +def get_relative_transform(src_R, src_t, tgt_R, tgt_t): + tgt_R_inv = tgt_R.permute([0, 2, 1]) + relative_R = torch.matmul(tgt_R_inv, src_R) + relative_t = torch.matmul(tgt_R_inv, src_t - tgt_t) + return relative_R, relative_t + + +def reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, coord, eps=1e-6): + """ + Convert the depth map's value to another camera pose. + input: + src_R: rotation matrix of source camera + src_t: translation vector of source camera + tgt_R: rotation matrix of target camera + tgt_t: translation vector of target camera + K: intrinsics matrix of the camera + src_disp: disparity map of source camera + tgt_disp: disparity map of target camera + coord: coordinate grids + K_inv: inverse intrinsics matrix of the camera + output: + tgt_depth_from_src: source depth map reprojected to target camera, values are ready for warping. + src_depth_from_tgt: target depth map reprojected to source camera, values are ready for warping. + """ + B, _, H, W = src_disp.shape + + src_depth = 1/(src_disp + eps) + tgt_depth = 1/(tgt_disp + eps) + # project 1 to 2 + + src_depth_flat = src_depth.view([B, 1, H*W]) + src_xyz = src_depth_flat * src_R.matmul(K_inv_src.matmul(coord)) + src_t + src_xyz_at_tgt_cam = K_trg.matmul( + tgt_R.transpose(1, 2).matmul(src_xyz - tgt_t)) + tgt_depth_from_src = src_xyz_at_tgt_cam[:, 2, :].view([B, 1, H, W]) + # project 2 to 1 + tgt_depth_flat = tgt_depth.view([B, 1, H*W]) + tgt_xyz = tgt_depth_flat * tgt_R.matmul(K_inv_trg.matmul(coord)) + tgt_t + tgt_xyz_at_src_cam = K_src.matmul( + src_R.transpose(1, 2).matmul(tgt_xyz - src_t)) + src_depth_from_tgt = tgt_xyz_at_src_cam[:, 2, :].view([B, 1, H, W]) + return tgt_depth_from_src, src_depth_from_tgt + + +# @torch.jit.script +def warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, coord, inv_K, debug_mode=False, use_depth=False): + + if debug_mode: + B, C, H, W = src_disp.shape + relative_R, relative_t = get_relative_transform( + src_R, src_t, tgt_R, tgt_t) + + print(relative_t.shape) + H_mat = K.matmul(relative_R.matmul(inv_K)) # Nx3x3 + flat_disp = src_disp.view([B, 1, H * W]) # Nx1xNpoints + relative_t_flat = relative_t.expand([-1, -1, H*W]) + rot_coord = torch.matmul(H_mat, coord) + tr_coord = flat_disp * \ + torch.matmul(K, relative_t_flat) + tgt_coord = rot_coord + tr_coord + normalization_factor = (tgt_coord[:, 2:, :] + 1e-6) + rot_coord_normalized = rot_coord / normalization_factor + tr_coord_normalized = tr_coord / normalization_factor + tgt_coord_normalized = rot_coord_normalized + tr_coord_normalized + debug_info = {} + debug_info['tr_coord_normalized'] = tr_coord_normalized + debug_info['rot_coord_normalized'] = rot_coord_normalized + debug_info['tgt_coord_normalized'] = tgt_coord_normalized + debug_info['tr_coord'] = tr_coord + debug_info['rot_coord'] = rot_coord + debug_info['normalization_factor'] = normalization_factor + debug_info['relative_t_flat'] = relative_t_flat + return (tgt_coord_normalized - coord).view([B, 3, H, W]), debug_info + else: + B, C, H, W = src_disp.shape + relative_R, relative_t = get_relative_transform( + src_R, src_t, tgt_R, tgt_t) + H_mat = K.matmul(relative_R.matmul(inv_K)) # Nx3x3 + flat_disp = src_disp.view([B, 1, H * W]) # Nx1xNpoints + if use_depth: + tgt_coord = flat_disp * torch.matmul(H_mat, coord) + \ + torch.matmul(K, relative_t) + else: + tgt_coord = torch.matmul(H_mat, coord) + flat_disp * \ + torch.matmul(K, relative_t) + tgt_coord = tgt_coord / (tgt_coord[:, -1:, :] + 1e-6) + return (tgt_coord - coord).view([B, 3, H, W]), tgt_coord + + +def unproject_depth(depth, K_inv, R, t, coord): + # this need verification + B, _, H, W = depth.shape + disp_flat = depth.view([B, 1, H * W]) + xyz = disp_flat * R.matmul(K_inv.matmul(coord)) + t + return xyz.reshape([B, 3, H, W]) + + +@torch.jit.script +def _so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001): + """ + A helper function that computes the so3 exponential map and, + apart from the rotation matrix, also returns intermediate variables + that can be re-used in other functions. + """ + _, dim = log_rot.shape + # if dim != 3: + # raise ValueError("Input tensor shape has to be Nx3.") + + nrms = (log_rot * log_rot).sum(1) + # phis ... rotation angles + rot_angles = torch.clamp(nrms, eps).sqrt() + rot_angles_inv = 1.0 / rot_angles + fac1 = rot_angles_inv * rot_angles.sin() + fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos()) + skews = hat(log_rot) + skews_square = torch.bmm(skews, skews) + + R = ( + # pyre-fixme[16]: `float` has no attribute `__getitem__`. + fac1[:, None, None] * skews + + fac2[:, None, None] * skews_square + + torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None] + ) + + return R, rot_angles, skews, skews_square + + +def quaternion_to_matrix(quaternions): + """ + Convert rotations given as quaternions to rotation matrices. + + Args: + quaternions: quaternions with real part first, + as tensor of shape (..., 4). + + Returns: + Rotation matrices as tensor of shape (..., 3, 3). + """ + r, i, j, k = torch.unbind(quaternions, -1) + two_s = 2.0 / (quaternions * quaternions).sum(-1) + + o = torch.stack( + ( + 1 - two_s * (j * j + k * k), + two_s * (i * j - k * r), + two_s * (i * k + j * r), + two_s * (i * j + k * r), + 1 - two_s * (i * i + k * k), + two_s * (j * k - i * r), + two_s * (i * k - j * r), + two_s * (j * k + i * r), + 1 - two_s * (i * i + j * j), + ), + -1, + ) + return o.reshape(quaternions.shape[:-1] + (3, 3)) + + +class CameraPoseDeltaCollection(torch.nn.Module): + def __init__(self, number_of_points=10) -> None: + super().__init__() + zero_rotation = torch.ones([1, 3]) * 1e-3 + zero_translation = torch.zeros([1, 3, 1]) + 1e-4 + for n in range(number_of_points): + self.register_parameter( + f"delta_rotation_{n}", nn.Parameter(zero_rotation)) + self.register_parameter( + f"delta_translation_{n}", nn.Parameter(zero_translation) + ) + self.register_buffer("zero_rotation", torch.eye(3)[None, ...]) + self.register_buffer("zero_translation", torch.zeros([1, 3, 1])) + self.traced_so3_exp_map = None + self.number_of_points = number_of_points + + def get_rotation_and_translation_params(self): + rotation_params = [] + translation_params = [] + for n in range(self.number_of_points): + rotation_params.append(getattr(self, f"delta_rotation_{n}")) + translation_params.append(getattr(self, f"delta_translation_{n}")) + return rotation_params, translation_params + + def set_rotation_and_translation(self, index, rotaion_so3, translation): + delta_rotation = getattr(self, f"delta_rotation_{index}") + delta_translation = getattr(self, f"delta_translation_{index}") + delta_rotation.data = rotaion_so3.detach().clone() + delta_translation.data = translation.detach().clone() + + def set_first_frame_pose(self, R, t): + self.zero_rotation.data = R.detach().clone().reshape([1, 3, 3]) + self.zero_translation.data = t.detach().clone().reshape([1, 3, 1]) + + def get_raw_value(self, index): + so3 = getattr(self, f"delta_rotation_{index}") + translation = getattr(self, f"delta_translation_{index}") + return so3, translation + + def forward(self, list_of_index): + se_3 = [] + t_out = [] + for idx in list_of_index: + delta_rotation, delta_translation = self.get_raw_value(idx) + se_3.append(delta_rotation) + t_out.append(delta_translation) + se_3 = torch.cat(se_3, dim=0) + t_out = torch.cat(t_out, dim=0) + if self.traced_so3_exp_map is None: + self.traced_so3_exp_map = torch.jit.trace( + _so3_exp_map, (se_3,)) + R_out = _so3_exp_map(se_3)[0] + return R_out, t_out + + def forward_index(self, index): + # if index == 0: + # return self.zero_rotation, self.zero_translation + # else: + delta_rotation, delta_translation = self.get_raw_value(index) + if self.traced_so3_exp_map is None: + self.traced_so3_exp_map = torch.jit.trace( + _so3_exp_map, (delta_rotation,)) + R = _so3_exp_map(delta_rotation)[0] + return R, delta_translation + + +class DepthScaleShiftCollection(torch.nn.Module): + def __init__(self, n_points=10, use_inverse=False, grid_size=1): + super().__init__() + self.grid_size = grid_size + for n in range(n_points): + self.register_parameter( + f"shift_{n}", nn.Parameter(torch.FloatTensor([0.0])) + ) + self.register_parameter( + f"scale_{n}", nn.Parameter( + torch.ones([1, 1, grid_size, grid_size])) + ) + + self.use_inverse = use_inverse + self.output_shape = None + + def set_outputshape(self, output_shape): + self.output_shape = output_shape + + def forward(self, index): + shift = getattr(self, f"shift_{index}") + scale = getattr(self, f"scale_{index}") + if self.use_inverse: + scale = torch.exp(scale) # 1 / (scale ** 4) + if self.grid_size != 1: + scale = F.interpolate(scale, self.output_shape, + mode='bilinear', align_corners=True) + return scale, shift + + def set_scale(self, index, scale): + scale_param = getattr(self, f"scale_{index}") + if self.use_inverse: + scale = math.log(scale) # (1 / scale) ** 0.25 + scale_param.data.fill_(scale) + + def get_scale_data(self, index): + scale = getattr(self, f"scale_{index}").data + if self.use_inverse: + scale = torch.exp(scale) # 1 / (scale ** 4) + if self.grid_size != 1: + scale = F.interpolate(scale, self.output_shape, + mode='bilinear', align_corners=True) + return scale + + +def check_R_shape(R): + r0, r1, r2 = R.shape + assert r1 == 3 and r2 == 3 + + +def check_t_shape(t): + t0, t1, t2 = t.shape + assert t1 == 3 and t2 == 1 + + +class DepthBasedWarping(nn.Module): + # tested + def __init__(self) -> None: + super().__init__() + + def generate_grid(self, H, W, device): + yy, xx = torch.meshgrid( + torch.arange(H, device=device, dtype=torch.float32), + torch.arange(W, device=device, dtype=torch.float32), + ) + self.coord = torch.ones( + [1, 3, H, W], device=device, dtype=torch.float32) + self.coord[0, 0, ...] = xx + self.coord[0, 1, ...] = yy + self.coord = self.coord.reshape([1, 3, H * W]) + self.jitted_warp_by_disp = None + + def reproject_depth(self, src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, eps=1e-6, check_shape=False): + if check_shape: + check_R_shape(src_R) + check_R_shape(tgt_R) + check_t_shape(src_t) + check_t_shape(tgt_t) + check_t_shape(src_disp) + check_t_shape(tgt_disp) + device = src_disp.device + B, _, H, W = src_disp.shape + if not hasattr(self, "coord"): + self.generate_grid(src_disp.shape[2], src_disp.shape[3], device) + else: + if self.coord.shape[-1] != H * W: + del self.coord + self.generate_grid(H, W, device) + return reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, self.coord, eps=eps) + + def unproject_depth(self, disp, R, t, K_inv, eps=1e-6, check_shape=False): + if check_shape: + check_R_shape(R) + check_R_shape(t) + + _, _, H, W = disp.shape + B = R.shape[0] + device = disp.device + if not hasattr(self, "coord"): + self.generate_grid(H, W, device=device) + else: + if self.coord.shape[-1] != H * W: + del self.coord + self.generate_grid(H, W, device=device) + # if self.jitted_warp_by_disp is None: + # self.jitted_warp_by_disp = torch.jit.trace( + # warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K)) + return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord) + + def forward( + self, + src_R, + src_t, + tgt_R, + tgt_t, + src_disp, + K, + inv_K, + eps=1e-6, + use_depth=False, + check_shape=False, + debug_mode=False, + ): + """warp the current depth frame and generate flow field. + + Args: + src_R (FloatTensor): 1x3x3 + src_t (FloatTensor): 1x3x1 + tgt_R (FloatTensor): Nx3x3 + tgt_t (FloatTensor): Nx3x1 + src_disp (FloatTensor): Nx1XHxW + src_K (FloatTensor): 1x3x3 + """ + if check_shape: + check_R_shape(src_R) + check_R_shape(tgt_R) + check_t_shape(src_t) + check_t_shape(tgt_t) + + _, _, H, W = src_disp.shape + B = tgt_R.shape[0] + device = src_disp.device + if not hasattr(self, "coord"): + self.generate_grid(H, W, device=device) + else: + if self.coord.shape[-1] != H * W: + del self.coord + self.generate_grid(H, W, device=device) + # if self.jitted_warp_by_disp is None: + # self.jitted_warp_by_disp = torch.jit.trace( + # warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K)) + + return warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, self.coord, inv_K, debug_mode, use_depth) + + +class DepthToXYZ(nn.Module): + # tested + def __init__(self) -> None: + super().__init__() + + def generate_grid(self, H, W, device): + yy, xx = torch.meshgrid( + torch.arange(H, device=device, dtype=torch.float32), + torch.arange(W, device=device, dtype=torch.float32), + ) + self.coord = torch.ones( + [1, 3, H, W], device=device, dtype=torch.float32) + self.coord[0, 0, ...] = xx + self.coord[0, 1, ...] = yy + self.coord = self.coord.reshape([1, 3, H * W]) + + def forward(self, disp, K_inv, R, t, eps=1e-6, check_shape=False): + """warp the current depth frame and generate flow field. + + Args: + src_R (FloatTensor): 1x3x3 + src_t (FloatTensor): 1x3x1 + tgt_R (FloatTensor): Nx3x3 + tgt_t (FloatTensor): Nx3x1 + src_disp (FloatTensor): Nx1XHxW + src_K (FloatTensor): 1x3x3 + """ + if check_shape: + check_R_shape(R) + check_R_shape(t) + + _, _, H, W = disp.shape + B = R.shape[0] + device = disp.device + if not hasattr(self, "coord"): + self.generate_grid(H, W, device=device) + else: + if self.coord.shape[-1] != H * W: + del self.coord + self.generate_grid(H, W, device=device) + # if self.jitted_warp_by_disp is None: + # self.jitted_warp_by_disp = torch.jit.trace( + # warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K)) + + return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord) + +class OccMask(torch.nn.Module): + def __init__(self, th=3): + super(OccMask, self).__init__() + self.th = th + self.base_coord = None + + def init_grid(self, shape, device): + H, W = shape + hh, ww = torch.meshgrid(torch.arange( + H).float(), torch.arange(W).float()) + coord = torch.zeros([1, H, W, 2]) + coord[0, ..., 0] = ww + coord[0, ..., 1] = hh + self.base_coord = coord.to(device) + self.W = W + self.H = H + + @torch.no_grad() + def get_oob_mask(self, base_coord, flow_1_2): + target_range = base_coord + flow_1_2.permute([0, 2, 3, 1]) + oob_mask = (target_range[..., 0] < 0) | (target_range[..., 0] > self.W-1) | ( + target_range[..., 1] < 0) | (target_range[..., 1] > self.H-1) + return ~oob_mask[:, None, ...] + + @torch.no_grad() + def get_flow_inconsistency_tensor(self, base_coord, flow_1_2, flow_2_1): + B, C, H, W = flow_1_2.shape + sample_grids = base_coord + flow_1_2.permute([0, 2, 3, 1]) + sample_grids[..., 0] /= (W - 1) / 2 + sample_grids[..., 1] /= (H - 1) / 2 + sample_grids -= 1 + sampled_flow = F.grid_sample( + flow_2_1, sample_grids, align_corners=True) + return torch.abs((sampled_flow+flow_1_2).sum(1, keepdim=True)) + + def forward(self, flow_1_2, flow_2_1): + B, _, H, W = flow_1_2.shape + if self.base_coord is None: + self.init_grid([H, W], device=flow_1_2.device) + base_coord = self.base_coord.expand([B, -1, -1, -1]) + oob_mask = self.get_oob_mask(base_coord, flow_1_2) + flow_inconsistency_tensor = self.get_flow_inconsistency_tensor( + base_coord, flow_1_2, flow_2_1) + valid_flow_mask = flow_inconsistency_tensor < self.th + return valid_flow_mask*oob_mask \ No newline at end of file diff --git a/dust3r/utils/image.py b/dust3r/utils/image.py new file mode 100644 index 0000000000000000000000000000000000000000..6312a346df919ae6a0424504d824ef813fea250f --- /dev/null +++ b/dust3r/utils/image.py @@ -0,0 +1,126 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os +import torch +import numpy as np +import PIL.Image +from PIL.ImageOps import exif_transpose +import torchvision.transforms as tvf +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa + +try: + from pillow_heif import register_heif_opener # noqa + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + + +def img_to_arr( img ): + if isinstance(img, str): + img = imread_cv2(img) + return img + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """ Open an image or a depthmap with opencv-python. + """ + if path.endswith(('.exr', 'EXR')): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f'Could not load image={path} with {options=}') + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) + return img.resize(new_size, interp) + + +def load_images(folder_or_list, size, square_ok=False, verbose=True): + """ open and convert all images in a list or folder to proper input format for DUSt3R + """ + if isinstance(folder_or_list, str): + if verbose: + print(f'>> Loading images from {folder_or_list}') + root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + + elif isinstance(folder_or_list, list): + if verbose: + print(f'>> Loading a list of {len(folder_or_list)} images') + root, folder_content = '', folder_or_list + + else: + raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') + + supported_images_extensions = ['.jpg', '.jpeg', '.png'] + if heif_support_enabled: + supported_images_extensions += ['.heic', '.heif'] + supported_images_extensions = tuple(supported_images_extensions) + + imgs = [] + for path in folder_content: + if not path.lower().endswith(supported_images_extensions): + continue + img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB') + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size) + W, H = img.size + cx, cy = W//2, H//2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx-half, cy-half, cx+half, cy+half)) + else: + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if not (square_ok) and W == H: + halfh = 3*halfw/4 + img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + + W2, H2 = img.size + if verbose: + print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') + imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32( + [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) + + assert imgs, 'no images foud at '+root + if verbose: + print(f' (Found {len(imgs)} images)') + return imgs diff --git a/dust3r/utils/image_pose.py b/dust3r/utils/image_pose.py new file mode 100644 index 0000000000000000000000000000000000000000..75c04e83770ff70925fe698072153d0fce6a0c64 --- /dev/null +++ b/dust3r/utils/image_pose.py @@ -0,0 +1,450 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os +import torch +import numpy as np +import PIL.Image +from PIL.ImageOps import exif_transpose +import torchvision.transforms as tvf +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa +import glob +import imageio +import matplotlib.pyplot as plt + +try: + from pillow_heif import register_heif_opener # noqa + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) +ToTensor = tvf.ToTensor() +TAG_FLOAT = 202021.25 + +def depth_read(filename): + """ Read depth data from file, return as numpy array. """ + f = open(filename,'rb') + check = np.fromfile(f,dtype=np.float32,count=1)[0] + assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) + width = np.fromfile(f,dtype=np.int32,count=1)[0] + height = np.fromfile(f,dtype=np.int32,count=1)[0] + size = width*height + assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height) + depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width)) + return depth + +def cam_read(filename): + """ Read camera data, return (M,N) tuple. + + M is the intrinsic matrix, N is the extrinsic matrix, so that + + x = M*N*X, + with x being a point in homogeneous image pixel coordinates, X being a + point in homogeneous world coordinates. + """ + f = open(filename,'rb') + check = np.fromfile(f,dtype=np.float32,count=1)[0] + assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) + M = np.fromfile(f,dtype='float64',count=9).reshape((3,3)) + N = np.fromfile(f,dtype='float64',count=12).reshape((3,4)) + return M,N + +def flow_read(filename): + """ Read optical flow from file, return (U,V) tuple. + + Original code by Deqing Sun, adapted from Daniel Scharstein. + """ + f = open(filename,'rb') + check = np.fromfile(f,dtype=np.float32,count=1)[0] + assert check == TAG_FLOAT, ' flow_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) + width = np.fromfile(f,dtype=np.int32,count=1)[0] + height = np.fromfile(f,dtype=np.int32,count=1)[0] + size = width*height + assert width > 0 and height > 0 and size > 1 and size < 100000000, ' flow_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height) + tmp = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width*2)) + u = tmp[:,np.arange(width)*2] + v = tmp[:,np.arange(width)*2 + 1] + return u,v + +def img_to_arr( img ): + if isinstance(img, str): + img = imread_cv2(img) + return img + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """ Open an image or a depthmap with opencv-python. + """ + if path.endswith(('.exr', 'EXR')): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f'Could not load image={path} with {options=}') + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size, nearest=False): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS if not nearest else PIL.Image.NEAREST + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) + return img.resize(new_size, interp) + +def resize_numpy_image(img, long_edge_size): + """ + Resize the NumPy image to a specified long edge size using OpenCV. + + Args: + img (numpy.ndarray): Input image with shape (H, W, C). + long_edge_size (int): The size of the long edge after resizing. + + Returns: + numpy.ndarray: The resized image. + """ + # Get the original dimensions of the image + h, w = img.shape[:2] + S = max(h, w) + + # Choose interpolation method + if S > long_edge_size: + interp = cv2.INTER_LANCZOS4 + else: + interp = cv2.INTER_CUBIC + + # Calculate the new size + new_size = (int(round(w * long_edge_size / S)), int(round(h * long_edge_size / S))) + + # Resize the image + resized_img = cv2.resize(img, new_size, interpolation=interp) + + return resized_img + +def crop_center(img, crop_width, crop_height): + """ + Crop the center of the image. + + Args: + img (numpy.ndarray): Input image with shape (H, W) or (H, W, C). + crop_width (int): The width of the cropped area. + crop_height (int): The height of the cropped area. + + Returns: + numpy.ndarray: The cropped image. + """ + h, w = img.shape[:2] + cx, cy = h // 2, w // 2 + x1 = max(cx - crop_height // 2, 0) + x2 = min(cx + crop_height // 2, h) + y1 = max(cy - crop_width // 2, 0) + y2 = min(cy + crop_width // 2, w) + + cropped_img = img[x1:x2, y1:y2] + + return cropped_img + +def crop_img(img, size, pred_depth=None, square_ok=False, nearest=False, crop=True): + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)), nearest=nearest) + if pred_depth is not None: + pred_depth = resize_numpy_image(pred_depth, round(size * max(W1 / H1, H1 / W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size, nearest=nearest) + if pred_depth is not None: + pred_depth = resize_numpy_image(pred_depth, size) + W, H = img.size + cx, cy = W//2, H//2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx-half, cy-half, cx+half, cy+half)) + if pred_depth is not None: + pred_depth = crop_center(pred_depth, 2 * half, 2 * half) + else: + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if not (square_ok) and W == H: + halfh = 3*halfw/4 + if crop: + img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + if pred_depth is not None: + pred_depth = crop_center(pred_depth, 2 * halfw, 2 * halfh) + else: # resize + img = img.resize((2*halfw, 2*halfh), PIL.Image.LANCZOS) + if pred_depth is not None: + pred_depth = cv2.resize(pred_depth, (2*halfw, 2*halfh), interpolation=cv2.INTER_CUBIC) + return img, pred_depth + +def pixel_to_pointcloud(depth_map, focal_length_px): + """ + Convert a depth map to a 3D point cloud. + + Args: + depth_map (numpy.ndarray): The input depth map with shape (H, W), where each value represents the depth at that pixel. + focal_length_px (float): The focal length of the camera in pixels. + + Returns: + numpy.ndarray: The resulting point cloud with shape (H, W, 3), where each point is represented by (X, Y, Z). + """ + height, width = depth_map.shape + cx = width / 2 + cy = height / 2 + + # Create meshgrid for pixel coordinates + u = np.arange(width) + v = np.arange(height) + u, v = np.meshgrid(u, v) + #depth_map[depth_map>100]=0 + # Convert pixel coordinates to camera coordinates + Z = depth_map + X = (u - cx) * Z / focal_length_px + Y = (v - cy) * Z / focal_length_px + + # Stack the coordinates into a point cloud (H, W, 3) + point_cloud = np.dstack((X, Y, Z)).astype(np.float32) + point_cloud = normalize_pointcloud(point_cloud) + # Optional: Filter out invalid depth values (if necessary) + # point_cloud = point_cloud[depth_map > 0] + #print(point_cloud) + return point_cloud + +def normalize_pointcloud(point_cloud): + min_vals = np.min(point_cloud, axis=(0, 1)) + max_vals = np.max(point_cloud, axis=(0, 1)) + #print(min_vals, max_vals) + normalized_point_cloud = (point_cloud - min_vals) / (max_vals - min_vals) + return normalized_point_cloud + +def load_images(folder_or_list, size, square_ok=False, verbose=True, dynamic_mask_root=None, crop=True, fps=0, traj_format="sintel", start=0, interval=30, depth_prior_name='depthpro'): + """Open and convert all images or videos in a list or folder to proper input format for DUSt3R.""" + if isinstance(folder_or_list, str): + if verbose: + print(f'>> Loading images from {folder_or_list}') + # if folder_or_list is a folder, load all images in the folder + if os.path.isdir(folder_or_list): + root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + else: # the folder_content will be the folder_or_list itself + root, folder_content = '', [folder_or_list] + + elif isinstance(folder_or_list, list): + if verbose: + print(f'>> Loading a list of {len(folder_or_list)} items') + root, folder_content = '', folder_or_list + + else: + raise ValueError(f'Bad input {folder_or_list=} ({type(folder_or_list)})') + + supported_images_extensions = ['.jpg', '.jpeg', '.png'] + supported_video_extensions = ['.mp4', '.avi', '.mov'] + if heif_support_enabled: + supported_images_extensions += ['.heic', '.heif'] + supported_images_extensions = tuple(supported_images_extensions) + supported_video_extensions = tuple(supported_video_extensions) + + imgs = [] + # Sort items by their names + #start = 0 + folder_content = sorted(folder_content, key=lambda x: x.split('/')[-1])[start : start + interval] + # print(start,interval,len(folder_content)) + for path in folder_content: + full_path = os.path.join(root, path) + if path.lower().endswith(supported_images_extensions): + # Process image files + img = exif_transpose(PIL.Image.open(full_path)).convert('RGB') + + if traj_format == 'sintel': + pred_depth = np.load(full_path.replace('final','depth_prediction_' + depth_prior_name).replace('.png', '.npz')) + elif traj_format in ["tum", "tartanair"]: + pred_depth = np.load(full_path.replace('rgb_50','rgb_50_depth_prediction_' + depth_prior_name).replace('.png', '.npz')) + elif traj_format in ["bonn"]: + pred_depth = np.load(full_path.replace('rgb_110','rgb_110_depth_prediction_' + depth_prior_name).replace('.png', '.npz')) + elif traj_format in ["davis"]: + pred_depth = np.load(full_path.replace('JPEGImages','depth_prediction_' + depth_prior_name).replace('.jpg', '.npz').replace('480p', '1080p')) + else: + pred_depth = np.load(full_path.replace('.png','_pred_depth_' + depth_prior_name + '.npz').replace('.jpg','_pred_depth_' + depth_prior_name + '.npz'), allow_pickle=True) + #print(pred_depth) + if depth_prior_name == 'depthpro': + focal_length_px = pred_depth['focallength_px'] + else: + focal_length_px = 200 + pred_depth1 = pred_depth['depth'] + + if len(pred_depth1.shape) == 3: + pred_depth1 = np.squeeze(pred_depth1) + + pred_depth = pixel_to_pointcloud(pred_depth1, focal_length_px) + W1, H1 = img.size + img, pred_depth = crop_img(img, size, pred_depth, square_ok=square_ok, crop=crop) + W2, H2 = img.size + + if verbose: + print(f' - Adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') + + single_dict = dict( + img=ImgNorm(img)[None], + pred_depth=pred_depth[None,...], + true_shape=np.int32([img.size[::-1]]), + idx=len(imgs), + instance=full_path, + mask=~(ToTensor(img)[None].sum(1) <= 0.01) + ) + + if dynamic_mask_root is not None: + dynamic_mask_path = os.path.join(dynamic_mask_root, os.path.basename(path)) + else: # Sintel dataset handling + dynamic_mask_path = full_path.replace('final', 'dynamic_label_perfect').replace('clean', 'dynamic_label_perfect').replace('MPI-Sintel-training_images','MPI-Sintel-depth-training') + #print(dynamic_mask_path) + if os.path.exists(dynamic_mask_path): + dynamic_mask = PIL.Image.open(dynamic_mask_path).convert('L') + dynamic_mask, _ = crop_img(dynamic_mask, size, square_ok=square_ok) + #print(dynamic_mask) + dynamic_mask = ToTensor(dynamic_mask)[None].sum(1) > 0.99 # "1" means dynamic + single_dict['dynamic_mask'] = dynamic_mask + # if dynamic_mask.sum() < 0.8 * dynamic_mask.numel(): # Consider static if over 80% is dynamic + # single_dict['dynamic_mask'] = dynamic_mask + # else: + # single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask']) + else: + single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask']) + + imgs.append(single_dict) + + elif path.lower().endswith(supported_video_extensions): + # Process video files + if verbose: + print(f'>> Loading video from {full_path}') + cap = cv2.VideoCapture(full_path) + if not cap.isOpened(): + print(f'Error opening video file {full_path}') + continue + + video_fps = cap.get(cv2.CAP_PROP_FPS) + total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) + + if video_fps == 0: + print(f'Error: Video FPS is 0 for {full_path}') + cap.release() + continue + if fps > 0: + frame_interval = max(1, int(round(video_fps / fps))) + else: + frame_interval = 1 + frame_indices = list(range(0, total_frames, frame_interval)) + if interval is not None: + frame_indices = frame_indices[:interval] + + if verbose: + print(f' - Video FPS: {video_fps}, Frame Interval: {frame_interval}, Total Frames to Read: {len(frame_indices)}') + + for frame_idx in frame_indices: + cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) + ret, frame = cap.read() + if not ret: + break # End of video + + img = PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) + W1, H1 = img.size + img, _ = crop_img(img, size, square_ok=square_ok, crop=crop) + W2, H2 = img.size + + if verbose: + print(f' - Adding frame {frame_idx} from {path} with resolution {W1}x{H1} --> {W2}x{H2}') + + single_dict = dict( + img=ImgNorm(img)[None], + true_shape=np.int32([img.size[::-1]]), + idx=len(imgs), + instance=f'{full_path}_frame_{frame_idx}', + mask=~(ToTensor(img)[None].sum(1) <= 0.01) + ) + + # Dynamic masks for video frames are set to zeros by default + single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask']) + + imgs.append(single_dict) + + cap.release() + + else: + continue # Skip unsupported file types + + assert imgs, 'No images found at ' + root + if verbose: + print(f' (Found {len(imgs)} images)') + return imgs + +def enlarge_seg_masks(folder, kernel_size=5, prefix="dynamic_mask"): + mask_pathes = glob.glob(f'{folder}/{prefix}_*.png') + for mask_path in mask_pathes: + mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) + kernel = np.ones((kernel_size, kernel_size),np.uint8) + enlarged_mask = cv2.dilate(mask, kernel, iterations=1) + cv2.imwrite(mask_path.replace(prefix, 'enlarged_dynamic_mask'), enlarged_mask) + +def show_mask(mask, ax, obj_id=None, random_color=False): + if random_color: + color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) + else: + cmap = plt.get_cmap("tab10") + cmap_idx = 1 if obj_id is None else obj_id + color = np.array([*cmap(cmap_idx)[:3], 0.6]) + h, w = mask.shape[-2:] + mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) + ax.imshow(mask_image) + +def get_overlaied_gif(folder, img_format="frame_*.png", mask_format="dynamic_mask_*.png", output_path="_overlaied.gif"): + img_paths = glob.glob(f'{folder}/{img_format}') + mask_paths = glob.glob(f'{folder}/{mask_format}') + assert len(img_paths) == len(mask_paths), f"Number of images and masks should be the same, got {len(img_paths)} images and {len(mask_paths)} masks" + img_paths = sorted(img_paths) + mask_paths = sorted(mask_paths, key=lambda x: int(x.split('_')[-1].split('.')[0])) + frames = [] + for img_path, mask_path in zip(img_paths, mask_paths): + # Read image and convert to RGB for Matplotlib + img = cv2.imread(img_path) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + # Read mask and normalize + mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) + mask = mask.astype(np.float32) / 255.0 + # Create figure and axis + fig, ax = plt.subplots(figsize=(img.shape[1]/100, img.shape[0]/100), dpi=100) + ax.imshow(img) + # Overlay mask using show_mask + show_mask(mask, ax) + ax.axis('off') + # Render the figure to a numpy array + fig.canvas.draw() + img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) + img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + frames.append(img_array) + plt.close(fig) # Close the figure to free memory + # Save frames as a GIF using imageio + imageio.mimsave(os.path.join(folder,output_path), frames, fps=10) diff --git a/dust3r/utils/misc.py b/dust3r/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..88c4d2dab6d5c14021ed9ed6646c3159a3a4637b --- /dev/null +++ b/dust3r/utils/misc.py @@ -0,0 +1,121 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import torch + + +def fill_default_args(kwargs, func): + import inspect # a bit hacky but it works reliably + signature = inspect.signature(func) + + for k, v in signature.parameters.items(): + if v.default is inspect.Parameter.empty: + continue + kwargs.setdefault(k, v.default) + + return kwargs + + +def freeze_all_params(modules): + for module in modules: + try: + for n, param in module.named_parameters(): + param.requires_grad = False + except AttributeError: + # module is directly a parameter + module.requires_grad = False + + +def is_symmetrized(gt1, gt2): + x = gt1['instance'] + y = gt2['instance'] + if len(x) == len(y) and len(x) == 1: + return False # special case of batchsize 1 + ok = True + for i in range(0, len(x), 2): + ok = ok and (x[i] == y[i + 1]) and (x[i + 1] == y[i]) + return ok + + +def flip(tensor): + """ flip so that tensor[0::2] <=> tensor[1::2] """ + return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1) + + +def interleave(tensor1, tensor2): + res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1) + res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1) + return res1, res2 + + +def transpose_to_landscape(head, activate=True): + """ Predict in the correct aspect-ratio, + then transpose the result in landscape + and stack everything back together. + """ + def wrapper_no(decout, true_shape): + B = len(true_shape) + assert true_shape[0:1].allclose(true_shape), 'true_shape must be all identical' + H, W = true_shape[0].cpu().tolist() + res = head(decout, (H, W)) + return res + + def wrapper_yes(decout, true_shape): + B = len(true_shape) + # by definition, the batch is in landscape mode so W >= H + H, W = int(true_shape.min()), int(true_shape.max()) + + height, width = true_shape.T + is_landscape = (width >= height) + is_portrait = ~is_landscape + + # true_shape = true_shape.cpu() + if is_landscape.all(): + return head(decout, (H, W)) + if is_portrait.all(): + return transposed(head(decout, (W, H))) + + # batch is a mix of both portraint & landscape + def selout(ar): return [d[ar] for d in decout] + l_result = head(selout(is_landscape), (H, W)) + p_result = transposed(head(selout(is_portrait), (W, H))) + + # allocate full result + result = {} + for k in l_result | p_result: + x = l_result[k].new(B, *l_result[k].shape[1:]) + x[is_landscape] = l_result[k] + x[is_portrait] = p_result[k] + result[k] = x + + return result + + return wrapper_yes if activate else wrapper_no + + +def transposed(dic): + return {k: v.swapaxes(1, 2) for k, v in dic.items()} + + +def invalid_to_nans(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = float('nan') + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr + + +def invalid_to_zeros(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = 0 + nnz = valid_mask.view(len(valid_mask), -1).sum(1) + else: + nnz = arr.numel() // len(arr) if len(arr) else 0 # number of point per image + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr, nnz diff --git a/dust3r/utils/parallel.py b/dust3r/utils/parallel.py new file mode 100644 index 0000000000000000000000000000000000000000..06ae7fefdb9d2298929f0cbc20dfbc57eb7d7f7b --- /dev/null +++ b/dust3r/utils/parallel.py @@ -0,0 +1,79 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for multiprocessing +# -------------------------------------------------------- +from tqdm import tqdm +from multiprocessing.dummy import Pool as ThreadPool +from multiprocessing import cpu_count + + +def parallel_threads(function, args, workers=0, star_args=False, kw_args=False, front_num=1, Pool=ThreadPool, **tqdm_kw): + """ tqdm but with parallel execution. + + Will essentially return + res = [ function(arg) # default + function(*arg) # if star_args is True + function(**arg) # if kw_args is True + for arg in args] + + Note: + the first elements of args will not be parallelized. + This can be useful for debugging. + """ + while workers <= 0: + workers += cpu_count() + if workers == 1: + front_num = float('inf') + + # convert into an iterable + try: + n_args_parallel = len(args) - front_num + except TypeError: + n_args_parallel = None + args = iter(args) + + # sequential execution first + front = [] + while len(front) < front_num: + try: + a = next(args) + except StopIteration: + return front # end of the iterable + front.append(function(*a) if star_args else function(**a) if kw_args else function(a)) + + # then parallel execution + out = [] + with Pool(workers) as pool: + # Pass the elements of args into function + if star_args: + futures = pool.imap(starcall, [(function, a) for a in args]) + elif kw_args: + futures = pool.imap(starstarcall, [(function, a) for a in args]) + else: + futures = pool.imap(function, args) + # Print out the progress as tasks complete + for f in tqdm(futures, total=n_args_parallel, **tqdm_kw): + out.append(f) + return front + out + + +def parallel_processes(*args, **kwargs): + """ Same as parallel_threads, with processes + """ + import multiprocessing as mp + kwargs['Pool'] = mp.Pool + return parallel_threads(*args, **kwargs) + + +def starcall(args): + """ convenient wrapper for Process.Pool """ + function, args = args + return function(*args) + + +def starstarcall(args): + """ convenient wrapper for Process.Pool """ + function, args = args + return function(**args) diff --git a/dust3r/utils/path_to_croco.py b/dust3r/utils/path_to_croco.py new file mode 100644 index 0000000000000000000000000000000000000000..39226ce6bc0e1993ba98a22096de32cb6fa916b4 --- /dev/null +++ b/dust3r/utils/path_to_croco.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# CroCo submodule import +# -------------------------------------------------------- + +import sys +import os.path as path +HERE_PATH = path.normpath(path.dirname(__file__)) +CROCO_REPO_PATH = path.normpath(path.join(HERE_PATH, '../../croco')) +CROCO_MODELS_PATH = path.join(CROCO_REPO_PATH, 'models') +# check the presence of models directory in repo to be sure its cloned +if path.isdir(CROCO_MODELS_PATH): + # workaround for sibling import + sys.path.insert(0, CROCO_REPO_PATH) +else: + raise ImportError(f"croco is not initialized, could not find: {CROCO_MODELS_PATH}.\n " + "Did you forget to run 'git submodule update --init --recursive' ?") diff --git a/dust3r/utils/viz_demo.py b/dust3r/utils/viz_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..f00cfc651c249147b432e8d6b29927ab04b1e5e1 --- /dev/null +++ b/dust3r/utils/viz_demo.py @@ -0,0 +1,124 @@ +from scipy.spatial.transform import Rotation +import numpy as np +import trimesh +from dust3r.utils.device import to_numpy +import torch +import os +import cv2 +from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes +from third_party.raft import load_RAFT +from datasets_preprocess.sintel_get_dynamics import compute_optical_flow +from dust3r.utils.flow_vis import flow_to_image + +def convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, show_cam=True, + cam_color=None, as_pointcloud=False, + transparent_cams=False, silent=False, save_name=None): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + if show_cam: + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam(scene, pose_c2w, camera_edge_color, + None if transparent_cams else imgs[i], focals[i], + imsize=imgs[i].shape[1::-1], screen_width=cam_size) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + if save_name is None: save_name='scene' + outfile = os.path.join(outdir, save_name+'.glb') + if not silent: + print('(exporting 3D scene to', outfile, ')') + scene.export(file_obj=outfile) + return outfile + +def get_dynamic_mask_from_pairviewer(scene, flow_net=None, both_directions=False, output_dir='./demo_tmp', motion_mask_thre=0.35): + """ + get the dynamic mask from the pairviewer + """ + if flow_net is None: + # flow_net = load_RAFT(model_path="third_party/RAFT/models/Tartan-C-T-TSKH-spring540x960-M.pth").to('cuda').eval() # sea-raft + flow_net = load_RAFT(model_path="third_party/RAFT/models/raft-things.pth").to('cuda').eval() + + imgs = scene.imgs + img1 = torch.from_numpy(imgs[0]*255).permute(2,0,1)[None] # (B, 3, H, W) + img2 = torch.from_numpy(imgs[1]*255).permute(2,0,1)[None] + with torch.no_grad(): + forward_flow = flow_net(img1.cuda(), img2.cuda(), iters=20, test_mode=True)[1] # (B, 2, H, W) + if both_directions: + backward_flow = flow_net(img2.cuda(), img1.cuda(), iters=20, test_mode=True)[1] + + B, _, H, W = forward_flow.shape + + depth_map1 = scene.get_depthmaps()[0] # (H, W) + depth_map2 = scene.get_depthmaps()[1] + + im_poses = scene.get_im_poses() + cam1 = im_poses[0] # (4, 4) cam2world + cam2 = im_poses[1] + extrinsics1 = torch.linalg.inv(cam1) # (4, 4) world2cam + extrinsics2 = torch.linalg.inv(cam2) + + intrinsics = scene.get_intrinsics() + intrinsics_1 = intrinsics[0] # (3, 3) + intrinsics_2 = intrinsics[1] + + ego_flow_1_2 = compute_optical_flow(depth_map1, depth_map2, extrinsics1, extrinsics2, intrinsics_1, intrinsics_2) # (H*W, 2) + ego_flow_1_2 = ego_flow_1_2.reshape(H, W, 2).transpose(2, 0, 1) # (2, H, W) + + error_map = np.linalg.norm(ego_flow_1_2 - forward_flow[0].cpu().numpy(), axis=0) # (H, W) + + error_map_normalized = (error_map - error_map.min()) / (error_map.max() - error_map.min()) + error_map_normalized_int = (error_map_normalized * 255).astype(np.uint8) + if both_directions: + ego_flow_2_1 = compute_optical_flow(depth_map2, depth_map1, extrinsics2, extrinsics1, intrinsics_2, intrinsics_1) + ego_flow_2_1 = ego_flow_2_1.reshape(H, W, 2).transpose(2, 0, 1) + error_map_2 = np.linalg.norm(ego_flow_2_1 - backward_flow[0].cpu().numpy(), axis=0) + error_map_2_normalized = (error_map_2 - error_map_2.min()) / (error_map_2.max() - error_map_2.min()) + error_map_2_normalized = (error_map_2_normalized * 255).astype(np.uint8) + cv2.imwrite(f'{output_dir}/dynamic_mask_bw.png', cv2.applyColorMap(error_map_2_normalized, cv2.COLORMAP_JET)) + np.save(f'{output_dir}/dynamic_mask_bw.npy', error_map_2) + + backward_flow = backward_flow[0].cpu().numpy().transpose(1, 2, 0) + np.save(f'{output_dir}/backward_flow.npy', backward_flow) + flow_img = flow_to_image(backward_flow) + cv2.imwrite(f'{output_dir}/backward_flow.png', flow_img) + + cv2.imwrite(f'{output_dir}/dynamic_mask.png', cv2.applyColorMap(error_map_normalized_int, cv2.COLORMAP_JET)) + error_map_normalized_bin = (error_map_normalized > motion_mask_thre).astype(np.uint8) + # save the binary mask + cv2.imwrite(f'{output_dir}/dynamic_mask_binary.png', error_map_normalized_bin*255) + # save the original one as npy file + np.save(f'{output_dir}/dynamic_mask.npy', error_map) + + # also save the flow + forward_flow = forward_flow[0].cpu().numpy().transpose(1, 2, 0) + np.save(f'{output_dir}/forward_flow.npy', forward_flow) + # save flow as image + flow_img = flow_to_image(forward_flow) + cv2.imwrite(f'{output_dir}/forward_flow.png', flow_img) + + return error_map \ No newline at end of file diff --git a/dust3r/utils/vo_eval.py b/dust3r/utils/vo_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..ee3490cd4ee8f37b1b929838366b575a6965b781 --- /dev/null +++ b/dust3r/utils/vo_eval.py @@ -0,0 +1,361 @@ +import os +import re +from copy import deepcopy +from pathlib import Path + +import evo.main_ape as main_ape +import evo.main_rpe as main_rpe +import matplotlib.pyplot as plt +import numpy as np +from evo.core import sync +from evo.core.metrics import PoseRelation, Unit +from evo.core.trajectory import PosePath3D, PoseTrajectory3D +from evo.tools import file_interface, plot +from scipy.spatial.transform import Rotation + + +def sintel_cam_read(filename): + """Read camera data, return (M,N) tuple. + + M is the intrinsic matrix, N is the extrinsic matrix, so that + + x = M*N*X, + with x being a point in homogeneous image pixel coordinates, X being a + point in homogeneous world coordinates. + """ + TAG_FLOAT = 202021.25 + + f = open(filename, "rb") + check = np.fromfile(f, dtype=np.float32, count=1)[0] + assert ( + check == TAG_FLOAT + ), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( + TAG_FLOAT, check + ) + M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3)) + N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4)) + return M, N + + +def load_replica_traj(gt_file): + traj_w_c = np.loadtxt(gt_file) + assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16 + poses = [ + np.array( + [ + [r[0], r[1], r[2], r[3]], + [r[4], r[5], r[6], r[7]], + [r[8], r[9], r[10], r[11]], + [0, 0, 0, 1], + ] + ) + for r in traj_w_c + ] + + pose_path = PosePath3D(poses_se3=poses) + timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float) + + traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat) + xyz = traj.positions_xyz + # shift -1 column -> w in back column + # quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1) + # uncomment this line if the quaternion is in scalar-first format + quat = traj.orientations_quat_wxyz + + traj_tum = np.column_stack((xyz, quat)) + return (traj_tum, timestamps_mat) + +def load_colmap_traj(gt_file): + traj_w_c = np.load(gt_file).reshape(-1, 16) + assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16 + poses = [ + np.array( + [ + [r[0], r[1], r[2], r[3]], + [r[4], r[5], r[6], r[7]], + [r[8], r[9], r[10], r[11]], + [0, 0, 0, 1], + ] + ) + for r in traj_w_c + ] + + pose_path = PosePath3D(poses_se3=poses) + timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float) + + traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat) + xyz = traj.positions_xyz + # shift -1 column -> w in back column + # quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1) + # uncomment this line if the quaternion is in scalar-first format + quat = traj.orientations_quat_wxyz + + traj_tum = np.column_stack((xyz, quat)) + return (traj_tum, timestamps_mat) + +def load_sintel_traj(gt_file): # './data/sintel/training/camdata_left/alley_2' + # Refer to ParticleSfM + gt_pose_lists = sorted(os.listdir(gt_file)) + gt_pose_lists = [os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam")] + tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists] + gt_poses = [sintel_cam_read(f)[1] for f in gt_pose_lists] # [1] means get the extrinsic + xyzs, wxyzs = [], [] + tum_gt_poses = [] + for gt_pose in gt_poses: + gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0) + gt_pose_inv = np.linalg.inv(gt_pose) # world2cam -> cam2world + xyz = gt_pose_inv[:3, -1] + xyzs.append(xyz) + R = Rotation.from_matrix(gt_pose_inv[:3, :3]) + xyzw = R.as_quat() # scalar-last for scipy + wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]]) + wxyzs.append(wxyz) + tum_gt_pose = np.concatenate([xyz, wxyz], 0) #TODO: check if this is correct + tum_gt_poses.append(tum_gt_pose) + + tum_gt_poses = np.stack(tum_gt_poses, 0) + tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean( + tum_gt_poses[:, :3], 0, keepdims=True + ) + tt = np.expand_dims(np.stack(tstamps, 0), -1) + return tum_gt_poses, tt + + +def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None): + """Read trajectory format. Return in TUM-RGBD format. + Returns: + traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw) + timestamps_mat (N, 1): timestamps + """ + if traj_format == "replica": + traj_tum, timestamps_mat = load_replica_traj(gt_traj_file) + elif traj_format == "sintel": + traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file) + elif traj_format in ["tum", "tartanair"]: + traj = file_interface.read_tum_trajectory_file(gt_traj_file) + xyz = traj.positions_xyz + quat = traj.orientations_quat_wxyz + timestamps_mat = traj.timestamps + traj_tum = np.column_stack((xyz, quat)) + else: + raise NotImplementedError + + traj_tum = traj_tum[skip::stride] + timestamps_mat = timestamps_mat[skip::stride] + if num_frames is not None: + traj_tum = traj_tum[:num_frames] + timestamps_mat = timestamps_mat[:num_frames] + return traj_tum, timestamps_mat + + +def update_timestamps(gt_file, traj_format, skip=0, stride=1): + """Update timestamps given a""" + if traj_format == "tum": + traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt") + timestamps = load_timestamps(traj_t_map_file, traj_format) + return timestamps[skip::stride] + elif traj_format == "tartanair": + traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt") + timestamps = load_timestamps(traj_t_map_file, traj_format) + return timestamps[skip::stride] + + +def load_timestamps(time_file, traj_format="replica"): + if traj_format in ["tum", "tartanair"]: + with open(time_file, "r+") as f: + lines = f.readlines() + timestamps_mat = [ + float(x.split(" ")[0]) for x in lines if not x.startswith("#") + ] + return timestamps_mat + + +def make_traj(args) -> PoseTrajectory3D: + if isinstance(args, tuple) or isinstance(args, list): + traj, tstamps = args + return PoseTrajectory3D( + positions_xyz=traj[:, :3], + orientations_quat_wxyz=traj[:, 3:], + timestamps=tstamps, + ) + assert isinstance(args, PoseTrajectory3D), type(args) + return deepcopy(args) + + +def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1): + + if sample_stride > 1: + pred_traj[0] = pred_traj[0][::sample_stride] + pred_traj[1] = pred_traj[1][::sample_stride] + if gt_traj is not None: + updated_gt_traj = [] + updated_gt_traj.append(gt_traj[0][::sample_stride]) + updated_gt_traj.append(gt_traj[1][::sample_stride]) + gt_traj = updated_gt_traj + + pred_traj = make_traj(pred_traj) + + if gt_traj is not None: + gt_traj = make_traj(gt_traj) + + if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: + pred_traj.timestamps = gt_traj.timestamps + else: + print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) + + gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) + + # ATE + traj_ref = gt_traj + traj_est = pred_traj + + ate_result = main_ape.ape( + traj_ref, + traj_est, + est_name="traj", + pose_relation=PoseRelation.translation_part, + align=True, + correct_scale=True, + ) + + ate = ate_result.stats["rmse"] + + # RPE rotation and translation + delta_list = [1] + rpe_rots, rpe_transs = [], [] + for delta in delta_list: + rpe_rots_result = main_rpe.rpe( + traj_ref, + traj_est, + est_name="traj", + pose_relation=PoseRelation.rotation_angle_deg, + align=True, + correct_scale=True, + delta=delta, + delta_unit=Unit.frames, + rel_delta_tol=0.01, + all_pairs=True, + ) + + rot = rpe_rots_result.stats["rmse"] + rpe_rots.append(rot) + + for delta in delta_list: + rpe_transs_result = main_rpe.rpe( + traj_ref, + traj_est, + est_name="traj", + pose_relation=PoseRelation.translation_part, + align=True, + correct_scale=True, + delta=delta, + delta_unit=Unit.frames, + rel_delta_tol=0.01, + all_pairs=True, + ) + + trans = rpe_transs_result.stats["rmse"] + rpe_transs.append(trans) + + rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots) + with open(filename, "w+") as f: + f.write(f"Seq: {seq} \n\n") + f.write(f"{ate_result}") + f.write(f"{rpe_rots_result}") + f.write(f"{rpe_transs_result}") + + print(f"Save results to {filename}") + return ate, rpe_trans, rpe_rot + + +def best_plotmode(traj): + _, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0)) + plot_axes = "xyz"[i2] + "xyz"[i1] + return getattr(plot.PlotMode, plot_axes) + + +def plot_trajectory( + pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True +): + pred_traj = make_traj(pred_traj) + + if gt_traj is not None: + gt_traj = make_traj(gt_traj) + if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: + pred_traj.timestamps = gt_traj.timestamps + else: + print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) + + gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) + + if align: + pred_traj.align(gt_traj, correct_scale=correct_scale) + + plot_collection = plot.PlotCollection("PlotCol") + fig = plt.figure(figsize=(8, 8)) + plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj) + ax = plot.prepare_axis(fig, plot_mode) + ax.set_title(title) + if gt_traj is not None: + plot.traj(ax, plot_mode, gt_traj, "--", "gray", "Ground Truth") + plot.traj(ax, plot_mode, pred_traj, "-", "blue", "Predicted") + plot_collection.add_figure("traj_error", fig) + plot_collection.export(filename, confirm_overwrite=False) + plt.close(fig=fig) + print(f"Saved trajectory to {filename.replace('.png','')}_traj_error.png") + + +def save_trajectory_tum_format(traj, filename): + traj = make_traj(traj) + tostr = lambda a: " ".join(map(str, a)) + with Path(filename).open("w") as f: + for i in range(traj.num_poses): + f.write( + f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n" + ) + print(f"Saved trajectory to {filename}") + + +def extract_metrics(file_path): + with open(file_path, 'r') as file: + content = file.read() + + # Extract metrics using regex + ate_match = re.search(r'APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL) + rpe_trans_match = re.search(r'RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL) + rpe_rot_match = re.search(r'RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)', content, re.DOTALL) + + ate = float(ate_match.group(1)) if ate_match else 0.0 + rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0 + rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0 + + return ate, rpe_trans, rpe_rot + +def process_directory(directory): + results = [] + for root, _, files in os.walk(directory): + if files is not None: + files = sorted(files) + for file in files: + if file.endswith('_metric.txt'): + file_path = os.path.join(root, file) + seq_name = file.replace('_eval_metric.txt', '') + ate, rpe_trans, rpe_rot = extract_metrics(file_path) + results.append((seq_name, ate, rpe_trans, rpe_rot)) + + return results + +def calculate_averages(results): + total_ate = sum(r[1] for r in results) + total_rpe_trans = sum(r[2] for r in results) + total_rpe_rot = sum(r[3] for r in results) + count = len(results) + + if count == 0: + return 0.0, 0.0, 0.0 + + avg_ate = total_ate / count + avg_rpe_trans = total_rpe_trans / count + avg_rpe_rot = total_rpe_rot / count + + return avg_ate, avg_rpe_trans, avg_rpe_rot diff --git a/dust3r/viz.py b/dust3r/viz.py new file mode 100644 index 0000000000000000000000000000000000000000..9150e8b850d9f1e6bf9ddf6e865d34fc743e276a --- /dev/null +++ b/dust3r/viz.py @@ -0,0 +1,381 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Visualization utilities using trimesh +# -------------------------------------------------------- +import PIL.Image +import numpy as np +from scipy.spatial.transform import Rotation +import torch + +from dust3r.utils.geometry import geotrf, get_med_dist_between_poses, depthmap_to_absolute_camera_coordinates +from dust3r.utils.device import to_numpy +from dust3r.utils.image import rgb, img_to_arr + +try: + import trimesh +except ImportError: + print('/!\\ module trimesh is not installed, cannot visualize results /!\\') + + + +def cat_3d(vecs): + if isinstance(vecs, (np.ndarray, torch.Tensor)): + vecs = [vecs] + return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)]) + + +def show_raw_pointcloud(pts3d, colors, point_size=2): + scene = trimesh.Scene() + + pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors)) + scene.add_geometry(pct) + + scene.show(line_settings={'point_size': point_size}) + + +def pts3d_to_trimesh(img, pts3d, valid=None): + H, W, THREE = img.shape + assert THREE == 3 + assert img.shape == pts3d.shape + + vertices = pts3d.reshape(-1, 3) + + # make squares: each pixel == 2 triangles + idx = np.arange(len(vertices)).reshape(H, W) + idx1 = idx[:-1, :-1].ravel() # top-left corner + idx2 = idx[:-1, +1:].ravel() # right-left corner + idx3 = idx[+1:, :-1].ravel() # bottom-left corner + idx4 = idx[+1:, +1:].ravel() # bottom-right corner + faces = np.concatenate(( + np.c_[idx1, idx2, idx3], + np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling) + np.c_[idx2, idx3, idx4], + np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling) + ), axis=0) + + # prepare triangle colors + face_colors = np.concatenate(( + img[:-1, :-1].reshape(-1, 3), + img[:-1, :-1].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3) + ), axis=0) + + # remove invalid faces + if valid is not None: + assert valid.shape == (H, W) + valid_idxs = valid.ravel() + valid_faces = valid_idxs[faces].all(axis=-1) + faces = faces[valid_faces] + face_colors = face_colors[valid_faces] + + assert len(faces) == len(face_colors) + return dict(vertices=vertices, face_colors=face_colors, faces=faces) + + +def cat_meshes(meshes): + vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes]) + n_vertices = np.cumsum([0]+[len(v) for v in vertices]) + for i in range(len(faces)): + faces[i][:] += n_vertices[i] + + vertices = np.concatenate(vertices) + colors = np.concatenate(colors) + faces = np.concatenate(faces) + return dict(vertices=vertices, face_colors=colors, faces=faces) + + +def show_duster_pairs(view1, view2, pred1, pred2): + import matplotlib.pyplot as pl + pl.ion() + + for e in range(len(view1['instance'])): + i = view1['idx'][e] + j = view2['idx'][e] + img1 = rgb(view1['img'][e]) + img2 = rgb(view2['img'][e]) + conf1 = pred1['conf'][e].squeeze() + conf2 = pred2['conf'][e].squeeze() + score = conf1.mean()*conf2.mean() + print(f">> Showing pair #{e} {i}-{j} {score=:g}") + pl.clf() + pl.subplot(221).imshow(img1) + pl.subplot(223).imshow(img2) + pl.subplot(222).imshow(conf1, vmin=1, vmax=30) + pl.subplot(224).imshow(conf2, vmin=1, vmax=30) + pts1 = pred1['pts3d'][e] + pts2 = pred2['pts3d_in_other_view'][e] + pl.subplots_adjust(0, 0, 1, 1, 0, 0) + if input('show pointcloud? (y/n) ') == 'y': + show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5) + + +def auto_cam_size(im_poses): + return 0.1 * get_med_dist_between_poses(im_poses) + + +class SceneViz: + def __init__(self): + self.scene = trimesh.Scene() + + def add_rgbd(self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None): + image = img_to_arr(image) + + # make up some intrinsics + if intrinsics is None: + H, W, THREE = image.shape + focal = max(H, W) + intrinsics = np.float32([[focal, 0, W/2], [0, focal, H/2], [0, 0, 1]]) + + # compute 3d points + pts3d = depthmap_to_pts3d(depth, intrinsics, cam2world=cam2world) + + return self.add_pointcloud(pts3d, image, mask=(depth 150) + mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180) + mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220) + + # Morphological operations + kernel = np.ones((5, 5), np.uint8) + mask2 = ndimage.binary_opening(mask, structure=kernel) + + # keep only largest CC + _, labels, stats, _ = cv2.connectedComponentsWithStats(mask2.view(np.uint8), connectivity=8) + cc_sizes = stats[1:, cv2.CC_STAT_AREA] + order = cc_sizes.argsort()[::-1] # bigger first + i = 0 + selection = [] + while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2: + selection.append(1 + order[i]) + i += 1 + mask3 = np.in1d(labels, selection).reshape(labels.shape) + + # Apply mask + return torch.from_numpy(mask3) diff --git a/example/yellowman/frame_0003.png b/example/yellowman/frame_0003.png new file mode 100644 index 0000000000000000000000000000000000000000..3f5647f385570372b15da0f36e623b9ee0807718 Binary files /dev/null and b/example/yellowman/frame_0003.png differ diff --git a/example/yellowman/frame_0014.png b/example/yellowman/frame_0014.png new file mode 100644 index 0000000000000000000000000000000000000000..7906d7a3a1a8d04be6ee726072f3cea2563ffcc1 Binary files /dev/null and b/example/yellowman/frame_0014.png differ diff --git a/third_party/RAFT/LICENSE b/third_party/RAFT/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..ed13d8404f0f1315ee323b2c8d1b2d8f77b5c82f --- /dev/null +++ b/third_party/RAFT/LICENSE @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2020, princeton-vl +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/third_party/RAFT/README.md b/third_party/RAFT/README.md new file mode 100644 index 0000000000000000000000000000000000000000..650275ed7c4cda12822587c6a4358f057fffe494 --- /dev/null +++ b/third_party/RAFT/README.md @@ -0,0 +1,80 @@ +# RAFT +This repository contains the source code for our paper: + +[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)
+ECCV 2020
+Zachary Teed and Jia Deng
+ + + +## Requirements +The code has been tested with PyTorch 1.6 and Cuda 10.1. +```Shell +conda create --name raft +conda activate raft +conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch +``` + +## Demos +Pretrained models can be downloaded by running +```Shell +./download_models.sh +``` +or downloaded from [google drive](https://drive.google.com/drive/folders/1sWDsfuZ3Up38EUQt7-JDTT1HcGHuJgvT?usp=sharing) + +You can demo a trained model on a sequence of frames +```Shell +python demo.py --model=models/raft-things.pth --path=demo-frames +``` + +## Required Data +To evaluate/train RAFT, you will need to download the required datasets. +* [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs) +* [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html) +* [Sintel](http://sintel.is.tue.mpg.de/) +* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow) +* [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/) (optional) + + +By default `datasets.py` will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the `datasets` folder + +```Shell +├── datasets + ├── Sintel + ├── test + ├── training + ├── KITTI + ├── testing + ├── training + ├── devkit + ├── FlyingChairs_release + ├── data + ├── FlyingThings3D + ├── frames_cleanpass + ├── frames_finalpass + ├── optical_flow +``` + +## Evaluation +You can evaluate a trained model using `evaluate.py` +```Shell +python evaluate.py --model=models/raft-things.pth --dataset=sintel --mixed_precision +``` + +## Training +We used the following training schedule in our paper (2 GPUs). Training logs will be written to the `runs` which can be visualized using tensorboard +```Shell +./train_standard.sh +``` + +If you have a RTX GPU, training can be accelerated using mixed precision. You can expect similiar results in this setting (1 GPU) +```Shell +./train_mixed.sh +``` + +## (Optional) Efficent Implementation +You can optionally use our alternate (efficent) implementation by compiling the provided cuda extension +```Shell +cd alt_cuda_corr && python setup.py install && cd .. +``` +and running `demo.py` and `evaluate.py` with the `--alternate_corr` flag Note, this implementation is somewhat slower than all-pairs, but uses significantly less GPU memory during the forward pass. diff --git a/third_party/RAFT/alt_cuda_corr/correlation.cpp b/third_party/RAFT/alt_cuda_corr/correlation.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b01584d19edb99e7feec5f2e4c51169a1ed208db --- /dev/null +++ b/third_party/RAFT/alt_cuda_corr/correlation.cpp @@ -0,0 +1,54 @@ +#include +#include + +// CUDA forward declarations +std::vector corr_cuda_forward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + int radius); + +std::vector corr_cuda_backward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius); + +// C++ interface +#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") +#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") +#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) + +std::vector corr_forward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + int radius) { + CHECK_INPUT(fmap1); + CHECK_INPUT(fmap2); + CHECK_INPUT(coords); + + return corr_cuda_forward(fmap1, fmap2, coords, radius); +} + + +std::vector corr_backward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius) { + CHECK_INPUT(fmap1); + CHECK_INPUT(fmap2); + CHECK_INPUT(coords); + CHECK_INPUT(corr_grad); + + return corr_cuda_backward(fmap1, fmap2, coords, corr_grad, radius); +} + + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("forward", &corr_forward, "CORR forward"); + m.def("backward", &corr_backward, "CORR backward"); +} \ No newline at end of file diff --git a/third_party/RAFT/alt_cuda_corr/correlation_kernel.cu b/third_party/RAFT/alt_cuda_corr/correlation_kernel.cu new file mode 100644 index 0000000000000000000000000000000000000000..145e5804a16ece51b8ff5f1cb61ae8dab4fc3bb7 --- /dev/null +++ b/third_party/RAFT/alt_cuda_corr/correlation_kernel.cu @@ -0,0 +1,324 @@ +#include +#include +#include +#include + + +#define BLOCK_H 4 +#define BLOCK_W 8 +#define BLOCK_HW BLOCK_H * BLOCK_W +#define CHANNEL_STRIDE 32 + + +__forceinline__ __device__ +bool within_bounds(int h, int w, int H, int W) { + return h >= 0 && h < H && w >= 0 && w < W; +} + +template +__global__ void corr_forward_kernel( + const torch::PackedTensorAccessor32 fmap1, + const torch::PackedTensorAccessor32 fmap2, + const torch::PackedTensorAccessor32 coords, + torch::PackedTensorAccessor32 corr, + int r) +{ + const int b = blockIdx.x; + const int h0 = blockIdx.y * blockDim.x; + const int w0 = blockIdx.z * blockDim.y; + const int tid = threadIdx.x * blockDim.y + threadIdx.y; + + const int H1 = fmap1.size(1); + const int W1 = fmap1.size(2); + const int H2 = fmap2.size(1); + const int W2 = fmap2.size(2); + const int N = coords.size(1); + const int C = fmap1.size(3); + + __shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1]; + __shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1]; + __shared__ scalar_t x2s[BLOCK_HW]; + __shared__ scalar_t y2s[BLOCK_HW]; + + for (int c=0; c(floor(y2s[k1]))-r+iy; + int w2 = static_cast(floor(x2s[k1]))-r+ix; + int c2 = tid % CHANNEL_STRIDE; + + auto fptr = fmap2[b][h2][w2]; + if (within_bounds(h2, w2, H2, W2)) + f2[c2][k1] = fptr[c+c2]; + else + f2[c2][k1] = 0.0; + } + + __syncthreads(); + + scalar_t s = 0.0; + for (int k=0; k 0 && ix > 0 && within_bounds(h1, w1, H1, W1)) + *(corr_ptr + ix_nw) += nw; + + if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1)) + *(corr_ptr + ix_ne) += ne; + + if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1)) + *(corr_ptr + ix_sw) += sw; + + if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1)) + *(corr_ptr + ix_se) += se; + } + } + } + } +} + + +template +__global__ void corr_backward_kernel( + const torch::PackedTensorAccessor32 fmap1, + const torch::PackedTensorAccessor32 fmap2, + const torch::PackedTensorAccessor32 coords, + const torch::PackedTensorAccessor32 corr_grad, + torch::PackedTensorAccessor32 fmap1_grad, + torch::PackedTensorAccessor32 fmap2_grad, + torch::PackedTensorAccessor32 coords_grad, + int r) +{ + + const int b = blockIdx.x; + const int h0 = blockIdx.y * blockDim.x; + const int w0 = blockIdx.z * blockDim.y; + const int tid = threadIdx.x * blockDim.y + threadIdx.y; + + const int H1 = fmap1.size(1); + const int W1 = fmap1.size(2); + const int H2 = fmap2.size(1); + const int W2 = fmap2.size(2); + const int N = coords.size(1); + const int C = fmap1.size(3); + + __shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1]; + __shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1]; + + __shared__ scalar_t f1_grad[CHANNEL_STRIDE][BLOCK_HW+1]; + __shared__ scalar_t f2_grad[CHANNEL_STRIDE][BLOCK_HW+1]; + + __shared__ scalar_t x2s[BLOCK_HW]; + __shared__ scalar_t y2s[BLOCK_HW]; + + for (int c=0; c(floor(y2s[k1]))-r+iy; + int w2 = static_cast(floor(x2s[k1]))-r+ix; + int c2 = tid % CHANNEL_STRIDE; + + auto fptr = fmap2[b][h2][w2]; + if (within_bounds(h2, w2, H2, W2)) + f2[c2][k1] = fptr[c+c2]; + else + f2[c2][k1] = 0.0; + + f2_grad[c2][k1] = 0.0; + } + + __syncthreads(); + + const scalar_t* grad_ptr = &corr_grad[b][n][0][h1][w1]; + scalar_t g = 0.0; + + int ix_nw = H1*W1*((iy-1) + rd*(ix-1)); + int ix_ne = H1*W1*((iy-1) + rd*ix); + int ix_sw = H1*W1*(iy + rd*(ix-1)); + int ix_se = H1*W1*(iy + rd*ix); + + if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1)) + g += *(grad_ptr + ix_nw) * dy * dx; + + if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1)) + g += *(grad_ptr + ix_ne) * dy * (1-dx); + + if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1)) + g += *(grad_ptr + ix_sw) * (1-dy) * dx; + + if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1)) + g += *(grad_ptr + ix_se) * (1-dy) * (1-dx); + + for (int k=0; k(floor(y2s[k1]))-r+iy; + int w2 = static_cast(floor(x2s[k1]))-r+ix; + int c2 = tid % CHANNEL_STRIDE; + + scalar_t* fptr = &fmap2_grad[b][h2][w2][0]; + if (within_bounds(h2, w2, H2, W2)) + atomicAdd(fptr+c+c2, f2_grad[c2][k1]); + } + } + } + } + __syncthreads(); + + + for (int k=0; k corr_cuda_forward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + int radius) +{ + const auto B = coords.size(0); + const auto N = coords.size(1); + const auto H = coords.size(2); + const auto W = coords.size(3); + + const auto rd = 2 * radius + 1; + auto opts = fmap1.options(); + auto corr = torch::zeros({B, N, rd*rd, H, W}, opts); + + const dim3 blocks(B, (H+BLOCK_H-1)/BLOCK_H, (W+BLOCK_W-1)/BLOCK_W); + const dim3 threads(BLOCK_H, BLOCK_W); + + corr_forward_kernel<<>>( + fmap1.packed_accessor32(), + fmap2.packed_accessor32(), + coords.packed_accessor32(), + corr.packed_accessor32(), + radius); + + return {corr}; +} + +std::vector corr_cuda_backward( + torch::Tensor fmap1, + torch::Tensor fmap2, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius) +{ + const auto B = coords.size(0); + const auto N = coords.size(1); + + const auto H1 = fmap1.size(1); + const auto W1 = fmap1.size(2); + const auto H2 = fmap2.size(1); + const auto W2 = fmap2.size(2); + const auto C = fmap1.size(3); + + auto opts = fmap1.options(); + auto fmap1_grad = torch::zeros({B, H1, W1, C}, opts); + auto fmap2_grad = torch::zeros({B, H2, W2, C}, opts); + auto coords_grad = torch::zeros({B, N, H1, W1, 2}, opts); + + const dim3 blocks(B, (H1+BLOCK_H-1)/BLOCK_H, (W1+BLOCK_W-1)/BLOCK_W); + const dim3 threads(BLOCK_H, BLOCK_W); + + + corr_backward_kernel<<>>( + fmap1.packed_accessor32(), + fmap2.packed_accessor32(), + coords.packed_accessor32(), + corr_grad.packed_accessor32(), + fmap1_grad.packed_accessor32(), + fmap2_grad.packed_accessor32(), + coords_grad.packed_accessor32(), + radius); + + return {fmap1_grad, fmap2_grad, coords_grad}; +} \ No newline at end of file diff --git a/third_party/RAFT/alt_cuda_corr/setup.py b/third_party/RAFT/alt_cuda_corr/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..c0207ff285ffac4c8146c79d154f12416dbef48c --- /dev/null +++ b/third_party/RAFT/alt_cuda_corr/setup.py @@ -0,0 +1,15 @@ +from setuptools import setup +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + + +setup( + name='correlation', + ext_modules=[ + CUDAExtension('alt_cuda_corr', + sources=['correlation.cpp', 'correlation_kernel.cu'], + extra_compile_args={'cxx': [], 'nvcc': ['-O3']}), + ], + cmdclass={ + 'build_ext': BuildExtension + }) + diff --git a/third_party/RAFT/chairs_split.txt b/third_party/RAFT/chairs_split.txt new file mode 100644 index 0000000000000000000000000000000000000000..6ae8f0b72a22fc061552604c94664e3a0287914e --- /dev/null +++ b/third_party/RAFT/chairs_split.txt @@ -0,0 +1,22872 @@ +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 \ No newline at end of file diff --git a/third_party/RAFT/core/__init__.py b/third_party/RAFT/core/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/RAFT/core/__pycache__/corr.cpython-311.pyc b/third_party/RAFT/core/__pycache__/corr.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a104e0212c19e85da924c055b410dd060c91a886 Binary files /dev/null and b/third_party/RAFT/core/__pycache__/corr.cpython-311.pyc differ diff --git a/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc b/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af6f7e3748db240a140df927d432b57562295aef Binary files /dev/null and b/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc differ diff --git a/third_party/RAFT/core/__pycache__/layer.cpython-311.pyc b/third_party/RAFT/core/__pycache__/layer.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc58815604f8aaebcc20183e927decf47b44aa99 Binary files /dev/null and b/third_party/RAFT/core/__pycache__/layer.cpython-311.pyc differ diff --git a/third_party/RAFT/core/__pycache__/raft.cpython-311.pyc b/third_party/RAFT/core/__pycache__/raft.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eae3bdd2dd0d9b40a29f0268ea18d04c5f3bb07 Binary files /dev/null and b/third_party/RAFT/core/__pycache__/raft.cpython-311.pyc differ diff --git a/third_party/RAFT/core/__pycache__/update.cpython-311.pyc b/third_party/RAFT/core/__pycache__/update.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b7a94645929e91199bbcee629bc74394a0418f8 Binary files /dev/null and b/third_party/RAFT/core/__pycache__/update.cpython-311.pyc differ diff --git a/third_party/RAFT/core/configs/congif_spring_M.json b/third_party/RAFT/core/configs/congif_spring_M.json new file mode 100644 index 0000000000000000000000000000000000000000..7e9c8a4c4b2f6c93c65d5f62692606102c0aa842 --- /dev/null +++ b/third_party/RAFT/core/configs/congif_spring_M.json @@ -0,0 +1,30 @@ +{ + "name": "spring-M", + "dataset": "spring", + "gpus": [0, 1, 2, 3, 4, 5, 6, 7], + + "use_var": true, + "var_min": 0, + "var_max": 10, + "pretrain": "resnet34", + "initial_dim": 64, + "block_dims": [64, 128, 256], + "radius": 4, + "dim": 128, + "num_blocks": 2, + "iters": 4, + + "image_size": [540, 960], + "scale": -1, + "batch_size": 32, + "epsilon": 1e-8, + "lr": 4e-4, + "wdecay": 1e-5, + "dropout": 0, + "clip": 1.0, + "gamma": 0.85, + "num_steps": 120000, + + "restore_ckpt": null, + "coarse_config": null +} \ No newline at end of file diff --git a/third_party/RAFT/core/corr.py b/third_party/RAFT/core/corr.py new file mode 100644 index 0000000000000000000000000000000000000000..c977addc5350f75c44b33912abe7d276aa80b690 --- /dev/null +++ b/third_party/RAFT/core/corr.py @@ -0,0 +1,142 @@ +import torch +import torch.nn.functional as F +from utils.utils import bilinear_sampler, coords_grid + +try: + import alt_cuda_corr +except: + # alt_cuda_corr is not compiled + pass + +class CorrBlock2: + def __init__(self, fmap1, fmap2, args): + self.num_levels = args.corr_levels + self.radius = args.corr_radius + self.args = args + self.corr_pyramid = [] + # all pairs correlation + for i in range(self.num_levels): + corr = CorrBlock2.corr(fmap1, fmap2, 1) + batch, h1, w1, dim, h2, w2 = corr.shape + corr = corr.reshape(batch*h1*w1, dim, h2, w2) + fmap2 = F.interpolate(fmap2, scale_factor=0.5, mode='bilinear', align_corners=False) + self.corr_pyramid.append(corr) + + def __call__(self, coords, dilation=None): + r = self.radius + coords = coords.permute(0, 2, 3, 1) + batch, h1, w1, _ = coords.shape + + if dilation is None: + dilation = torch.ones(batch, 1, h1, w1, device=coords.device) + + # print(dilation.max(), dilation.mean(), dilation.min()) + out_pyramid = [] + for i in range(self.num_levels): + corr = self.corr_pyramid[i] + device = coords.device + dx = torch.linspace(-r, r, 2*r+1, device=device) + dy = torch.linspace(-r, r, 2*r+1, device=device) + delta = torch.stack(torch.meshgrid(dy, dx), axis=-1) + delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2) + delta_lvl = delta_lvl * dilation.view(batch * h1 * w1, 1, 1, 1) + centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i + coords_lvl = centroid_lvl + delta_lvl + corr = bilinear_sampler(corr, coords_lvl) + corr = corr.view(batch, h1, w1, -1) + out_pyramid.append(corr) + + out = torch.cat(out_pyramid, dim=-1) + out = out.permute(0, 3, 1, 2).contiguous().float() + return out + + @staticmethod + def corr(fmap1, fmap2, num_head): + batch, dim, h1, w1 = fmap1.shape + h2, w2 = fmap2.shape[2:] + fmap1 = fmap1.view(batch, num_head, dim // num_head, h1*w1) + fmap2 = fmap2.view(batch, num_head, dim // num_head, h2*w2) + corr = fmap1.transpose(2, 3) @ fmap2 + corr = corr.reshape(batch, num_head, h1, w1, h2, w2).permute(0, 2, 3, 1, 4, 5) + return corr / torch.sqrt(torch.tensor(dim).float()) + +class CorrBlock: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + self.num_levels = num_levels + self.radius = radius + self.corr_pyramid = [] + + # all pairs correlation + corr = CorrBlock.corr(fmap1, fmap2) + + batch, h1, w1, dim, h2, w2 = corr.shape + corr = corr.reshape(batch*h1*w1, dim, h2, w2) + + self.corr_pyramid.append(corr) + for i in range(self.num_levels-1): + corr = F.avg_pool2d(corr, 2, stride=2) + self.corr_pyramid.append(corr) + + def __call__(self, coords): + r = self.radius + coords = coords.permute(0, 2, 3, 1) + batch, h1, w1, _ = coords.shape + + out_pyramid = [] + for i in range(self.num_levels): + corr = self.corr_pyramid[i] + dx = torch.linspace(-r, r, 2*r+1) + dy = torch.linspace(-r, r, 2*r+1) + delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device) + + centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i + delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2) + coords_lvl = centroid_lvl + delta_lvl + + corr = bilinear_sampler(corr, coords_lvl) + corr = corr.view(batch, h1, w1, -1) + out_pyramid.append(corr) + + out = torch.cat(out_pyramid, dim=-1) + return out.permute(0, 3, 1, 2).contiguous().float() + + @staticmethod + def corr(fmap1, fmap2): + batch, dim, ht, wd = fmap1.shape + fmap1 = fmap1.view(batch, dim, ht*wd) + fmap2 = fmap2.view(batch, dim, ht*wd) + + corr = torch.matmul(fmap1.transpose(1,2), fmap2) + corr = corr.view(batch, ht, wd, 1, ht, wd) + return corr / torch.sqrt(torch.tensor(dim).float()) + + +class AlternateCorrBlock: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + self.num_levels = num_levels + self.radius = radius + + self.pyramid = [(fmap1, fmap2)] + for i in range(self.num_levels): + fmap1 = F.avg_pool2d(fmap1, 2, stride=2) + fmap2 = F.avg_pool2d(fmap2, 2, stride=2) + self.pyramid.append((fmap1, fmap2)) + + def __call__(self, coords): + coords = coords.permute(0, 2, 3, 1) + B, H, W, _ = coords.shape + dim = self.pyramid[0][0].shape[1] + + corr_list = [] + for i in range(self.num_levels): + r = self.radius + fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous() + fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous() + + coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous() + corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r) + corr_list.append(corr.squeeze(1)) + + corr = torch.stack(corr_list, dim=1) + corr = corr.reshape(B, -1, H, W) + return corr / torch.sqrt(torch.tensor(dim).float()) diff --git a/third_party/RAFT/core/datasets.py b/third_party/RAFT/core/datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..3411fdacfb900024005e8997d07c600e963a95ca --- /dev/null +++ b/third_party/RAFT/core/datasets.py @@ -0,0 +1,235 @@ +# Data loading based on https://github.com/NVIDIA/flownet2-pytorch + +import numpy as np +import torch +import torch.utils.data as data +import torch.nn.functional as F + +import os +import math +import random +from glob import glob +import os.path as osp + +from utils import frame_utils +from utils.augmentor import FlowAugmentor, SparseFlowAugmentor + + +class FlowDataset(data.Dataset): + def __init__(self, aug_params=None, sparse=False): + self.augmentor = None + self.sparse = sparse + if aug_params is not None: + if sparse: + self.augmentor = SparseFlowAugmentor(**aug_params) + else: + self.augmentor = FlowAugmentor(**aug_params) + + self.is_test = False + self.init_seed = False + self.flow_list = [] + self.image_list = [] + self.extra_info = [] + + def __getitem__(self, index): + + if self.is_test: + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + img1 = np.array(img1).astype(np.uint8)[..., :3] + img2 = np.array(img2).astype(np.uint8)[..., :3] + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + return img1, img2, self.extra_info[index] + + if not self.init_seed: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + torch.manual_seed(worker_info.id) + np.random.seed(worker_info.id) + random.seed(worker_info.id) + self.init_seed = True + + index = index % len(self.image_list) + valid = None + if self.sparse: + flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) + else: + flow = frame_utils.read_gen(self.flow_list[index]) + + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + + flow = np.array(flow).astype(np.float32) + img1 = np.array(img1).astype(np.uint8) + img2 = np.array(img2).astype(np.uint8) + + # grayscale images + if len(img1.shape) == 2: + img1 = np.tile(img1[...,None], (1, 1, 3)) + img2 = np.tile(img2[...,None], (1, 1, 3)) + else: + img1 = img1[..., :3] + img2 = img2[..., :3] + + if self.augmentor is not None: + if self.sparse: + img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) + else: + img1, img2, flow = self.augmentor(img1, img2, flow) + + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + flow = torch.from_numpy(flow).permute(2, 0, 1).float() + + if valid is not None: + valid = torch.from_numpy(valid) + else: + valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) + + return img1, img2, flow, valid.float() + + + def __rmul__(self, v): + self.flow_list = v * self.flow_list + self.image_list = v * self.image_list + return self + + def __len__(self): + return len(self.image_list) + + +class MpiSintel(FlowDataset): + def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'): + super(MpiSintel, self).__init__(aug_params) + flow_root = osp.join(root, split, 'flow') + image_root = osp.join(root, split, dstype) + + if split == 'test': + self.is_test = True + + for scene in os.listdir(image_root): + image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) + for i in range(len(image_list)-1): + self.image_list += [ [image_list[i], image_list[i+1]] ] + self.extra_info += [ (scene, i) ] # scene and frame_id + + if split != 'test': + self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) + + +class FlyingChairs(FlowDataset): + def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'): + super(FlyingChairs, self).__init__(aug_params) + + images = sorted(glob(osp.join(root, '*.ppm'))) + flows = sorted(glob(osp.join(root, '*.flo'))) + assert (len(images)//2 == len(flows)) + + split_list = np.loadtxt('chairs_split.txt', dtype=np.int32) + for i in range(len(flows)): + xid = split_list[i] + if (split=='training' and xid==1) or (split=='validation' and xid==2): + self.flow_list += [ flows[i] ] + self.image_list += [ [images[2*i], images[2*i+1]] ] + + +class FlyingThings3D(FlowDataset): + def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'): + super(FlyingThings3D, self).__init__(aug_params) + + for cam in ['left']: + for direction in ['into_future', 'into_past']: + image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*'))) + image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) + + flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*'))) + flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) + + for idir, fdir in zip(image_dirs, flow_dirs): + images = sorted(glob(osp.join(idir, '*.png')) ) + flows = sorted(glob(osp.join(fdir, '*.pfm')) ) + for i in range(len(flows)-1): + if direction == 'into_future': + self.image_list += [ [images[i], images[i+1]] ] + self.flow_list += [ flows[i] ] + elif direction == 'into_past': + self.image_list += [ [images[i+1], images[i]] ] + self.flow_list += [ flows[i+1] ] + + +class KITTI(FlowDataset): + def __init__(self, aug_params=None, split='training', root='datasets/KITTI'): + super(KITTI, self).__init__(aug_params, sparse=True) + if split == 'testing': + self.is_test = True + + root = osp.join(root, split) + images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) + images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) + + for img1, img2 in zip(images1, images2): + frame_id = img1.split('/')[-1] + self.extra_info += [ [frame_id] ] + self.image_list += [ [img1, img2] ] + + if split == 'training': + self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) + + +class HD1K(FlowDataset): + def __init__(self, aug_params=None, root='datasets/HD1k'): + super(HD1K, self).__init__(aug_params, sparse=True) + + seq_ix = 0 + while 1: + flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) + images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) + + if len(flows) == 0: + break + + for i in range(len(flows)-1): + self.flow_list += [flows[i]] + self.image_list += [ [images[i], images[i+1]] ] + + seq_ix += 1 + + +def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): + """ Create the data loader for the corresponding trainign set """ + + if args.stage == 'chairs': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} + train_dataset = FlyingChairs(aug_params, split='training') + + elif args.stage == 'things': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} + clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') + final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') + train_dataset = clean_dataset + final_dataset + + elif args.stage == 'sintel': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} + things = FlyingThings3D(aug_params, dstype='frames_cleanpass') + sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') + sintel_final = MpiSintel(aug_params, split='training', dstype='final') + + if TRAIN_DS == 'C+T+K+S+H': + kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}) + hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}) + train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things + + elif TRAIN_DS == 'C+T+K/S': + train_dataset = 100*sintel_clean + 100*sintel_final + things + + elif args.stage == 'kitti': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} + train_dataset = KITTI(aug_params, split='training') + + train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, + pin_memory=False, shuffle=True, num_workers=4, drop_last=True) + + print('Training with %d image pairs' % len(train_dataset)) + return train_loader + diff --git a/third_party/RAFT/core/extractor.py b/third_party/RAFT/core/extractor.py new file mode 100644 index 0000000000000000000000000000000000000000..9c1799c0c17325ed8a10e8283fdae5f70c852818 --- /dev/null +++ b/third_party/RAFT/core/extractor.py @@ -0,0 +1,351 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from layer import conv1x1, conv3x3, BasicBlock + + +class ResidualBlock(nn.Module): + def __init__(self, in_planes, planes, norm_fn='group', stride=1): + super(ResidualBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) + self.relu = nn.ReLU(inplace=True) + + num_groups = planes // 8 + + if norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + if not stride == 1: + self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + + elif norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(planes) + self.norm2 = nn.BatchNorm2d(planes) + if not stride == 1: + self.norm3 = nn.BatchNorm2d(planes) + + elif norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(planes) + self.norm2 = nn.InstanceNorm2d(planes) + if not stride == 1: + self.norm3 = nn.InstanceNorm2d(planes) + + elif norm_fn == 'none': + self.norm1 = nn.Sequential() + self.norm2 = nn.Sequential() + if not stride == 1: + self.norm3 = nn.Sequential() + + if stride == 1: + self.downsample = None + + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) + + + def forward(self, x): + y = x + y = self.relu(self.norm1(self.conv1(y))) + y = self.relu(self.norm2(self.conv2(y))) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x+y) + + + +class BottleneckBlock(nn.Module): + def __init__(self, in_planes, planes, norm_fn='group', stride=1): + super(BottleneckBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) + self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) + self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) + self.relu = nn.ReLU(inplace=True) + + num_groups = planes // 8 + + if norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) + self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) + self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + if not stride == 1: + self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + + elif norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(planes//4) + self.norm2 = nn.BatchNorm2d(planes//4) + self.norm3 = nn.BatchNorm2d(planes) + if not stride == 1: + self.norm4 = nn.BatchNorm2d(planes) + + elif norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(planes//4) + self.norm2 = nn.InstanceNorm2d(planes//4) + self.norm3 = nn.InstanceNorm2d(planes) + if not stride == 1: + self.norm4 = nn.InstanceNorm2d(planes) + + elif norm_fn == 'none': + self.norm1 = nn.Sequential() + self.norm2 = nn.Sequential() + self.norm3 = nn.Sequential() + if not stride == 1: + self.norm4 = nn.Sequential() + + if stride == 1: + self.downsample = None + + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) + + + def forward(self, x): + y = x + y = self.relu(self.norm1(self.conv1(y))) + y = self.relu(self.norm2(self.conv2(y))) + y = self.relu(self.norm3(self.conv3(y))) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x+y) + +class BasicEncoder(nn.Module): + def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): + super(BasicEncoder, self).__init__() + self.norm_fn = norm_fn + + if self.norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) + + elif self.norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(64) + + elif self.norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(64) + + elif self.norm_fn == 'none': + self.norm1 = nn.Sequential() + + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) + self.relu1 = nn.ReLU(inplace=True) + + self.in_planes = 64 + self.layer1 = self._make_layer(64, stride=1) + self.layer2 = self._make_layer(96, stride=2) + self.layer3 = self._make_layer(128, stride=2) + + # output convolution + self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1) + + self.dropout = None + if dropout > 0: + self.dropout = nn.Dropout2d(p=dropout) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _make_layer(self, dim, stride=1): + layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) + layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) + layers = (layer1, layer2) + + self.in_planes = dim + return nn.Sequential(*layers) + + + def forward(self, x): + + # if input is list, combine batch dimension + is_list = isinstance(x, tuple) or isinstance(x, list) + if is_list: + batch_dim = x[0].shape[0] + x = torch.cat(x, dim=0) + + x = self.conv1(x) + x = self.norm1(x) + x = self.relu1(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + + x = self.conv2(x) + + if self.training and self.dropout is not None: + x = self.dropout(x) + + if is_list: + x = torch.split(x, [batch_dim, batch_dim], dim=0) + + return x + + +class SmallEncoder(nn.Module): + def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): + super(SmallEncoder, self).__init__() + self.norm_fn = norm_fn + + if self.norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32) + + elif self.norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(32) + + elif self.norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(32) + + elif self.norm_fn == 'none': + self.norm1 = nn.Sequential() + + self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3) + self.relu1 = nn.ReLU(inplace=True) + + self.in_planes = 32 + self.layer1 = self._make_layer(32, stride=1) + self.layer2 = self._make_layer(64, stride=2) + self.layer3 = self._make_layer(96, stride=2) + + self.dropout = None + if dropout > 0: + self.dropout = nn.Dropout2d(p=dropout) + + self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _make_layer(self, dim, stride=1): + layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride) + layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1) + layers = (layer1, layer2) + + self.in_planes = dim + return nn.Sequential(*layers) + + + def forward(self, x): + + # if input is list, combine batch dimension + is_list = isinstance(x, tuple) or isinstance(x, list) + if is_list: + batch_dim = x[0].shape[0] + x = torch.cat(x, dim=0) + + x = self.conv1(x) + x = self.norm1(x) + x = self.relu1(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.conv2(x) + + if self.training and self.dropout is not None: + x = self.dropout(x) + + if is_list: + x = torch.split(x, [batch_dim, batch_dim], dim=0) + + return x + +class ResNetFPN(nn.Module): + """ + ResNet18, output resolution is 1/8. + Each block has 2 layers. + """ + def __init__(self, args, input_dim=3, output_dim=256, ratio=1.0, norm_layer=nn.BatchNorm2d, init_weight=False): + super().__init__() + # Config + block = BasicBlock + block_dims = args.block_dims + initial_dim = args.initial_dim + self.init_weight = init_weight + self.input_dim = input_dim + # Class Variable + self.in_planes = initial_dim + for i in range(len(block_dims)): + block_dims[i] = int(block_dims[i] * ratio) + # Networks + self.conv1 = nn.Conv2d(input_dim, initial_dim, kernel_size=7, stride=2, padding=3) + self.bn1 = norm_layer(initial_dim) + self.relu = nn.ReLU(inplace=True) + if args.pretrain == 'resnet34': + n_block = [3, 4, 6] + elif args.pretrain == 'resnet18': + n_block = [2, 2, 2] + else: + raise NotImplementedError + self.layer1 = self._make_layer(block, block_dims[0], stride=1, norm_layer=norm_layer, num=n_block[0]) # 1/2 + self.layer2 = self._make_layer(block, block_dims[1], stride=2, norm_layer=norm_layer, num=n_block[1]) # 1/4 + self.layer3 = self._make_layer(block, block_dims[2], stride=2, norm_layer=norm_layer, num=n_block[2]) # 1/8 + self.final_conv = conv1x1(block_dims[2], output_dim) + self._init_weights(args) + + def _init_weights(self, args): + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + if self.init_weight: + from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights + if args.pretrain == 'resnet18': + pretrained_dict = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1).state_dict() + else: + pretrained_dict = resnet34(weights=ResNet34_Weights.IMAGENET1K_V1).state_dict() + model_dict = self.state_dict() + pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} + if self.input_dim == 6: + for k, v in pretrained_dict.items(): + if k == 'conv1.weight': + pretrained_dict[k] = torch.cat((v, v), dim=1) + model_dict.update(pretrained_dict) + self.load_state_dict(model_dict, strict=False) + + + def _make_layer(self, block, dim, stride=1, norm_layer=nn.BatchNorm2d, num=2): + layers = [] + layers.append(block(self.in_planes, dim, stride=stride, norm_layer=norm_layer)) + for i in range(num - 1): + layers.append(block(dim, dim, stride=1, norm_layer=norm_layer)) + self.in_planes = dim + return nn.Sequential(*layers) + + def forward(self, x): + # ResNet Backbone + x = self.relu(self.bn1(self.conv1(x))) + for i in range(len(self.layer1)): + x = self.layer1[i](x) + for i in range(len(self.layer2)): + x = self.layer2[i](x) + for i in range(len(self.layer3)): + x = self.layer3[i](x) + # Output + output = self.final_conv(x) + return output \ No newline at end of file diff --git a/third_party/RAFT/core/layer.py b/third_party/RAFT/core/layer.py new file mode 100644 index 0000000000000000000000000000000000000000..ecf1e6484eed341f0dc2d8f46e87420754c9cf8e --- /dev/null +++ b/third_party/RAFT/core/layer.py @@ -0,0 +1,135 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +import torch +import math +from torch.nn import Module, Dropout + +### Gradient Clipping and Zeroing Operations ### + +GRAD_CLIP = 0.1 + +class GradClip(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + return x + + @staticmethod + def backward(ctx, grad_x): + grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x) + return grad_x.clamp(min=-0.01, max=0.01) + +class GradientClip(nn.Module): + def __init__(self): + super(GradientClip, self).__init__() + + def forward(self, x): + return GradClip.apply(x) + +def _make_divisible(v, divisor, min_value=None): + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + +class ConvNextBlock(nn.Module): + r""" ConvNeXt Block. There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + We use (2) as we find it slightly faster in PyTorch + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + def __init__(self, dim, output_dim, layer_scale_init_value=1e-6): + super().__init__() + self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv + self.norm = LayerNorm(dim, eps=1e-6) + self.pwconv1 = nn.Linear(dim, 4 * output_dim) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.pwconv2 = nn.Linear(4 * output_dim, dim) + self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), + requires_grad=True) if layer_scale_init_value > 0 else None + self.final = nn.Conv2d(dim, output_dim, kernel_size=1, padding=0) + + def forward(self, x): + input = x + x = self.dwconv(x) + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.norm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.pwconv2(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + x = self.final(input + x) + return x + +class LayerNorm(nn.Module): + r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with + shape (batch_size, height, width, channels) while channels_first corresponds to inputs + with shape (batch_size, channels, height, width). + """ + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.data_format = data_format + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError + self.normalized_shape = (normalized_shape, ) + + def forward(self, x): + if self.data_format == "channels_last": + return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + elif self.data_format == "channels_first": + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution without padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0) + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1) + +class BasicBlock(nn.Module): + def __init__(self, in_planes, planes, stride=1, norm_layer=nn.BatchNorm2d): + super().__init__() + + # self.sparse = sparse + self.conv1 = conv3x3(in_planes, planes, stride) + self.conv2 = conv3x3(planes, planes) + self.bn1 = norm_layer(planes) + self.bn2 = norm_layer(planes) + self.relu = nn.ReLU(inplace=True) + if stride == 1 and in_planes == planes: + self.downsample = None + else: + self.bn3 = norm_layer(planes) + self.downsample = nn.Sequential( + conv1x1(in_planes, planes, stride=stride), + self.bn3 + ) + + def forward(self, x): + y = x + y = self.relu(self.bn1(self.conv1(y))) + y = self.relu(self.bn2(self.conv2(y))) + if self.downsample is not None: + x = self.downsample(x) + return self.relu(x+y) \ No newline at end of file diff --git a/third_party/RAFT/core/raft.py b/third_party/RAFT/core/raft.py new file mode 100644 index 0000000000000000000000000000000000000000..ae403c643340e42c709186c7a0902bc5b9a3cc2e --- /dev/null +++ b/third_party/RAFT/core/raft.py @@ -0,0 +1,291 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from update import BasicUpdateBlock, SmallUpdateBlock, BasicUpdateBlock2 +from extractor import BasicEncoder, SmallEncoder, ResNetFPN +from corr import CorrBlock, AlternateCorrBlock, CorrBlock2 +from utils.utils import bilinear_sampler, coords_grid, upflow8, InputPadder, coords_grid2 +from layer import conv3x3 +import math + +try: + autocast = torch.cuda.amp.autocast +except: + # dummy autocast for PyTorch < 1.6 + class autocast: + def __init__(self, enabled): + pass + def __enter__(self): + pass + def __exit__(self, *args): + pass + + +class RAFT(nn.Module): + def __init__(self, args): + super(RAFT, self).__init__() + self.args = args + + if args.small: + self.hidden_dim = hdim = 96 + self.context_dim = cdim = 64 + args.corr_levels = 4 + args.corr_radius = 3 + + else: + self.hidden_dim = hdim = 128 + self.context_dim = cdim = 128 + args.corr_levels = 4 + args.corr_radius = 4 + + if 'dropout' not in self.args: + self.args.dropout = 0 + + if 'alternate_corr' not in self.args: + self.args.alternate_corr = False + + # feature network, context network, and update block + if args.small: + self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout) + self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) + self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) + + else: + self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout) + self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) + self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) + + def freeze_bn(self): + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + m.eval() + + def initialize_flow(self, img): + """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" + N, C, H, W = img.shape + coords0 = coords_grid(N, H//8, W//8).to(img.device) + coords1 = coords_grid(N, H//8, W//8).to(img.device) + + # optical flow computed as difference: flow = coords1 - coords0 + return coords0, coords1 + + def upsample_flow(self, flow, mask): + """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ + N, _, H, W = flow.shape + mask = mask.view(N, 1, 9, 8, 8, H, W) + mask = torch.softmax(mask, dim=2) + + up_flow = F.unfold(8 * flow, [3,3], padding=1) + up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) + + up_flow = torch.sum(mask * up_flow, dim=2) + up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) + return up_flow.reshape(N, 2, 8*H, 8*W) + + + def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False): + """ Estimate optical flow between pair of frames """ + + image1 = 2 * (image1 / 255.0) - 1.0 + image2 = 2 * (image2 / 255.0) - 1.0 + + image1 = image1.contiguous() + image2 = image2.contiguous() + + hdim = self.hidden_dim + cdim = self.context_dim + + # run the feature network + with autocast(enabled=self.args.mixed_precision): + fmap1, fmap2 = self.fnet([image1, image2]) + + fmap1 = fmap1.float() + fmap2 = fmap2.float() + if self.args.alternate_corr: + corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius) + else: + corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) + + # run the context network + with autocast(enabled=self.args.mixed_precision): + cnet = self.cnet(image1) + net, inp = torch.split(cnet, [hdim, cdim], dim=1) + net = torch.tanh(net) + inp = torch.relu(inp) + + coords0, coords1 = self.initialize_flow(image1) + + if flow_init is not None: + coords1 = coords1 + flow_init + + flow_predictions = [] + for itr in range(iters): + coords1 = coords1.detach() + corr = corr_fn(coords1) # index correlation volume + + flow = coords1 - coords0 + with autocast(enabled=self.args.mixed_precision): + net, up_mask, delta_flow = self.update_block(net, inp, corr, flow) + + # F(t+1) = F(t) + \Delta(t) + coords1 = coords1 + delta_flow + + # upsample predictions + if up_mask is None: + flow_up = upflow8(coords1 - coords0) + else: + flow_up = self.upsample_flow(coords1 - coords0, up_mask) + + flow_predictions.append(flow_up) + + if test_mode: + return coords1 - coords0, flow_up + + return flow_predictions +## +# given depth, warp according to camera params. + +# given flow+depth, warp in 2D + +class RAFT2(nn.Module): + def __init__(self, args): + super(RAFT2, self).__init__() + self.args = args + self.output_dim = args.dim * 2 + + self.args.corr_levels = 4 + self.args.corr_radius = args.radius + self.args.corr_channel = args.corr_levels * (args.radius * 2 + 1) ** 2 + self.cnet = ResNetFPN(args, input_dim=6, output_dim=2 * self.args.dim, norm_layer=nn.BatchNorm2d, init_weight=True) + + # conv for iter 0 results + self.init_conv = conv3x3(2 * args.dim, 2 * args.dim) + self.upsample_weight = nn.Sequential( + # convex combination of 3x3 patches + nn.Conv2d(args.dim, args.dim * 2, 3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(args.dim * 2, 64 * 9, 1, padding=0) + ) + self.flow_head = nn.Sequential( + # flow(2) + weight(2) + log_b(2) + nn.Conv2d(args.dim, 2 * args.dim, 3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(2 * args.dim, 6, 3, padding=1) + ) + if args.iters > 0: + self.fnet = ResNetFPN(args, input_dim=3, output_dim=self.output_dim, norm_layer=nn.BatchNorm2d, init_weight=True) + self.update_block = BasicUpdateBlock2(args, hdim=args.dim, cdim=args.dim) + + def initialize_flow(self, img): + """ Flow is represented as difference between two coordinate grids flow = coords2 - coords1""" + N, C, H, W = img.shape + coords1 = coords_grid(N, H//8, W//8, device=img.device) + coords2 = coords_grid(N, H//8, W//8, device=img.device) + return coords1, coords2 + + def upsample_data(self, flow, info, mask): + """ Upsample [H/8, W/8, C] -> [H, W, C] using convex combination """ + N, C, H, W = info.shape + mask = mask.view(N, 1, 9, 8, 8, H, W) + mask = torch.softmax(mask, dim=2) + + up_flow = F.unfold(8 * flow, [3,3], padding=1) + up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) + up_info = F.unfold(info, [3, 3], padding=1) + up_info = up_info.view(N, C, 9, 1, 1, H, W) + + up_flow = torch.sum(mask * up_flow, dim=2) + up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) + up_info = torch.sum(mask * up_info, dim=2) + up_info = up_info.permute(0, 1, 4, 2, 5, 3) + + return up_flow.reshape(N, 2, 8*H, 8*W), up_info.reshape(N, C, 8*H, 8*W) + + def forward(self, image1, image2, iters=None, flow_gt=None, test_mode=False): + """ Estimate optical flow between pair of frames """ + N, _, H, W = image1.shape + if iters is None: + iters = self.args.iters + if flow_gt is None: + flow_gt = torch.zeros(N, 2, H, W, device=image1.device) + + image1 = 2 * (image1 / 255.0) - 1.0 + image2 = 2 * (image2 / 255.0) - 1.0 + image1 = image1.contiguous() + image2 = image2.contiguous() + flow_predictions = [] + info_predictions = [] + + # padding + padder = InputPadder(image1.shape) + image1, image2 = padder.pad(image1, image2) + N, _, H, W = image1.shape + dilation = torch.ones(N, 1, H//8, W//8, device=image1.device) + # run the context network + cnet = self.cnet(torch.cat([image1, image2], dim=1)) + cnet = self.init_conv(cnet) + net, context = torch.split(cnet, [self.args.dim, self.args.dim], dim=1) + + # init flow + flow_update = self.flow_head(net) + weight_update = .25 * self.upsample_weight(net) + flow_8x = flow_update[:, :2] + info_8x = flow_update[:, 2:] + flow_up, info_up = self.upsample_data(flow_8x, info_8x, weight_update) + flow_predictions.append(flow_up) + info_predictions.append(info_up) + + if self.args.iters > 0: + # run the feature network + fmap1_8x = self.fnet(image1) + fmap2_8x = self.fnet(image2) + corr_fn = CorrBlock2(fmap1_8x, fmap2_8x, self.args) + + for itr in range(iters): + N, _, H, W = flow_8x.shape + flow_8x = flow_8x.detach() + coords2 = (coords_grid2(N, H, W, device=image1.device) + flow_8x).detach() + corr = corr_fn(coords2, dilation=dilation) + net = self.update_block(net, context, corr, flow_8x) + flow_update = self.flow_head(net) + weight_update = .25 * self.upsample_weight(net) + flow_8x = flow_8x + flow_update[:, :2] + info_8x = flow_update[:, 2:] + # upsample predictions + flow_up, info_up = self.upsample_data(flow_8x, info_8x, weight_update) + flow_predictions.append(flow_up) + info_predictions.append(info_up) + + for i in range(len(info_predictions)): + flow_predictions[i] = padder.unpad(flow_predictions[i]) + info_predictions[i] = padder.unpad(info_predictions[i]) + + if test_mode == False: + # exlude invalid pixels and extremely large diplacements + nf_predictions = [] + for i in range(len(info_predictions)): + if not self.args.use_var: + var_max = var_min = 0 + else: + var_max = self.args.var_max + var_min = self.args.var_min + + raw_b = info_predictions[i][:, 2:] + log_b = torch.zeros_like(raw_b) + weight = info_predictions[i][:, :2] + # Large b Component + log_b[:, 0] = torch.clamp(raw_b[:, 0], min=0, max=var_max) + # Small b Component + log_b[:, 1] = torch.clamp(raw_b[:, 1], min=var_min, max=0) + # term2: [N, 2, m, H, W] + term2 = ((flow_gt - flow_predictions[i]).abs().unsqueeze(2)) * (torch.exp(-log_b).unsqueeze(1)) + # term1: [N, m, H, W] + term1 = weight - math.log(2) - log_b + nf_loss = torch.logsumexp(weight, dim=1, keepdim=True) - torch.logsumexp(term1.unsqueeze(1) - term2, dim=2) + nf_predictions.append(nf_loss) + + return {'final': flow_predictions[-1], 'flow': flow_predictions, 'info': info_predictions, 'nf': nf_predictions} + else: + return [flow_predictions,flow_predictions[-1]] \ No newline at end of file diff --git a/third_party/RAFT/core/update.py b/third_party/RAFT/core/update.py new file mode 100644 index 0000000000000000000000000000000000000000..d9a023d6fb3eaad5f2acd5f279b589c734418b9f --- /dev/null +++ b/third_party/RAFT/core/update.py @@ -0,0 +1,174 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from layer import ConvNextBlock + +class FlowHead(nn.Module): + def __init__(self, input_dim=128, hidden_dim=256): + super(FlowHead, self).__init__() + self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) + self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + return self.conv2(self.relu(self.conv1(x))) + +class ConvGRU(nn.Module): + def __init__(self, hidden_dim=128, input_dim=192+128): + super(ConvGRU, self).__init__() + self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) + self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) + self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) + + def forward(self, h, x): + hx = torch.cat([h, x], dim=1) + + z = torch.sigmoid(self.convz(hx)) + r = torch.sigmoid(self.convr(hx)) + q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) + + h = (1-z) * h + z * q + return h + +class SepConvGRU(nn.Module): + def __init__(self, hidden_dim=128, input_dim=192+128): + super(SepConvGRU, self).__init__() + self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + + self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + + + def forward(self, h, x): + # horizontal + hx = torch.cat([h, x], dim=1) + z = torch.sigmoid(self.convz1(hx)) + r = torch.sigmoid(self.convr1(hx)) + q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) + h = (1-z) * h + z * q + + # vertical + hx = torch.cat([h, x], dim=1) + z = torch.sigmoid(self.convz2(hx)) + r = torch.sigmoid(self.convr2(hx)) + q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) + h = (1-z) * h + z * q + + return h + +class SmallMotionEncoder(nn.Module): + def __init__(self, args): + super(SmallMotionEncoder, self).__init__() + cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 + self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) + self.convf1 = nn.Conv2d(2, 64, 7, padding=3) + self.convf2 = nn.Conv2d(64, 32, 3, padding=1) + self.conv = nn.Conv2d(128, 80, 3, padding=1) + + def forward(self, flow, corr): + cor = F.relu(self.convc1(corr)) + flo = F.relu(self.convf1(flow)) + flo = F.relu(self.convf2(flo)) + cor_flo = torch.cat([cor, flo], dim=1) + out = F.relu(self.conv(cor_flo)) + return torch.cat([out, flow], dim=1) + +class BasicMotionEncoder(nn.Module): + def __init__(self, args): + super(BasicMotionEncoder, self).__init__() + cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 + self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) + self.convc2 = nn.Conv2d(256, 192, 3, padding=1) + self.convf1 = nn.Conv2d(2, 128, 7, padding=3) + self.convf2 = nn.Conv2d(128, 64, 3, padding=1) + self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) + + def forward(self, flow, corr): + cor = F.relu(self.convc1(corr)) + cor = F.relu(self.convc2(cor)) + flo = F.relu(self.convf1(flow)) + flo = F.relu(self.convf2(flo)) + + cor_flo = torch.cat([cor, flo], dim=1) + out = F.relu(self.conv(cor_flo)) + return torch.cat([out, flow], dim=1) + +class BasicMotionEncoder2(nn.Module): + def __init__(self, args, dim=128): + super(BasicMotionEncoder2, self).__init__() + cor_planes = args.corr_channel + self.convc1 = nn.Conv2d(cor_planes, dim*2, 1, padding=0) + self.convc2 = nn.Conv2d(dim*2, dim+dim//2, 3, padding=1) + self.convf1 = nn.Conv2d(2, dim, 7, padding=3) + self.convf2 = nn.Conv2d(dim, dim//2, 3, padding=1) + self.conv = nn.Conv2d(dim*2, dim-2, 3, padding=1) + + def forward(self, flow, corr): + cor = F.relu(self.convc1(corr)) + cor = F.relu(self.convc2(cor)) + flo = F.relu(self.convf1(flow)) + flo = F.relu(self.convf2(flo)) + + cor_flo = torch.cat([cor, flo], dim=1) + out = F.relu(self.conv(cor_flo)) + return torch.cat([out, flow], dim=1) + +class SmallUpdateBlock(nn.Module): + def __init__(self, args, hidden_dim=96): + super(SmallUpdateBlock, self).__init__() + self.encoder = SmallMotionEncoder(args) + self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) + self.flow_head = FlowHead(hidden_dim, hidden_dim=128) + + def forward(self, net, inp, corr, flow): + motion_features = self.encoder(flow, corr) + inp = torch.cat([inp, motion_features], dim=1) + net = self.gru(net, inp) + delta_flow = self.flow_head(net) + + return net, None, delta_flow + +class BasicUpdateBlock(nn.Module): + def __init__(self, args, hidden_dim=128, input_dim=128): + super(BasicUpdateBlock, self).__init__() + self.args = args + self.encoder = BasicMotionEncoder(args) + self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) + self.flow_head = FlowHead(hidden_dim, hidden_dim=256) + + self.mask = nn.Sequential( + nn.Conv2d(128, 256, 3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(256, 64*9, 1, padding=0)) + + def forward(self, net, inp, corr, flow, upsample=True): + motion_features = self.encoder(flow, corr) + inp = torch.cat([inp, motion_features], dim=1) + + net = self.gru(net, inp) + delta_flow = self.flow_head(net) + + # scale mask to balence gradients + mask = .25 * self.mask(net) + return net, mask, delta_flow + +class BasicUpdateBlock2(nn.Module): + def __init__(self, args, hdim=128, cdim=128): + #net: hdim, inp: cdim + super(BasicUpdateBlock2, self).__init__() + self.args = args + self.encoder = BasicMotionEncoder2(args, dim=cdim) + self.refine = [] + for i in range(args.num_blocks): + self.refine.append(ConvNextBlock(2*cdim+hdim, hdim)) + self.refine = nn.ModuleList(self.refine) + + def forward(self, net, inp, corr, flow, upsample=True): + motion_features = self.encoder(flow, corr) + inp = torch.cat([inp, motion_features], dim=1) + for blk in self.refine: + net = blk(torch.cat([net, inp], dim=1)) + return net diff --git a/third_party/RAFT/core/utils/__init__.py b/third_party/RAFT/core/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/RAFT/core/utils/__pycache__/__init__.cpython-311.pyc b/third_party/RAFT/core/utils/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f0dce10b82d414b3ae8867db243446df9ffc459 Binary files /dev/null and b/third_party/RAFT/core/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/third_party/RAFT/core/utils/__pycache__/utils.cpython-311.pyc b/third_party/RAFT/core/utils/__pycache__/utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bce524933d19e3045dae619b8d5b145cca53cb4e Binary files /dev/null and b/third_party/RAFT/core/utils/__pycache__/utils.cpython-311.pyc differ diff --git a/third_party/RAFT/core/utils/augmentor.py b/third_party/RAFT/core/utils/augmentor.py new file mode 100644 index 0000000000000000000000000000000000000000..e81c4f2b5c16c31c0ae236d744f299d430228a04 --- /dev/null +++ b/third_party/RAFT/core/utils/augmentor.py @@ -0,0 +1,246 @@ +import numpy as np +import random +import math +from PIL import Image + +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +import torch +from torchvision.transforms import ColorJitter +import torch.nn.functional as F + + +class FlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True): + + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 0.8 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14) + self.asymmetric_color_aug_prob = 0.2 + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + """ Photometric augmentation """ + + # asymmetric + if np.random.rand() < self.asymmetric_color_aug_prob: + img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) + img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) + + # symmetric + else: + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + + return img1, img2 + + def eraser_transform(self, img1, img2, bounds=[50, 100]): + """ Occlusion augmentation """ + + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(bounds[0], bounds[1]) + dy = np.random.randint(bounds[0], bounds[1]) + img2[y0:y0+dy, x0:x0+dx, :] = mean_color + + return img1, img2 + + def spatial_transform(self, img1, img2, flow): + # randomly sample scale + ht, wd = img1.shape[:2] + min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), + (self.crop_size[1] + 8) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + + scale_x = np.clip(scale_x, min_scale, None) + scale_y = np.clip(scale_y, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = flow * [scale_x, scale_y] + + if self.do_flip: + if np.random.rand() < self.h_flip_prob: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if np.random.rand() < self.v_flip_prob: # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + + img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + + return img1, img2, flow + + def __call__(self, img1, img2, flow): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + img1, img2, flow = self.spatial_transform(img1, img2, flow) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + + return img1, img2, flow + +class SparseFlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False): + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 0.8 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14) + self.asymmetric_color_aug_prob = 0.2 + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + return img1, img2 + + def eraser_transform(self, img1, img2): + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(50, 100) + dy = np.random.randint(50, 100) + img2[y0:y0+dy, x0:x0+dx, :] = mean_color + + return img1, img2 + + def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): + ht, wd = flow.shape[:2] + coords = np.meshgrid(np.arange(wd), np.arange(ht)) + coords = np.stack(coords, axis=-1) + + coords = coords.reshape(-1, 2).astype(np.float32) + flow = flow.reshape(-1, 2).astype(np.float32) + valid = valid.reshape(-1).astype(np.float32) + + coords0 = coords[valid>=1] + flow0 = flow[valid>=1] + + ht1 = int(round(ht * fy)) + wd1 = int(round(wd * fx)) + + coords1 = coords0 * [fx, fy] + flow1 = flow0 * [fx, fy] + + xx = np.round(coords1[:,0]).astype(np.int32) + yy = np.round(coords1[:,1]).astype(np.int32) + + v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) + valid_img = np.zeros([ht1, wd1], dtype=np.int32) + + flow_img[yy, xx] = flow1 + valid_img[yy, xx] = 1 + + return flow_img, valid_img + + def spatial_transform(self, img1, img2, flow, valid): + # randomly sample scale + + ht, wd = img1.shape[:2] + min_scale = np.maximum( + (self.crop_size[0] + 1) / float(ht), + (self.crop_size[1] + 1) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = np.clip(scale, min_scale, None) + scale_y = np.clip(scale, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) + + if self.do_flip: + if np.random.rand() < 0.5: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + valid = valid[:, ::-1] + + margin_y = 20 + margin_x = 50 + + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) + x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) + + y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) + x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) + + img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + return img1, img2, flow, valid + + + def __call__(self, img1, img2, flow, valid): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + valid = np.ascontiguousarray(valid) + + return img1, img2, flow, valid diff --git a/third_party/RAFT/core/utils/flow_viz.py b/third_party/RAFT/core/utils/flow_viz.py new file mode 100644 index 0000000000000000000000000000000000000000..dcee65e89b91b07ee0496aeb4c7e7436abf99641 --- /dev/null +++ b/third_party/RAFT/core/utils/flow_viz.py @@ -0,0 +1,132 @@ +# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization + + +# MIT License +# +# Copyright (c) 2018 Tom Runia +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to conditions. +# +# Author: Tom Runia +# Date Created: 2018-08-03 + +import numpy as np + +def make_colorwheel(): + """ + Generates a color wheel for optical flow visualization as presented in: + Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) + URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf + + Code follows the original C++ source code of Daniel Scharstein. + Code follows the the Matlab source code of Deqing Sun. + + Returns: + np.ndarray: Color wheel + """ + + RY = 15 + YG = 6 + GC = 4 + CB = 11 + BM = 13 + MR = 6 + + ncols = RY + YG + GC + CB + BM + MR + colorwheel = np.zeros((ncols, 3)) + col = 0 + + # RY + colorwheel[0:RY, 0] = 255 + colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) + col = col+RY + # YG + colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) + colorwheel[col:col+YG, 1] = 255 + col = col+YG + # GC + colorwheel[col:col+GC, 1] = 255 + colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) + col = col+GC + # CB + colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) + colorwheel[col:col+CB, 2] = 255 + col = col+CB + # BM + colorwheel[col:col+BM, 2] = 255 + colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) + col = col+BM + # MR + colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) + colorwheel[col:col+MR, 0] = 255 + return colorwheel + + +def flow_uv_to_colors(u, v, convert_to_bgr=False): + """ + Applies the flow color wheel to (possibly clipped) flow components u and v. + + According to the C++ source code of Daniel Scharstein + According to the Matlab source code of Deqing Sun + + Args: + u (np.ndarray): Input horizontal flow of shape [H,W] + v (np.ndarray): Input vertical flow of shape [H,W] + convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. + + Returns: + np.ndarray: Flow visualization image of shape [H,W,3] + """ + flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) + colorwheel = make_colorwheel() # shape [55x3] + ncols = colorwheel.shape[0] + rad = np.sqrt(np.square(u) + np.square(v)) + a = np.arctan2(-v, -u)/np.pi + fk = (a+1) / 2*(ncols-1) + k0 = np.floor(fk).astype(np.int32) + k1 = k0 + 1 + k1[k1 == ncols] = 0 + f = fk - k0 + for i in range(colorwheel.shape[1]): + tmp = colorwheel[:,i] + col0 = tmp[k0] / 255.0 + col1 = tmp[k1] / 255.0 + col = (1-f)*col0 + f*col1 + idx = (rad <= 1) + col[idx] = 1 - rad[idx] * (1-col[idx]) + col[~idx] = col[~idx] * 0.75 # out of range + # Note the 2-i => BGR instead of RGB + ch_idx = 2-i if convert_to_bgr else i + flow_image[:,:,ch_idx] = np.floor(255 * col) + return flow_image + + +def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): + """ + Expects a two dimensional flow image of shape. + + Args: + flow_uv (np.ndarray): Flow UV image of shape [H,W,2] + clip_flow (float, optional): Clip maximum of flow values. Defaults to None. + convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. + + Returns: + np.ndarray: Flow visualization image of shape [H,W,3] + """ + assert flow_uv.ndim == 3, 'input flow must have three dimensions' + assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' + if clip_flow is not None: + flow_uv = np.clip(flow_uv, 0, clip_flow) + u = flow_uv[:,:,0] + v = flow_uv[:,:,1] + rad = np.sqrt(np.square(u) + np.square(v)) + rad_max = np.max(rad) + epsilon = 1e-5 + u = u / (rad_max + epsilon) + v = v / (rad_max + epsilon) + return flow_uv_to_colors(u, v, convert_to_bgr) \ No newline at end of file diff --git a/third_party/RAFT/core/utils/frame_utils.py b/third_party/RAFT/core/utils/frame_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..6c491135efaffc25bd61ec3ecde99d236f5deb12 --- /dev/null +++ b/third_party/RAFT/core/utils/frame_utils.py @@ -0,0 +1,137 @@ +import numpy as np +from PIL import Image +from os.path import * +import re + +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +TAG_CHAR = np.array([202021.25], np.float32) + +def readFlow(fn): + """ Read .flo file in Middlebury format""" + # Code adapted from: + # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy + + # WARNING: this will work on little-endian architectures (eg Intel x86) only! + # print 'fn = %s'%(fn) + with open(fn, 'rb') as f: + magic = np.fromfile(f, np.float32, count=1) + if 202021.25 != magic: + print('Magic number incorrect. Invalid .flo file') + return None + else: + w = np.fromfile(f, np.int32, count=1) + h = np.fromfile(f, np.int32, count=1) + # print 'Reading %d x %d flo file\n' % (w, h) + data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) + # Reshape data into 3D array (columns, rows, bands) + # The reshape here is for visualization, the original code is (w,h,2) + return np.resize(data, (int(h), int(w), 2)) + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + +def writeFlow(filename,uv,v=None): + """ Write optical flow to file. + + If v is None, uv is assumed to contain both u and v channels, + stacked in depth. + Original code by Deqing Sun, adapted from Daniel Scharstein. + """ + nBands = 2 + + if v is None: + assert(uv.ndim == 3) + assert(uv.shape[2] == 2) + u = uv[:,:,0] + v = uv[:,:,1] + else: + u = uv + + assert(u.shape == v.shape) + height,width = u.shape + f = open(filename,'wb') + # write the header + f.write(TAG_CHAR) + np.array(width).astype(np.int32).tofile(f) + np.array(height).astype(np.int32).tofile(f) + # arrange into matrix form + tmp = np.zeros((height, width*nBands)) + tmp[:,np.arange(width)*2] = u + tmp[:,np.arange(width)*2 + 1] = v + tmp.astype(np.float32).tofile(f) + f.close() + + +def readFlowKITTI(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) + flow = flow[:,:,::-1].astype(np.float32) + flow, valid = flow[:, :, :2], flow[:, :, 2] + flow = (flow - 2**15) / 64.0 + return flow, valid + +def readDispKITTI(filename): + disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0 + valid = disp > 0.0 + flow = np.stack([-disp, np.zeros_like(disp)], -1) + return flow, valid + + +def writeFlowKITTI(filename, uv): + uv = 64.0 * uv + 2**15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + + +def read_gen(file_name, pil=False): + ext = splitext(file_name)[-1] + if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': + return Image.open(file_name) + elif ext == '.bin' or ext == '.raw': + return np.load(file_name) + elif ext == '.flo': + return readFlow(file_name).astype(np.float32) + elif ext == '.pfm': + flow = readPFM(file_name).astype(np.float32) + if len(flow.shape) == 2: + return flow + else: + return flow[:, :, :-1] + return [] \ No newline at end of file diff --git a/third_party/RAFT/core/utils/utils.py b/third_party/RAFT/core/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..29b75f9c2792a86439870a49f2223bf7b7c9e877 --- /dev/null +++ b/third_party/RAFT/core/utils/utils.py @@ -0,0 +1,86 @@ +import torch +import torch.nn.functional as F +import numpy as np +from scipy import interpolate + +def coords_grid2(batch, ht, wd, device): + coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) + +class InputPadder: + """ Pads images such that dimensions are divisible by 8 """ + def __init__(self, dims, mode='sintel'): + self.ht, self.wd = dims[-2:] + pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8 + pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8 + if mode == 'sintel': + self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] + else: + self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht] + + def pad(self, *inputs): + return [F.pad(x, self._pad, mode='replicate') for x in inputs] + + def unpad(self, x): + ht, wd = x.shape[-2:] + c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] + return x[..., c[0]:c[1], c[2]:c[3]] + +def forward_interpolate(flow): + flow = flow.detach().cpu().numpy() + dx, dy = flow[0], flow[1] + + ht, wd = dx.shape + x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht)) + + x1 = x0 + dx + y1 = y0 + dy + + x1 = x1.reshape(-1) + y1 = y1.reshape(-1) + dx = dx.reshape(-1) + dy = dy.reshape(-1) + + valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht) + x1 = x1[valid] + y1 = y1[valid] + dx = dx[valid] + dy = dy[valid] + + flow_x = interpolate.griddata( + (x1, y1), dx, (x0, y0), method='nearest', fill_value=0) + + flow_y = interpolate.griddata( + (x1, y1), dy, (x0, y0), method='nearest', fill_value=0) + + flow = np.stack([flow_x, flow_y], axis=0) + return torch.from_numpy(flow).float() + + +def bilinear_sampler(img, coords, mode='bilinear', mask=False): + """ Wrapper for grid_sample, uses pixel coordinates """ + H, W = img.shape[-2:] + xgrid, ygrid = coords.split([1,1], dim=-1) + xgrid = 2*xgrid/(W-1) - 1 + ygrid = 2*ygrid/(H-1) - 1 + + grid = torch.cat([xgrid, ygrid], dim=-1) + img = F.grid_sample(img, grid, align_corners=True) + + if mask: + mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) + return img, mask.float() + + return img + + +def coords_grid(batch, ht, wd): + coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) + + +def upflow8(flow, mode='bilinear'): + new_size = (8 * flow.shape[2], 8 * flow.shape[3]) + return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) diff --git a/third_party/RAFT/demo.py b/third_party/RAFT/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..5abc1da863f1231af1247209739402b05fa8bf85 --- /dev/null +++ b/third_party/RAFT/demo.py @@ -0,0 +1,75 @@ +import sys +sys.path.append('core') + +import argparse +import os +import cv2 +import glob +import numpy as np +import torch +from PIL import Image + +from raft import RAFT +from utils import flow_viz +from utils.utils import InputPadder + + + +DEVICE = 'cuda' + +def load_image(imfile): + img = np.array(Image.open(imfile)).astype(np.uint8) + img = torch.from_numpy(img).permute(2, 0, 1).float() + return img[None].to(DEVICE) + + +def viz(img, flo): + img = img[0].permute(1,2,0).cpu().numpy() + flo = flo[0].permute(1,2,0).cpu().numpy() + + # map flow to rgb image + flo = flow_viz.flow_to_image(flo) + img_flo = np.concatenate([img, flo], axis=0) + + # import matplotlib.pyplot as plt + # plt.imshow(img_flo / 255.0) + # plt.show() + + cv2.imshow('image', img_flo[:, :, [2,1,0]]/255.0) + cv2.waitKey() + + +def demo(args): + model = torch.nn.DataParallel(RAFT(args)) + model.load_state_dict(torch.load(args.model)) + + model = model.module + model.to(DEVICE) + model.eval() + + with torch.no_grad(): + images = glob.glob(os.path.join(args.path, '*.png')) + \ + glob.glob(os.path.join(args.path, '*.jpg')) + + images = sorted(images) + for imfile1, imfile2 in zip(images[:-1], images[1:]): + image1 = load_image(imfile1) + image2 = load_image(imfile2) + + padder = InputPadder(image1.shape) + image1, image2 = padder.pad(image1, image2) + + flow_low, flow_up = model(image1, image2, iters=20, test_mode=True) + viz(image1, flow_up) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--model', help="restore checkpoint") + parser.add_argument('--path', help="dataset for evaluation") + parser.add_argument('--small', action='store_true', help='use small model') + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation') + args = parser.parse_args() + + demo(args) diff --git a/third_party/RAFT/download_models.sh b/third_party/RAFT/download_models.sh new file mode 100755 index 0000000000000000000000000000000000000000..7b6ed7e478b74699d3c8db3bd744643c35f7da76 --- /dev/null +++ b/third_party/RAFT/download_models.sh @@ -0,0 +1,3 @@ +#!/bin/bash +wget https://www.dropbox.com/s/4j4z58wuv8o0mfz/models.zip +unzip models.zip diff --git a/third_party/RAFT/evaluate.py b/third_party/RAFT/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..431a0f58891bede2804454fa7f28e9434c4c8746 --- /dev/null +++ b/third_party/RAFT/evaluate.py @@ -0,0 +1,197 @@ +import sys +sys.path.append('core') + +from PIL import Image +import argparse +import os +import time +import numpy as np +import torch +import torch.nn.functional as F +import matplotlib.pyplot as plt + +import datasets +from utils import flow_viz +from utils import frame_utils + +from raft import RAFT +from utils.utils import InputPadder, forward_interpolate + + +@torch.no_grad() +def create_sintel_submission(model, iters=32, warm_start=False, output_path='sintel_submission'): + """ Create submission for the Sintel leaderboard """ + model.eval() + for dstype in ['clean', 'final']: + test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype) + + flow_prev, sequence_prev = None, None + for test_id in range(len(test_dataset)): + image1, image2, (sequence, frame) = test_dataset[test_id] + if sequence != sequence_prev: + flow_prev = None + + padder = InputPadder(image1.shape) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + + flow_low, flow_pr = model(image1, image2, iters=iters, flow_init=flow_prev, test_mode=True) + flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() + + if warm_start: + flow_prev = forward_interpolate(flow_low[0])[None].cuda() + + output_dir = os.path.join(output_path, dstype, sequence) + output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame+1)) + + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + frame_utils.writeFlow(output_file, flow) + sequence_prev = sequence + + +@torch.no_grad() +def create_kitti_submission(model, iters=24, output_path='kitti_submission'): + """ Create submission for the Sintel leaderboard """ + model.eval() + test_dataset = datasets.KITTI(split='testing', aug_params=None) + + if not os.path.exists(output_path): + os.makedirs(output_path) + + for test_id in range(len(test_dataset)): + image1, image2, (frame_id, ) = test_dataset[test_id] + padder = InputPadder(image1.shape, mode='kitti') + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() + + output_filename = os.path.join(output_path, frame_id) + frame_utils.writeFlowKITTI(output_filename, flow) + + +@torch.no_grad() +def validate_chairs(model, iters=24): + """ Perform evaluation on the FlyingChairs (test) split """ + model.eval() + epe_list = [] + + val_dataset = datasets.FlyingChairs(split='validation') + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, _ = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + epe = torch.sum((flow_pr[0].cpu() - flow_gt)**2, dim=0).sqrt() + epe_list.append(epe.view(-1).numpy()) + + epe = np.mean(np.concatenate(epe_list)) + print("Validation Chairs EPE: %f" % epe) + return {'chairs': epe} + + +@torch.no_grad() +def validate_sintel(model, iters=32): + """ Peform validation using the Sintel (train) split """ + model.eval() + results = {} + for dstype in ['clean', 'final']: + val_dataset = datasets.MpiSintel(split='training', dstype=dstype) + epe_list = [] + + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, _ = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape) + image1, image2 = padder.pad(image1, image2) + + flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow = padder.unpad(flow_pr[0]).cpu() + + epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() + epe_list.append(epe.view(-1).numpy()) + + epe_all = np.concatenate(epe_list) + epe = np.mean(epe_all) + px1 = np.mean(epe_all<1) + px3 = np.mean(epe_all<3) + px5 = np.mean(epe_all<5) + + print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5)) + results[dstype] = np.mean(epe_list) + + return results + + +@torch.no_grad() +def validate_kitti(model, iters=24): + """ Peform validation using the KITTI-2015 (train) split """ + model.eval() + val_dataset = datasets.KITTI(split='training') + + out_list, epe_list = [], [] + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, mode='kitti') + image1, image2 = padder.pad(image1, image2) + + flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow = padder.unpad(flow_pr[0]).cpu() + + epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() + mag = torch.sum(flow_gt**2, dim=0).sqrt() + + epe = epe.view(-1) + mag = mag.view(-1) + val = valid_gt.view(-1) >= 0.5 + + out = ((epe > 3.0) & ((epe/mag) > 0.05)).float() + epe_list.append(epe[val].mean().item()) + out_list.append(out[val].cpu().numpy()) + + epe_list = np.array(epe_list) + out_list = np.concatenate(out_list) + + epe = np.mean(epe_list) + f1 = 100 * np.mean(out_list) + + print("Validation KITTI: %f, %f" % (epe, f1)) + return {'kitti-epe': epe, 'kitti-f1': f1} + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--model', help="restore checkpoint") + parser.add_argument('--dataset', help="dataset for evaluation") + parser.add_argument('--small', action='store_true', help='use small model') + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation') + args = parser.parse_args() + + model = torch.nn.DataParallel(RAFT(args)) + model.load_state_dict(torch.load(args.model)) + + model.cuda() + model.eval() + + # create_sintel_submission(model.module, warm_start=True) + # create_kitti_submission(model.module) + + with torch.no_grad(): + if args.dataset == 'chairs': + validate_chairs(model.module) + + elif args.dataset == 'sintel': + validate_sintel(model.module) + + elif args.dataset == 'kitti': + validate_kitti(model.module) + + diff --git a/third_party/RAFT/train.py b/third_party/RAFT/train.py new file mode 100644 index 0000000000000000000000000000000000000000..307573097f13ee30c67bbe11658f457fdf1ead3c --- /dev/null +++ b/third_party/RAFT/train.py @@ -0,0 +1,247 @@ +from __future__ import print_function, division +import sys +sys.path.append('core') + +import argparse +import os +import cv2 +import time +import numpy as np +import matplotlib.pyplot as plt + +import torch +import torch.nn as nn +import torch.optim as optim +import torch.nn.functional as F + +from torch.utils.data import DataLoader +from raft import RAFT +import evaluate +import datasets + +from torch.utils.tensorboard import SummaryWriter + +try: + from torch.cuda.amp import GradScaler +except: + # dummy GradScaler for PyTorch < 1.6 + class GradScaler: + def __init__(self): + pass + def scale(self, loss): + return loss + def unscale_(self, optimizer): + pass + def step(self, optimizer): + optimizer.step() + def update(self): + pass + + +# exclude extremly large displacements +MAX_FLOW = 400 +SUM_FREQ = 100 +VAL_FREQ = 5000 + + +def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW): + """ Loss function defined over sequence of flow predictions """ + + n_predictions = len(flow_preds) + flow_loss = 0.0 + + # exlude invalid pixels and extremely large diplacements + mag = torch.sum(flow_gt**2, dim=1).sqrt() + valid = (valid >= 0.5) & (mag < max_flow) + + for i in range(n_predictions): + i_weight = gamma**(n_predictions - i - 1) + i_loss = (flow_preds[i] - flow_gt).abs() + flow_loss += i_weight * (valid[:, None] * i_loss).mean() + + epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt() + epe = epe.view(-1)[valid.view(-1)] + + metrics = { + 'epe': epe.mean().item(), + '1px': (epe < 1).float().mean().item(), + '3px': (epe < 3).float().mean().item(), + '5px': (epe < 5).float().mean().item(), + } + + return flow_loss, metrics + + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +def fetch_optimizer(args, model): + """ Create the optimizer and learning rate scheduler """ + optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) + + scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, + pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') + + return optimizer, scheduler + + +class Logger: + def __init__(self, model, scheduler): + self.model = model + self.scheduler = scheduler + self.total_steps = 0 + self.running_loss = {} + self.writer = None + + def _print_training_status(self): + metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] + training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) + metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) + + # print the training status + print(training_str + metrics_str) + + if self.writer is None: + self.writer = SummaryWriter() + + for k in self.running_loss: + self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) + self.running_loss[k] = 0.0 + + def push(self, metrics): + self.total_steps += 1 + + for key in metrics: + if key not in self.running_loss: + self.running_loss[key] = 0.0 + + self.running_loss[key] += metrics[key] + + if self.total_steps % SUM_FREQ == SUM_FREQ-1: + self._print_training_status() + self.running_loss = {} + + def write_dict(self, results): + if self.writer is None: + self.writer = SummaryWriter() + + for key in results: + self.writer.add_scalar(key, results[key], self.total_steps) + + def close(self): + self.writer.close() + + +def train(args): + + model = nn.DataParallel(RAFT(args), device_ids=args.gpus) + print("Parameter Count: %d" % count_parameters(model)) + + if args.restore_ckpt is not None: + model.load_state_dict(torch.load(args.restore_ckpt), strict=False) + + model.cuda() + model.train() + + if args.stage != 'chairs': + model.module.freeze_bn() + + train_loader = datasets.fetch_dataloader(args) + optimizer, scheduler = fetch_optimizer(args, model) + + total_steps = 0 + scaler = GradScaler(enabled=args.mixed_precision) + logger = Logger(model, scheduler) + + VAL_FREQ = 5000 + add_noise = True + + should_keep_training = True + while should_keep_training: + + for i_batch, data_blob in enumerate(train_loader): + optimizer.zero_grad() + image1, image2, flow, valid = [x.cuda() for x in data_blob] + + if args.add_noise: + stdv = np.random.uniform(0.0, 5.0) + image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0) + image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0) + + flow_predictions = model(image1, image2, iters=args.iters) + + loss, metrics = sequence_loss(flow_predictions, flow, valid, args.gamma) + scaler.scale(loss).backward() + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) + + scaler.step(optimizer) + scheduler.step() + scaler.update() + + logger.push(metrics) + + if total_steps % VAL_FREQ == VAL_FREQ - 1: + PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name) + torch.save(model.state_dict(), PATH) + + results = {} + for val_dataset in args.validation: + if val_dataset == 'chairs': + results.update(evaluate.validate_chairs(model.module)) + elif val_dataset == 'sintel': + results.update(evaluate.validate_sintel(model.module)) + elif val_dataset == 'kitti': + results.update(evaluate.validate_kitti(model.module)) + + logger.write_dict(results) + + model.train() + if args.stage != 'chairs': + model.module.freeze_bn() + + total_steps += 1 + + if total_steps > args.num_steps: + should_keep_training = False + break + + logger.close() + PATH = 'checkpoints/%s.pth' % args.name + torch.save(model.state_dict(), PATH) + + return PATH + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--name', default='raft', help="name your experiment") + parser.add_argument('--stage', help="determines which dataset to use for training") + parser.add_argument('--restore_ckpt', help="restore checkpoint") + parser.add_argument('--small', action='store_true', help='use small model') + parser.add_argument('--validation', type=str, nargs='+') + + parser.add_argument('--lr', type=float, default=0.00002) + parser.add_argument('--num_steps', type=int, default=100000) + parser.add_argument('--batch_size', type=int, default=6) + parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512]) + parser.add_argument('--gpus', type=int, nargs='+', default=[0,1]) + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + + parser.add_argument('--iters', type=int, default=12) + parser.add_argument('--wdecay', type=float, default=.00005) + parser.add_argument('--epsilon', type=float, default=1e-8) + parser.add_argument('--clip', type=float, default=1.0) + parser.add_argument('--dropout', type=float, default=0.0) + parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting') + parser.add_argument('--add_noise', action='store_true') + args = parser.parse_args() + + torch.manual_seed(1234) + np.random.seed(1234) + + if not os.path.isdir('checkpoints'): + os.mkdir('checkpoints') + + train(args) \ No newline at end of file diff --git a/third_party/RAFT/train_mixed.sh b/third_party/RAFT/train_mixed.sh new file mode 100755 index 0000000000000000000000000000000000000000..d9b979f143902a17a0ba7b0a8f960598b7096e0b --- /dev/null +++ b/third_party/RAFT/train_mixed.sh @@ -0,0 +1,6 @@ +#!/bin/bash +mkdir -p checkpoints +python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 --num_steps 120000 --batch_size 8 --lr 0.00025 --image_size 368 496 --wdecay 0.0001 --mixed_precision +python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 400 720 --wdecay 0.0001 --mixed_precision +python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 368 768 --wdecay 0.00001 --gamma=0.85 --mixed_precision +python -u train.py --name raft-kitti --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 --num_steps 50000 --batch_size 5 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 --gamma=0.85 --mixed_precision diff --git a/third_party/RAFT/train_standard.sh b/third_party/RAFT/train_standard.sh new file mode 100755 index 0000000000000000000000000000000000000000..7f559b386b6b596ec14a94f0d8c13974309b7d80 --- /dev/null +++ b/third_party/RAFT/train_standard.sh @@ -0,0 +1,6 @@ +#!/bin/bash +mkdir -p checkpoints +python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 1 --num_steps 100000 --batch_size 10 --lr 0.0004 --image_size 368 496 --wdecay 0.0001 +python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 400 720 --wdecay 0.0001 +python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 368 768 --wdecay 0.00001 --gamma=0.85 +python -u train.py --name raft-kitti --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 1 --num_steps 50000 --batch_size 6 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 --gamma=0.85 diff --git a/third_party/__init__.py b/third_party/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/__pycache__/__init__.cpython-311.pyc b/third_party/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6dcd6525d36fafddd698584ea864217bebc09bf4 Binary files /dev/null and b/third_party/__pycache__/__init__.cpython-311.pyc differ diff --git a/third_party/__pycache__/raft.cpython-311.pyc b/third_party/__pycache__/raft.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c043de3cbd6f86569a3638eafcafeb5b693208dc Binary files /dev/null and b/third_party/__pycache__/raft.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/ACKNOWLEDGEMENTS.md b/third_party/ml-depth-pro/ACKNOWLEDGEMENTS.md new file mode 100644 index 0000000000000000000000000000000000000000..9ab354ba70bc1e32735aff3deecb4c78c1ab9eec --- /dev/null +++ b/third_party/ml-depth-pro/ACKNOWLEDGEMENTS.md @@ -0,0 +1,418 @@ +Acknowledgements +Portions of this Software may utilize the following copyrighted +material, the use of which is hereby acknowledged. + +------------------------------------------------ +PyTorch Image Models (timm) +Ross Wightman + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "{}" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2019 Ross Wightman + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + +------------------------------------------------ +DINOv2: Learning Robust Visual Features without Supervision +Github source: https://github.com/facebookresearch/dinov2 + + + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. \ No newline at end of file diff --git a/third_party/ml-depth-pro/CODE_OF_CONDUCT.md b/third_party/ml-depth-pro/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..66c83d2865ac6b235135af45709e929a279c5bad --- /dev/null +++ b/third_party/ml-depth-pro/CODE_OF_CONDUCT.md @@ -0,0 +1,71 @@ +# Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our project and +our community a harassment-free experience for everyone, regardless of age, body +size, disability, ethnicity, sex characteristics, gender identity and expression, +level of experience, education, socio-economic status, nationality, personal +appearance, race, religion, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment +include: + +* Using welcoming and inclusive language +* Being respectful of differing viewpoints and experiences +* Gracefully accepting constructive criticism +* Focusing on what is best for the community +* Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or + advances +* Trolling, insulting/derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or electronic + address, without explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable +behavior and are expected to take appropriate and fair corrective action in +response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or +reject comments, commits, code, wiki edits, issues, and other contributions +that are not aligned to this Code of Conduct, or to ban temporarily or +permanently any contributor for other behaviors that they deem inappropriate, +threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies within all project spaces, and it also applies when +an individual is representing the project or its community in public spaces. +Examples of representing a project or community include using an official +project e-mail address, posting via an official social media account, or acting +as an appointed representative at an online or offline event. Representation of +a project may be further defined and clarified by project maintainers. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported by contacting the open source team at [opensource-conduct@group.apple.com](mailto:opensource-conduct@group.apple.com). All +complaints will be reviewed and investigated and will result in a response that +is deemed necessary and appropriate to the circumstances. The project team is +obligated to maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good +faith may face temporary or permanent repercussions as determined by other +members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org), version 1.4, +available at [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html](https://www.contributor-covenant.org/version/1/4/code-of-conduct.html) diff --git a/third_party/ml-depth-pro/CONTRIBUTING.md b/third_party/ml-depth-pro/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..c5364ed38ac172c6a329d2c12a0672878a980816 --- /dev/null +++ b/third_party/ml-depth-pro/CONTRIBUTING.md @@ -0,0 +1,11 @@ +# Contribution Guide + +Thanks for your interest in contributing. This project was released to accompany a research paper for purposes of reproducibility, and beyond its publication there are limited plans for future development of the repository. + +While we welcome new pull requests and issues please note that our response may be limited. Forks and out-of-tree improvements are strongly encouraged. + +## Before you get started + +By submitting a pull request, you represent that you have the right to license your contribution to Apple and the community, and agree by submitting the patch that your contributions are licensed under the [LICENSE](LICENSE). + +We ask that all community members read and observe our [Code of Conduct](CODE_OF_CONDUCT.md). \ No newline at end of file diff --git a/third_party/ml-depth-pro/LICENSE b/third_party/ml-depth-pro/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..02fa0ad0740b5b47ab66682d0ae2efdf734f7221 --- /dev/null +++ b/third_party/ml-depth-pro/LICENSE @@ -0,0 +1,47 @@ +Copyright (C) 2024 Apple Inc. All Rights Reserved. + +Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple +Inc. ("Apple") in consideration of your agreement to the following +terms, and your use, installation, modification or redistribution of +this Apple software constitutes acceptance of these terms. If you do +not agree with these terms, please do not use, install, modify or +redistribute this Apple software. + +In consideration of your agreement to abide by the following terms, and +subject to these terms, Apple grants you a personal, non-exclusive +license, under Apple's copyrights in this original Apple software (the +"Apple Software"), to use, reproduce, modify and redistribute the Apple +Software, with or without modifications, in source and/or binary forms; +provided that if you redistribute the Apple Software in its entirety and +without modifications, you must retain this notice and the following +text and disclaimers in all such redistributions of the Apple Software. +Neither the name, trademarks, service marks or logos of Apple Inc. may +be used to endorse or promote products derived from the Apple Software +without specific prior written permission from Apple. Except as +expressly stated in this notice, no other rights or licenses, express or +implied, are granted by Apple herein, including but not limited to any +patent rights that may be infringed by your derivative works or by other +works in which the Apple Software may be incorporated. + +The Apple Software is provided by Apple on an "AS IS" basis. APPLE +MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION +THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS +FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND +OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. + +IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL +OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, +MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED +AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), +STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + + +------------------------------------------------------------------------------- +SOFTWARE DISTRIBUTED IN THIS REPOSITORY: + +This software includes a number of subcomponents with separate +copyright notices and license terms - please see the file ACKNOWLEDGEMENTS. +------------------------------------------------------------------------------- diff --git a/third_party/ml-depth-pro/README.md b/third_party/ml-depth-pro/README.md new file mode 100644 index 0000000000000000000000000000000000000000..6c4ea61783c79edb05e6aafd9e9dcd4a4220b726 --- /dev/null +++ b/third_party/ml-depth-pro/README.md @@ -0,0 +1,97 @@ +## Depth Pro: Sharp Monocular Metric Depth in Less Than a Second + +This software project accompanies the research paper: +**[Depth Pro: Sharp Monocular Metric Depth in Less Than a Second](https://arxiv.org/abs/2410.02073)**, +*Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*. + +![](data/depth-pro-teaser.jpg) + +We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. + + +The model in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly. + +## Getting Started + +We recommend setting up a virtual environment. Using e.g. miniconda, the `depth_pro` package can be installed via: + +```bash +conda create -n depth-pro -y python=3.9 +conda activate depth-pro + +pip install -e . +``` + +To download pretrained checkpoints follow the code snippet below: +```bash +source get_pretrained_models.sh # Files will be downloaded to `checkpoints` directory. +``` + +### Running from commandline + +We provide a helper script to directly run the model on a single image: +```bash +# Run prediction on a single image: +depth-pro-run -i ./data/example.jpg +# Run `depth-pro-run -h` for available options. +``` + +### Running from python + +```python +from PIL import Image +import depth_pro + +# Load model and preprocessing transform +model, transform = depth_pro.create_model_and_transforms() +model.eval() + +# Load and preprocess an image. +image, _, f_px = depth_pro.load_rgb(image_path) +image = transform(image) + +# Run inference. +prediction = model.infer(image, f_px=f_px) +depth = prediction["depth"] # Depth in [m]. +focallength_px = prediction["focallength_px"] # Focal length in pixels. +``` + + +### Evaluation (boundary metrics) + +Our boundary metrics can be found under `eval/boundary_metrics.py` and used as follows: + +```python +# for a depth-based dataset +boundary_f1 = SI_boundary_F1(predicted_depth, target_depth) + +# for a mask-based dataset (image matting / segmentation) +boundary_recall = SI_boundary_Recall(predicted_depth, target_mask) +``` + + +## Citation + +If you find our work useful, please cite the following paper: + +```bibtex +@article{Bochkovskii2024:arxiv, + author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and + Yichao Zhou and Stephan R. Richter and Vladlen Koltun} + title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second}, + journal = {arXiv}, + year = {2024}, + url = {https://arxiv.org/abs/2410.02073}, +} +``` + +## License +This sample code is released under the [LICENSE](LICENSE) terms. + +The model weights are released under the [LICENSE](LICENSE) terms. + +## Acknowledgements + +Our codebase is built using multiple opensource contributions, please see [Acknowledgements](ACKNOWLEDGEMENTS.md) for more details. + +Please check the paper for a complete list of references and datasets used in this work. diff --git a/third_party/ml-depth-pro/data/depth-pro-teaser.jpg b/third_party/ml-depth-pro/data/depth-pro-teaser.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f6b5591157d2ce118d409d1888e0fc451ca0f24c Binary files /dev/null and b/third_party/ml-depth-pro/data/depth-pro-teaser.jpg differ diff --git a/third_party/ml-depth-pro/data/example.jpg b/third_party/ml-depth-pro/data/example.jpg new file mode 100644 index 0000000000000000000000000000000000000000..83fd9c4ac46694a2ad516123f6f679ce8b2b5e47 --- /dev/null +++ b/third_party/ml-depth-pro/data/example.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7b07a583db12943bc90c2429afeca0aca63450e8eb7a2f29314ffbb1acd8d710 +size 2328482 diff --git a/third_party/ml-depth-pro/get_pretrained_models.sh b/third_party/ml-depth-pro/get_pretrained_models.sh new file mode 100644 index 0000000000000000000000000000000000000000..412be5b252712455c2ffbff0c8dc339b1112541f --- /dev/null +++ b/third_party/ml-depth-pro/get_pretrained_models.sh @@ -0,0 +1,8 @@ +#!/usr/bin/env bash +# +# For licensing see accompanying LICENSE file. +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +# +mkdir -p checkpoints +# Place final weights here: +wget https://ml-site.cdn-apple.com/models/depth-pro/depth_pro.pt -P checkpoints diff --git a/third_party/ml-depth-pro/infer.sh b/third_party/ml-depth-pro/infer.sh new file mode 100644 index 0000000000000000000000000000000000000000..29794fb223f9621f3914c9ca95e9a0dba8213139 --- /dev/null +++ b/third_party/ml-depth-pro/infer.sh @@ -0,0 +1,5 @@ + +CUDA_VISIBLE_DEVICES=1 python infer_training_set.py --a=0 --b=-1 --dataset_name=Tartanair & CUDA_VISIBLE_DEVICES=1 python infer_training_set.py --a=0 --b=-1 --dataset_name=spring & CUDA_VISIBLE_DEVICES=1 python infer_training_set.py --a=0 --b=-1 --dataset_name=SceneFlow & CUDA_VISIBLE_DEVICES=1 python infer_training_set.py --a=0 --b=-1 --dataset_name=Vkitti & CUDA_VISIBLE_DEVICES=1 python infer_training_set.py --a=0 --b=-1 --dataset_name=PointOdyssey + + +CUDA_VISIBLE_DEVICES=1 python infer_test_set.py --a=0 --b=10000 --dataset_name=bonn & CUDA_VISIBLE_DEVICES=1 python infer_test_set.py --a=0 --b=10000 --dataset_name=davis & CUDA_VISIBLE_DEVICES=1 python infer_test_set.py --a=0 --b=10000 --dataset_name=sintel & CUDA_VISIBLE_DEVICES=1 python infer_test_set.py --a=0 --b=10000 --dataset_name=tum diff --git a/third_party/ml-depth-pro/infer_test_set.py b/third_party/ml-depth-pro/infer_test_set.py new file mode 100644 index 0000000000000000000000000000000000000000..e3c65c6e5b61671cf3e00be6e586b21c64e9b4b5 --- /dev/null +++ b/third_party/ml-depth-pro/infer_test_set.py @@ -0,0 +1,90 @@ +from PIL import Image +import depth_pro +from tqdm import tqdm +import os +# os.environ['CUDA_VISIBLE_DEVICES'] = '1' +import numpy as np +import matplotlib.pyplot as plt +import matplotlib +import argparse +from transformers import pipeline +def find_images(directory): + image_paths = [] + for root, dirs, files in os.walk(directory): + for file in files: + if file.lower().endswith(('.jpg', '.png')): + image_paths.append(os.path.join(root, file)) + return image_paths +# Load model and preprocessing transform +parser = argparse.ArgumentParser('ml infer', add_help=False) +parser.add_argument('--a', default=0, + type=int) +parser.add_argument('--b', default=1500, + type=int) +parser.add_argument('--dataset_name', default=None, + type=str) +args = parser.parse_args() +# print(args.a) +model, transform = depth_pro.create_model_and_transforms(device='cuda') +model.eval() +pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda') +if args.dataset_name == "bonn": + dir = '../../data/bonn/rgbd_bonn_dataset/' +elif args.dataset_name == "davis": + dir = '../../data/davis/DAVIS/JPEGImages/480p/' +elif args.dataset_name == "sintel": + dir = '../../data/MPI-Sintel/MPI-Sintel-training_images/training/final/' +elif args.dataset_name == "tum": + dir = '../../data/tum/' + +for scene in tqdm(sorted(os.listdir(dir))): + data_dir = dir + scene + if os.path.isdir(data_dir): + if args.dataset_name == "bonn": + data_dir = data_dir + '/rgb_110' + elif args.dataset_name == "tum": + data_dir = data_dir + '/rgb_50' + for image_path in tqdm(sorted(os.listdir(data_dir))[int(args.a):int(args.b)]): + #print(image_path) + if image_path.split('.')[-1]=='jpg' or image_path.split('.')[-1]=='png': + # depthanything v2 + image = Image.open(os.path.join(data_dir, image_path)) + depth = pipe(image)["predicted_depth"].numpy() + #depth = prediction["depth"].cpu() # Depth in [m]. + if args.dataset_name == "bonn": + if not os.path.exists(data_dir.replace('rgb_110', 'rgb_110_depth_prediction_depthanything')): + os.makedirs(data_dir.replace('rgb_110', 'rgb_110_depth_prediction_depthanything')) + if not os.path.exists(data_dir.replace('rgb_110', 'rgb_110_depth_prediction_depthpro')): + os.makedirs(data_dir.replace('rgb_110', 'rgb_110_depth_prediction_depthpro')) + path_depthanything = os.path.join(data_dir, image_path).replace('rgb_110', 'rgb_110_depth_prediction_depthanything').replace('.jpg', '.npz').replace('.png', '.npz') + path_depthpro = os.path.join(data_dir, image_path).replace('rgb_110', 'rgb_110_depth_prediction_depthpro').replace('.jpg', '.npz').replace('.png', '.npz') + elif args.dataset_name == "tum": + if not os.path.exists(data_dir.replace('rgb_50', 'rgb_50_depth_prediction_depthanything')): + os.makedirs(data_dir.replace('rgb_50', 'rgb_50_depth_prediction_depthanything')) + if not os.path.exists(data_dir.replace('rgb_50', 'rgb_50_depth_prediction_depthpro')): + os.makedirs(data_dir.replace('rgb_50', 'rgb_50_depth_prediction_depthpro')) + path_depthanything = os.path.join(data_dir, image_path).replace('rgb_50', 'rgb_50_depth_prediction_depthanything').replace('.jpg', '.npz').replace('.png', '.npz') + path_depthpro = os.path.join(data_dir, image_path).replace('rgb_50', 'rgb_50_depth_prediction_depthpro').replace('.jpg', '.npz').replace('.png', '.npz') + elif args.dataset_name == "sintel": + if not os.path.exists(data_dir.replace('final', 'depth_prediction_depthanything')): + os.makedirs(data_dir.replace('final', 'depth_prediction_depthanything')) + if not os.path.exists(data_dir.replace('final', 'depth_prediction_depthpro')): + os.makedirs(data_dir.replace('final', 'depth_prediction_depthpro')) + path_depthanything = os.path.join(data_dir, image_path).replace('final', 'depth_prediction_depthanything').replace('.jpg', '.npz').replace('.png', '.npz') + path_depthpro = os.path.join(data_dir, image_path).replace('final', 'depth_prediction_depthpro').replace('.jpg', '.npz').replace('.png', '.npz') + elif args.dataset_name == "davis": + if not os.path.exists(data_dir.replace('JPEGImages', 'depth_prediction_depthanything')): + os.makedirs(data_dir.replace('JPEGImages', 'depth_prediction_depthanything')) + if not os.path.exists(data_dir.replace('JPEGImages', 'depth_prediction_depthpro')): + os.makedirs(data_dir.replace('JPEGImages', 'depth_prediction_depthpro')) + path_depthanything = os.path.join(data_dir, image_path).replace('JPEGImages', 'depth_prediction_depthanything').replace('.jpg', '.npz').replace('.png', '.npz') + path_depthpro = os.path.join(data_dir, image_path).replace('JPEGImages', 'depth_prediction_depthpro').replace('.jpg', '.npz').replace('.png', '.npz') + + np.savez_compressed(path_depthanything, depth=depth) + # depthpro + image, _, f_px = depth_pro.load_rgb(os.path.join(data_dir, image_path)) + image = transform(image) + # Run inference. + prediction = model.infer(image, f_px=f_px) + depth = prediction["depth"].cpu() # Depth in [m]. + np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu()) \ No newline at end of file diff --git a/third_party/ml-depth-pro/infer_training_set.py b/third_party/ml-depth-pro/infer_training_set.py new file mode 100644 index 0000000000000000000000000000000000000000..d8e0be1461a5cdc4e8080d563d13703a220c381c --- /dev/null +++ b/third_party/ml-depth-pro/infer_training_set.py @@ -0,0 +1,59 @@ +from PIL import Image +import depth_pro +from tqdm import tqdm +import os +# os.environ['CUDA_VISIBLE_DEVICES'] = '1' +import numpy as np +import matplotlib.pyplot as plt +import matplotlib +import argparse +from transformers import pipeline +def find_images(directory): + image_paths = [] + for root, dirs, files in os.walk(directory): + for file in files: + if file.lower().endswith(('rgb.jpg', 'rgb.png')): + image_paths.append(os.path.join(root, file)) + return image_paths +# Load model and preprocessing transform +parser = argparse.ArgumentParser('ml infer', add_help=False) +parser.add_argument('--a', default=0, + type=int) +parser.add_argument('--b', default=1500, + type=int) +parser.add_argument('--dataset_name', default=None, + type=str) +args = parser.parse_args() +# print(args.a) +model, transform = depth_pro.create_model_and_transforms(device='cuda') +model.eval() +pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda') + +if args.dataset_name == "Tartanair": + dir = '../../data/Tartanair_proc/' +elif args.dataset_name == "spring": + dir = '../../data/spring_proc/train/' +elif args.dataset_name == "SceneFlow": + dir = '../../data/SceneFlow/' +elif args.dataset_name == "Vkitti": + dir = '../../data/vkitti_2.0.3_proc/' +elif args.dataset_name == "PointOdyssey": + dir = '../../data/PointOdyssey_proc/' + +image_paths = find_images(dir) +for image_path in tqdm(sorted(image_paths)[int(args.a):int(args.b)]): + # depthanything v2 + image = Image.open(image_path) + depth = pipe(image)["predicted_depth"].numpy() + #depth = prediction["depth"].cpu() # Depth in [m]. + metadata = np.load(image_path.replace('_rgb.jpg', '_metadata.npz')) + intrinsics = np.float32(metadata['camera_intrinsics']) + focallength_px = intrinsics[0][0] + np.savez_compressed(image_path[:-4]+'_pred_depth_depthanything', depth=depth,focallength_px=focallength_px) + # depthpro + image, _, f_px = depth_pro.load_rgb(image_path) + image = transform(image) + # Run inference. + prediction = model.infer(image, f_px=f_px) + depth = prediction["depth"].cpu() # Depth in [m]. + np.savez_compressed(image_path[:-4]+'_pred_depth_depthpro', depth=depth, focallength_px=prediction["focallength_px"].cpu()) \ No newline at end of file diff --git a/third_party/ml-depth-pro/pyproject.toml b/third_party/ml-depth-pro/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..51cb67aaa3cd74d0ba992d7859208527cdf8eb86 --- /dev/null +++ b/third_party/ml-depth-pro/pyproject.toml @@ -0,0 +1,59 @@ +[project] +name = "depth_pro" +version = "0.1" +description = "Inference/Network/Model code for Apple Depth Pro monocular depth estimation." +readme = "README.md" +dependencies = [ + "torch", + "torchvision", + "timm", + "numpy<2", + "pillow_heif", + "matplotlib", +] + +[project.scripts] +depth-pro-run = "depth_pro.cli:run_main" + +[project.urls] +Homepage = "https://github.com/apple/ml-depth-pro" +Repository = "https://github.com/apple/ml-depth-pro" + +[build-system] +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" + +[tool.setuptools.packages.find] +where = ["src"] + +[tool.pyright] +include = ["src"] +exclude = [ + "**/node_modules", + "**/__pycache__", +] +pythonVersion = "3.9" + +[tool.pytest.ini_options] +minversion = "6.0" +addopts = "-ra -q" +testpaths = [ + "tests" +] +filterwarnings = [ + "ignore::DeprecationWarning" +] + +[tool.lint.per-file-ignores] +"__init__.py" = ["F401", "D100", "D104"] + +[tool.ruff] +line-length = 100 +lint.select = ["E", "F", "D", "I"] +lint.ignore = ["D100", "D105"] +extend-exclude = [ + "*external*", + "third_party", +] +src = ["depth_pro", "tests"] +target-version = "py39" diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/PKG-INFO b/third_party/ml-depth-pro/src/depth_pro.egg-info/PKG-INFO new file mode 100644 index 0000000000000000000000000000000000000000..56ba4abeec09acd31c259e1a89efbc5769d9061a --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/PKG-INFO @@ -0,0 +1,112 @@ +Metadata-Version: 2.1 +Name: depth_pro +Version: 0.1 +Summary: Inference/Network/Model code for Apple Depth Pro monocular depth estimation. +Project-URL: Homepage, https://github.com/apple/ml-depth-pro +Project-URL: Repository, https://github.com/apple/ml-depth-pro +Description-Content-Type: text/markdown +License-File: LICENSE +Requires-Dist: torch +Requires-Dist: torchvision +Requires-Dist: timm +Requires-Dist: numpy<2 +Requires-Dist: pillow_heif +Requires-Dist: matplotlib + +## Depth Pro: Sharp Monocular Metric Depth in Less Than a Second + +This software project accompanies the research paper: +**[Depth Pro: Sharp Monocular Metric Depth in Less Than a Second](https://arxiv.org/abs/2410.02073)**, +*Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*. + +![](data/depth-pro-teaser.jpg) + +We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. + + +The model in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly. + +## Getting Started + +We recommend setting up a virtual environment. Using e.g. miniconda, the `depth_pro` package can be installed via: + +```bash +conda create -n depth-pro -y python=3.9 +conda activate depth-pro + +pip install -e . +``` + +To download pretrained checkpoints follow the code snippet below: +```bash +source get_pretrained_models.sh # Files will be downloaded to `checkpoints` directory. +``` + +### Running from commandline + +We provide a helper script to directly run the model on a single image: +```bash +# Run prediction on a single image: +depth-pro-run -i ./data/example.jpg +# Run `depth-pro-run -h` for available options. +``` + +### Running from python + +```python +from PIL import Image +import depth_pro + +# Load model and preprocessing transform +model, transform = depth_pro.create_model_and_transforms() +model.eval() + +# Load and preprocess an image. +image, _, f_px = depth_pro.load_rgb(image_path) +image = transform(image) + +# Run inference. +prediction = model.infer(image, f_px=f_px) +depth = prediction["depth"] # Depth in [m]. +focallength_px = prediction["focallength_px"] # Focal length in pixels. +``` + + +### Evaluation (boundary metrics) + +Our boundary metrics can be found under `eval/boundary_metrics.py` and used as follows: + +```python +# for a depth-based dataset +boundary_f1 = SI_boundary_F1(predicted_depth, target_depth) + +# for a mask-based dataset (image matting / segmentation) +boundary_recall = SI_boundary_Recall(predicted_depth, target_mask) +``` + + +## Citation + +If you find our work useful, please cite the following paper: + +```bibtex +@article{Bochkovskii2024:arxiv, + author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and + Yichao Zhou and Stephan R. Richter and Vladlen Koltun} + title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second}, + journal = {arXiv}, + year = {2024}, + url = {https://arxiv.org/abs/2410.02073}, +} +``` + +## License +This sample code is released under the [LICENSE](LICENSE) terms. + +The model weights are released under the [LICENSE](LICENSE) terms. + +## Acknowledgements + +Our codebase is built using multiple opensource contributions, please see [Acknowledgements](ACKNOWLEDGEMENTS.md) for more details. + +Please check the paper for a complete list of references and datasets used in this work. diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/SOURCES.txt b/third_party/ml-depth-pro/src/depth_pro.egg-info/SOURCES.txt new file mode 100644 index 0000000000000000000000000000000000000000..4ae9954e51f60b22be00718668ad1a0e989e81d0 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/SOURCES.txt @@ -0,0 +1,42 @@ +ACKNOWLEDGEMENTS.md +CODE_OF_CONDUCT.md +CONTRIBUTING.md +LICENSE +README.md +get_pretrained_models.sh +infer.sh +infer_test_set.py +infer_training_set.py +pyproject.toml +data/depth-pro-teaser.jpg +data/example.jpg +src/depth_pro/__init__.py +src/depth_pro/depth_pro.py +src/depth_pro/utils.py +src/depth_pro.egg-info/PKG-INFO +src/depth_pro.egg-info/SOURCES.txt +src/depth_pro.egg-info/dependency_links.txt +src/depth_pro.egg-info/entry_points.txt +src/depth_pro.egg-info/requires.txt +src/depth_pro.egg-info/top_level.txt +src/depth_pro/__pycache__/__init__.cpython-39.pyc +src/depth_pro/__pycache__/depth_pro.cpython-39.pyc +src/depth_pro/__pycache__/utils.cpython-39.pyc +src/depth_pro/cli/__init__.py +src/depth_pro/cli/run.py +src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc +src/depth_pro/cli/__pycache__/run.cpython-39.pyc +src/depth_pro/eval/boundary_metrics.py +src/depth_pro/eval/dis5k_sample_list.txt +src/depth_pro/network/__init__.py +src/depth_pro/network/decoder.py +src/depth_pro/network/encoder.py +src/depth_pro/network/fov.py +src/depth_pro/network/vit.py +src/depth_pro/network/vit_factory.py +src/depth_pro/network/__pycache__/__init__.cpython-39.pyc +src/depth_pro/network/__pycache__/decoder.cpython-39.pyc +src/depth_pro/network/__pycache__/encoder.cpython-39.pyc +src/depth_pro/network/__pycache__/fov.cpython-39.pyc +src/depth_pro/network/__pycache__/vit.cpython-39.pyc +src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc \ No newline at end of file diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/dependency_links.txt b/third_party/ml-depth-pro/src/depth_pro.egg-info/dependency_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/entry_points.txt b/third_party/ml-depth-pro/src/depth_pro.egg-info/entry_points.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e7e691c114e271cda4ce631e26d38863a105179 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/entry_points.txt @@ -0,0 +1,2 @@ +[console_scripts] +depth-pro-run = depth_pro.cli:run_main diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/requires.txt b/third_party/ml-depth-pro/src/depth_pro.egg-info/requires.txt new file mode 100644 index 0000000000000000000000000000000000000000..4edf8048bef1c0ae9b77d06dead16a8ffb709638 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/requires.txt @@ -0,0 +1,6 @@ +torch +torchvision +timm +numpy<2 +pillow_heif +matplotlib diff --git a/third_party/ml-depth-pro/src/depth_pro.egg-info/top_level.txt b/third_party/ml-depth-pro/src/depth_pro.egg-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..5b8321dede9680388bbf36e3afc90e9d329f05c2 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro.egg-info/top_level.txt @@ -0,0 +1 @@ +depth_pro diff --git a/third_party/ml-depth-pro/src/depth_pro/__init__.py b/third_party/ml-depth-pro/src/depth_pro/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..52080b686a64851c4bb62003884fbdeb55dced9a --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/__init__.py @@ -0,0 +1,5 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +"""Depth Pro package.""" + +from .depth_pro import create_model_and_transforms # noqa +from .utils import load_rgb # noqa diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6c79d5dbb1c0980632de4ae2c8dd2a2eedbc727 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18da140b2e0ee94ecef6cdbdbff7f466685bb9fd Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/__init__.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..70e64a272e20897edbd28f5bc4c70a8d5ed8a0f8 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75e0637c80c2f1b533f14f22ea9fbc347d79e9fa Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/depth_pro.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..833abe3f825150073b902c6f4293e4a48a959384 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b04ec8e5e9f94fb621f4811dc7efbe0d7dd410a2 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/__pycache__/utils.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/cli/__init__.py b/third_party/ml-depth-pro/src/depth_pro/cli/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..54ac5722c5db5e9a6846f12fea9efc00f3e385e5 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/cli/__init__.py @@ -0,0 +1,4 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +"""Depth Pro CLI and tools.""" + +from .run import main as run_main # noqa diff --git a/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..189e75b5bc6b65050c2ce0c7815751d556ea4909 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/run.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/run.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9c70c1435fe3d0385a5df0a87fc9c5e9ec39b21f Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/cli/__pycache__/run.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/cli/run.py b/third_party/ml-depth-pro/src/depth_pro/cli/run.py new file mode 100755 index 0000000000000000000000000000000000000000..3545a99993810b7d602f63c057640645b215f2b2 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/cli/run.py @@ -0,0 +1,154 @@ +#!/usr/bin/env python3 +"""Sample script to run DepthPro. + +Copyright (C) 2024 Apple Inc. All Rights Reserved. +""" + + +import argparse +import logging +from pathlib import Path + +import numpy as np +import PIL.Image +import torch +from matplotlib import pyplot as plt +from tqdm import tqdm + +from depth_pro import create_model_and_transforms, load_rgb + +LOGGER = logging.getLogger(__name__) + + +def get_torch_device() -> torch.device: + """Get the Torch device.""" + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda:0") + elif torch.backends.mps.is_available(): + device = torch.device("mps") + return device + + +def run(args): + """Run Depth Pro on a sample image.""" + if args.verbose: + logging.basicConfig(level=logging.INFO) + + # Load model. + model, transform = create_model_and_transforms( + device=get_torch_device(), + precision=torch.half, + ) + model.eval() + + image_paths = [args.image_path] + if args.image_path.is_dir(): + image_paths = args.image_path.glob("**/*") + relative_path = args.image_path + else: + relative_path = args.image_path.parent + + if not args.skip_display: + plt.ion() + fig = plt.figure() + ax_rgb = fig.add_subplot(121) + ax_disp = fig.add_subplot(122) + + for image_path in tqdm(image_paths): + # Load image and focal length from exif info (if found.). + try: + LOGGER.info(f"Loading image {image_path} ...") + image, _, f_px = load_rgb(image_path) + except Exception as e: + LOGGER.error(str(e)) + continue + # Run prediction. If `f_px` is provided, it is used to estimate the final metric depth, + # otherwise the model estimates `f_px` to compute the depth metricness. + prediction = model.infer(transform(image), f_px=f_px) + + # Extract the depth and focal length. + depth = prediction["depth"].detach().cpu().numpy().squeeze() + if f_px is not None: + LOGGER.debug(f"Focal length (from exif): {f_px:0.2f}") + elif prediction["focallength_px"] is not None: + focallength_px = prediction["focallength_px"].detach().cpu().item() + LOGGER.info(f"Estimated focal length: {focallength_px}") + + inverse_depth = 1 / depth + # Visualize inverse depth instead of depth, clipped to [0.1m;250m] range for better visualization. + max_invdepth_vizu = min(inverse_depth.max(), 1 / 0.1) + min_invdepth_vizu = max(1 / 250, inverse_depth.min()) + inverse_depth_normalized = (inverse_depth - min_invdepth_vizu) / ( + max_invdepth_vizu - min_invdepth_vizu + ) + + # Save Depth as npz file. + if args.output_path is not None: + output_file = ( + args.output_path + / image_path.relative_to(relative_path).parent + / image_path.stem + ) + LOGGER.info(f"Saving depth map to: {str(output_file)}") + output_file.parent.mkdir(parents=True, exist_ok=True) + np.savez_compressed(output_file, depth=depth) + + # Save as color-mapped "turbo" jpg image. + cmap = plt.get_cmap("turbo") + color_depth = (cmap(inverse_depth_normalized)[..., :3] * 255).astype( + np.uint8 + ) + color_map_output_file = str(output_file) + ".jpg" + LOGGER.info(f"Saving color-mapped depth to: : {color_map_output_file}") + PIL.Image.fromarray(color_depth).save( + color_map_output_file, format="JPEG", quality=90 + ) + + # Display the image and estimated depth map. + if not args.skip_display: + ax_rgb.imshow(image) + ax_disp.imshow(inverse_depth_normalized, cmap="turbo") + fig.canvas.draw() + fig.canvas.flush_events() + + LOGGER.info("Done predicting depth!") + if not args.skip_display: + plt.show(block=True) + + +def main(): + """Run DepthPro inference example.""" + parser = argparse.ArgumentParser( + description="Inference scripts of DepthPro with PyTorch models." + ) + parser.add_argument( + "-i", + "--image-path", + type=Path, + default="./data/example.jpg", + help="Path to input image.", + ) + parser.add_argument( + "-o", + "--output-path", + type=Path, + help="Path to store output files.", + ) + parser.add_argument( + "--skip-display", + action="store_true", + help="Skip matplotlib display.", + ) + parser.add_argument( + "-v", + "--verbose", + action="store_true", + help="Show verbose output." + ) + + run(parser.parse_args()) + + +if __name__ == "__main__": + main() diff --git a/third_party/ml-depth-pro/src/depth_pro/depth_pro.py b/third_party/ml-depth-pro/src/depth_pro/depth_pro.py new file mode 100644 index 0000000000000000000000000000000000000000..d22fb67174ab5538943b1a4096c77b670d66d8d0 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/depth_pro.py @@ -0,0 +1,299 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +# Depth Pro: Sharp Monocular Metric Depth in Less Than a Second + + +from __future__ import annotations + +from dataclasses import dataclass +from typing import Mapping, Optional, Tuple, Union +import sys +#sys.path.append('/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/ml-depth-pro') +import torch +from torch import nn +from torchvision.transforms import ( + Compose, + ConvertImageDtype, + Lambda, + Normalize, + ToTensor, +) + +from .network.decoder import MultiresConvDecoder +from .network.encoder import DepthProEncoder +from .network.fov import FOVNetwork +from .network.vit_factory import VIT_CONFIG_DICT, ViTPreset, create_vit + + +@dataclass +class DepthProConfig: + """Configuration for DepthPro.""" + + patch_encoder_preset: ViTPreset + image_encoder_preset: ViTPreset + decoder_features: int + + checkpoint_uri: Optional[str] = None + fov_encoder_preset: Optional[ViTPreset] = None + use_fov_head: bool = True + + +DEFAULT_MONODEPTH_CONFIG_DICT = DepthProConfig( + patch_encoder_preset="dinov2l16_384", + image_encoder_preset="dinov2l16_384", + checkpoint_uri="/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/ml-depth-pro/checkpoints/depth_pro.pt", + decoder_features=256, + use_fov_head=True, + fov_encoder_preset="dinov2l16_384", +) + + +def create_backbone_model( + preset: ViTPreset +) -> Tuple[nn.Module, ViTPreset]: + """Create and load a backbone model given a config. + + Args: + ---- + preset: A backbone preset to load pre-defind configs. + + Returns: + ------- + A Torch module and the associated config. + + """ + if preset in VIT_CONFIG_DICT: + config = VIT_CONFIG_DICT[preset] + model = create_vit(preset=preset, use_pretrained=False) + else: + raise KeyError(f"Preset {preset} not found.") + + return model, config + + +def create_model_and_transforms( + config: DepthProConfig = DEFAULT_MONODEPTH_CONFIG_DICT, + device: torch.device = torch.device("cpu"), + precision: torch.dtype = torch.float32, +) -> Tuple[DepthPro, Compose]: + """Create a DepthPro model and load weights from `config.checkpoint_uri`. + + Args: + ---- + config: The configuration for the DPT model architecture. + device: The optional Torch device to load the model onto, default runs on "cpu". + precision: The optional precision used for the model, default is FP32. + + Returns: + ------- + The Torch DepthPro model and associated Transform. + + """ + patch_encoder, patch_encoder_config = create_backbone_model( + preset=config.patch_encoder_preset + ) + image_encoder, _ = create_backbone_model( + preset=config.image_encoder_preset + ) + + fov_encoder = None + if config.use_fov_head and config.fov_encoder_preset is not None: + fov_encoder, _ = create_backbone_model(preset=config.fov_encoder_preset) + + dims_encoder = patch_encoder_config.encoder_feature_dims + hook_block_ids = patch_encoder_config.encoder_feature_layer_ids + encoder = DepthProEncoder( + dims_encoder=dims_encoder, + patch_encoder=patch_encoder, + image_encoder=image_encoder, + hook_block_ids=hook_block_ids, + decoder_features=config.decoder_features, + ) + decoder = MultiresConvDecoder( + dims_encoder=[config.decoder_features] + list(encoder.dims_encoder), + dim_decoder=config.decoder_features, + ) + model = DepthPro( + encoder=encoder, + decoder=decoder, + last_dims=(32, 1), + use_fov_head=config.use_fov_head, + fov_encoder=fov_encoder, + ).to(device) + + if precision == torch.half: + model.half() + + transform = Compose( + [ + ToTensor(), + Lambda(lambda x: x.to(device)), + Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), + ConvertImageDtype(precision), + ] + ) + + if config.checkpoint_uri is not None: + state_dict = torch.load(config.checkpoint_uri, map_location="cpu") + missing_keys, unexpected_keys = model.load_state_dict( + state_dict=state_dict, strict=True + ) + + if len(unexpected_keys) != 0: + raise KeyError( + f"Found unexpected keys when loading monodepth: {unexpected_keys}" + ) + + # fc_norm is only for the classification head, + # which we would not use. We only use the encoding. + missing_keys = [key for key in missing_keys if "fc_norm" not in key] + if len(missing_keys) != 0: + raise KeyError(f"Keys are missing when loading monodepth: {missing_keys}") + + return model, transform + + +class DepthPro(nn.Module): + """DepthPro network.""" + + def __init__( + self, + encoder: DepthProEncoder, + decoder: MultiresConvDecoder, + last_dims: tuple[int, int], + use_fov_head: bool = True, + fov_encoder: Optional[nn.Module] = None, + ): + """Initialize DepthPro. + + Args: + ---- + encoder: The DepthProEncoder backbone. + decoder: The MultiresConvDecoder decoder. + last_dims: The dimension for the last convolution layers. + use_fov_head: Whether to use the field-of-view head. + fov_encoder: A separate encoder for the field of view. + + """ + super().__init__() + + self.encoder = encoder + self.decoder = decoder + + dim_decoder = decoder.dim_decoder + self.head = nn.Sequential( + nn.Conv2d( + dim_decoder, dim_decoder // 2, kernel_size=3, stride=1, padding=1 + ), + nn.ConvTranspose2d( + in_channels=dim_decoder // 2, + out_channels=dim_decoder // 2, + kernel_size=2, + stride=2, + padding=0, + bias=True, + ), + nn.Conv2d( + dim_decoder // 2, + last_dims[0], + kernel_size=3, + stride=1, + padding=1, + ), + nn.ReLU(True), + nn.Conv2d(last_dims[0], last_dims[1], kernel_size=1, stride=1, padding=0), + nn.ReLU(), + ) + + # Set the final convolution layer's bias to be 0. + self.head[4].bias.data.fill_(0) + + # Set the FOV estimation head. + if use_fov_head: + self.fov = FOVNetwork(num_features=dim_decoder, fov_encoder=fov_encoder) + + @property + def img_size(self) -> int: + """Return the internal image size of the network.""" + return self.encoder.img_size + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """Decode by projection and fusion of multi-resolution encodings. + + Args: + ---- + x (torch.Tensor): Input image. + + Returns: + ------- + The canonical inverse depth map [m] and the optional estimated field of view [deg]. + + """ + _, _, H, W = x.shape + assert H == self.img_size and W == self.img_size + + encodings = self.encoder(x) + features, features_0 = self.decoder(encodings) + canonical_inverse_depth = self.head(features) + + fov_deg = None + if hasattr(self, "fov"): + fov_deg = self.fov.forward(x, features_0.detach()) + + return canonical_inverse_depth, fov_deg + + @torch.no_grad() + def infer( + self, + x: torch.Tensor, + f_px: Optional[Union[float, torch.Tensor]] = None, + interpolation_mode="bilinear", + ) -> Mapping[str, torch.Tensor]: + """Infer depth and fov for a given image. + + If the image is not at network resolution, it is resized to 1536x1536 and + the estimated depth is resized to the original image resolution. + Note: if the focal length is given, the estimated value is ignored and the provided + focal length is use to generate the metric depth values. + + Args: + ---- + x (torch.Tensor): Input image + f_px (torch.Tensor): Optional focal length in pixels corresponding to `x`. + interpolation_mode (str): Interpolation function for downsampling/upsampling. + + Returns: + ------- + Tensor dictionary (torch.Tensor): depth [m], focallength [pixels]. + + """ + if len(x.shape) == 3: + x = x.unsqueeze(0) + _, _, H, W = x.shape + resize = H != self.img_size or W != self.img_size + + if resize: + x = nn.functional.interpolate( + x, + size=(self.img_size, self.img_size), + mode=interpolation_mode, + align_corners=False, + ) + + canonical_inverse_depth, fov_deg = self.forward(x) + if f_px is None: + f_px = 0.5 * W / torch.tan(0.5 * torch.deg2rad(fov_deg.to(torch.float))) + + inverse_depth = canonical_inverse_depth * (W / f_px) + f_px = f_px.squeeze() + + if resize: + inverse_depth = nn.functional.interpolate( + inverse_depth, size=(H, W), mode=interpolation_mode, align_corners=False + ) + + depth = 1.0 / torch.clamp(inverse_depth, min=1e-4, max=1e4) + + return { + "depth": depth.squeeze(), + "focallength_px": f_px, + } diff --git a/third_party/ml-depth-pro/src/depth_pro/eval/boundary_metrics.py b/third_party/ml-depth-pro/src/depth_pro/eval/boundary_metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..d7650dbb60b990ed66b4444a1bbb7f7eaaed1390 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/eval/boundary_metrics.py @@ -0,0 +1,332 @@ +from typing import List, Tuple + +import numpy as np + + +def connected_component(r: np.ndarray, c: np.ndarray) -> List[List[int]]: + """Find connected components in the given row and column indices. + + Args: + ---- + r (np.ndarray): Row indices. + c (np.ndarray): Column indices. + + Yields: + ------ + List[int]: Indices of connected components. + + """ + indices = [0] + for i in range(1, r.size): + if r[i] == r[indices[-1]] and c[i] == c[indices[-1]] + 1: + indices.append(i) + else: + yield indices + indices = [i] + yield indices + + +def nms_horizontal(ratio: np.ndarray, threshold: float) -> np.ndarray: + """Apply Non-Maximum Suppression (NMS) horizontally on the given ratio matrix. + + Args: + ---- + ratio (np.ndarray): Input ratio matrix. + threshold (float): Threshold for NMS. + + Returns: + ------- + np.ndarray: Binary mask after applying NMS. + + """ + mask = np.zeros_like(ratio, dtype=bool) + r, c = np.nonzero(ratio > threshold) + if len(r) == 0: + return mask + for ids in connected_component(r, c): + values = [ratio[r[i], c[i]] for i in ids] + mi = np.argmax(values) + mask[r[ids[mi]], c[ids[mi]]] = True + return mask + + +def nms_vertical(ratio: np.ndarray, threshold: float) -> np.ndarray: + """Apply Non-Maximum Suppression (NMS) vertically on the given ratio matrix. + + Args: + ---- + ratio (np.ndarray): Input ratio matrix. + threshold (float): Threshold for NMS. + + Returns: + ------- + np.ndarray: Binary mask after applying NMS. + + """ + return np.transpose(nms_horizontal(np.transpose(ratio), threshold)) + + +def fgbg_depth( + d: np.ndarray, t: float +) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Find foreground-background relations between neighboring pixels. + + Args: + ---- + d (np.ndarray): Depth matrix. + t (float): Threshold for comparison. + + Returns: + ------- + Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating + left, top, right, and bottom foreground-background relations. + + """ + right_is_big_enough = (d[..., :, 1:] / d[..., :, :-1]) > t + left_is_big_enough = (d[..., :, :-1] / d[..., :, 1:]) > t + bottom_is_big_enough = (d[..., 1:, :] / d[..., :-1, :]) > t + top_is_big_enough = (d[..., :-1, :] / d[..., 1:, :]) > t + return ( + left_is_big_enough, + top_is_big_enough, + right_is_big_enough, + bottom_is_big_enough, + ) + + +def fgbg_depth_thinned( + d: np.ndarray, t: float +) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Find foreground-background relations between neighboring pixels with Non-Maximum Suppression. + + Args: + ---- + d (np.ndarray): Depth matrix. + t (float): Threshold for NMS. + + Returns: + ------- + Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating + left, top, right, and bottom foreground-background relations with NMS applied. + + """ + right_is_big_enough = nms_horizontal(d[..., :, 1:] / d[..., :, :-1], t) + left_is_big_enough = nms_horizontal(d[..., :, :-1] / d[..., :, 1:], t) + bottom_is_big_enough = nms_vertical(d[..., 1:, :] / d[..., :-1, :], t) + top_is_big_enough = nms_vertical(d[..., :-1, :] / d[..., 1:, :], t) + return ( + left_is_big_enough, + top_is_big_enough, + right_is_big_enough, + bottom_is_big_enough, + ) + + +def fgbg_binary_mask( + d: np.ndarray, +) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Find foreground-background relations between neighboring pixels in binary masks. + + Args: + ---- + d (np.ndarray): Binary depth matrix. + + Returns: + ------- + Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating + left, top, right, and bottom foreground-background relations in binary masks. + + """ + assert d.dtype == bool + right_is_big_enough = d[..., :, 1:] & ~d[..., :, :-1] + left_is_big_enough = d[..., :, :-1] & ~d[..., :, 1:] + bottom_is_big_enough = d[..., 1:, :] & ~d[..., :-1, :] + top_is_big_enough = d[..., :-1, :] & ~d[..., 1:, :] + return ( + left_is_big_enough, + top_is_big_enough, + right_is_big_enough, + bottom_is_big_enough, + ) + + +def edge_recall_matting(pr: np.ndarray, gt: np.ndarray, t: float) -> float: + """Calculate edge recall for image matting. + + Args: + ---- + pr (np.ndarray): Predicted depth matrix. + gt (np.ndarray): Ground truth binary mask. + t (float): Threshold for NMS. + + Returns: + ------- + float: Edge recall value. + + """ + assert gt.dtype == bool + ap, bp, cp, dp = fgbg_depth_thinned(pr, t) + ag, bg, cg, dg = fgbg_binary_mask(gt) + return 0.25 * ( + np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1) + + np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1) + + np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1) + + np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1) + ) + + +def boundary_f1( + pr: np.ndarray, + gt: np.ndarray, + t: float, + return_p: bool = False, + return_r: bool = False, +) -> float: + """Calculate Boundary F1 score. + + Args: + ---- + pr (np.ndarray): Predicted depth matrix. + gt (np.ndarray): Ground truth depth matrix. + t (float): Threshold for comparison. + return_p (bool, optional): If True, return precision. Defaults to False. + return_r (bool, optional): If True, return recall. Defaults to False. + + Returns: + ------- + float: Boundary F1 score, or precision, or recall depending on the flags. + + """ + ap, bp, cp, dp = fgbg_depth(pr, t) + ag, bg, cg, dg = fgbg_depth(gt, t) + + r = 0.25 * ( + np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1) + + np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1) + + np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1) + + np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1) + ) + p = 0.25 * ( + np.count_nonzero(ap & ag) / max(np.count_nonzero(ap), 1) + + np.count_nonzero(bp & bg) / max(np.count_nonzero(bp), 1) + + np.count_nonzero(cp & cg) / max(np.count_nonzero(cp), 1) + + np.count_nonzero(dp & dg) / max(np.count_nonzero(dp), 1) + ) + if r + p == 0: + return 0.0 + if return_p: + return p + if return_r: + return r + return 2 * (r * p) / (r + p) + + +def get_thresholds_and_weights( + t_min: float, t_max: float, N: int +) -> Tuple[np.ndarray, np.ndarray]: + """Generate thresholds and weights for the given range. + + Args: + ---- + t_min (float): Minimum threshold. + t_max (float): Maximum threshold. + N (int): Number of thresholds. + + Returns: + ------- + Tuple[np.ndarray, np.ndarray]: Array of thresholds and corresponding weights. + + """ + thresholds = np.linspace(t_min, t_max, N) + weights = thresholds / thresholds.sum() + return thresholds, weights + + +def invert_depth(depth: np.ndarray, eps: float = 1e-6) -> np.ndarray: + """Inverts a depth map with numerical stability. + + Args: + ---- + depth (np.ndarray): Depth map to be inverted. + eps (float): Minimum value to avoid division by zero (default is 1e-6). + + Returns: + ------- + np.ndarray: Inverted depth map. + + """ + inverse_depth = 1.0 / depth.clip(min=eps) + return inverse_depth + + +def SI_boundary_F1( + predicted_depth: np.ndarray, + target_depth: np.ndarray, + t_min: float = 1.05, + t_max: float = 1.25, + N: int = 10, +) -> float: + """Calculate Scale-Invariant Boundary F1 Score for depth-based ground-truth. + + Args: + ---- + predicted_depth (np.ndarray): Predicted depth matrix. + target_depth (np.ndarray): Ground truth depth matrix. + t_min (float, optional): Minimum threshold. Defaults to 1.05. + t_max (float, optional): Maximum threshold. Defaults to 1.25. + N (int, optional): Number of thresholds. Defaults to 10. + + Returns: + ------- + float: Scale-Invariant Boundary F1 Score. + + """ + assert predicted_depth.ndim == target_depth.ndim == 2 + thresholds, weights = get_thresholds_and_weights(t_min, t_max, N) + f1_scores = np.array( + [ + boundary_f1(invert_depth(predicted_depth), invert_depth(target_depth), t) + for t in thresholds + ] + ) + return np.sum(f1_scores * weights) + + +def SI_boundary_Recall( + predicted_depth: np.ndarray, + target_mask: np.ndarray, + t_min: float = 1.05, + t_max: float = 1.25, + N: int = 10, + alpha_threshold: float = 0.1, +) -> float: + """Calculate Scale-Invariant Boundary Recall Score for mask-based ground-truth. + + Args: + ---- + predicted_depth (np.ndarray): Predicted depth matrix. + target_mask (np.ndarray): Ground truth binary mask. + t_min (float, optional): Minimum threshold. Defaults to 1.05. + t_max (float, optional): Maximum threshold. Defaults to 1.25. + N (int, optional): Number of thresholds. Defaults to 10. + alpha_threshold (float, optional): Threshold for alpha masking. Defaults to 0.1. + + Returns: + ------- + float: Scale-Invariant Boundary Recall Score. + + """ + assert predicted_depth.ndim == target_mask.ndim == 2 + thresholds, weights = get_thresholds_and_weights(t_min, t_max, N) + thresholded_target = target_mask > alpha_threshold + + recall_scores = np.array( + [ + edge_recall_matting( + invert_depth(predicted_depth), thresholded_target, t=float(t) + ) + for t in thresholds + ] + ) + weighted_recall = np.sum(recall_scores * weights) + return weighted_recall diff --git a/third_party/ml-depth-pro/src/depth_pro/eval/dis5k_sample_list.txt b/third_party/ml-depth-pro/src/depth_pro/eval/dis5k_sample_list.txt new file mode 100644 index 0000000000000000000000000000000000000000..81da1dcdb786da7bbec861604f50d4f039f695ef --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/eval/dis5k_sample_list.txt @@ -0,0 +1,200 @@ +DIS5K/DIS-TE1/im/12#Graphics#4#TrafficSign#8245751856_821be14f86_o.jpg +DIS5K/DIS-TE1/im/13#Insect#4#Butterfly#16023994688_7ff8cdccb1_o.jpg +DIS5K/DIS-TE1/im/14#Kitchenware#4#Kitchenware#IMG_20210520_205538.jpg +DIS5K/DIS-TE1/im/14#Kitchenware#8#SweetStand#4848284981_fc90f54b50_o.jpg +DIS5K/DIS-TE1/im/17#Non-motor Vehicle#4#Cart#15012855035_d10b57014f_o.jpg +DIS5K/DIS-TE1/im/2#Aircraft#5#Kite#13104545564_5afceec9bd_o.jpg +DIS5K/DIS-TE1/im/20#Sports#10#Skateboarding#8472763540_bb2390e928_o.jpg +DIS5K/DIS-TE1/im/21#Tool#14#Sword#32473146960_dcc6b77848_o.jpg +DIS5K/DIS-TE1/im/21#Tool#15#Tapeline#9680492386_2d2020f282_o.jpg +DIS5K/DIS-TE1/im/21#Tool#4#Flag#507752845_ef852100f0_o.jpg +DIS5K/DIS-TE1/im/21#Tool#6#Key#11966089533_3becd78b44_o.jpg +DIS5K/DIS-TE1/im/21#Tool#8#Scale#31946428472_d28def471b_o.jpg +DIS5K/DIS-TE1/im/22#Weapon#4#Rifle#8472656430_3eb908b211_o.jpg +DIS5K/DIS-TE1/im/8#Electronics#3#Earphone#1177468301_641df8c267_o.jpg +DIS5K/DIS-TE1/im/8#Electronics#9#MusicPlayer#2235782872_7d47847bb4_o.jpg +DIS5K/DIS-TE2/im/11#Furniture#13#Ladder#3878434417_2ed740586e_o.jpg +DIS5K/DIS-TE2/im/13#Insect#1#Ant#27047700955_3b3a1271f8_o.jpg +DIS5K/DIS-TE2/im/13#Insect#11#Spider#5567179191_38d1f65589_o.jpg +DIS5K/DIS-TE2/im/13#Insect#8#Locust#5237933769_e6687c05e4_o.jpg +DIS5K/DIS-TE2/im/14#Kitchenware#2#DishRack#70838854_40cf689da7_o.jpg +DIS5K/DIS-TE2/im/14#Kitchenware#8#SweetStand#8467929412_fef7f4275d_o.jpg +DIS5K/DIS-TE2/im/16#Music Instrument#2#Harp#28058219806_28e05ff24a_o.jpg +DIS5K/DIS-TE2/im/17#Non-motor Vehicle#1#BabyCarriage#29794777180_2e1695a0cf_o.jpg +DIS5K/DIS-TE2/im/19#Ship#3#Sailboat#22442908623_5977e3becf_o.jpg +DIS5K/DIS-TE2/im/2#Aircraft#5#Kite#44654358051_1400e71cc4_o.jpg +DIS5K/DIS-TE2/im/21#Tool#11#Stand#IMG_20210520_205442.jpg +DIS5K/DIS-TE2/im/21#Tool#17#Tripod#9318977876_34615ec9a0_o.jpg +DIS5K/DIS-TE2/im/5#Artifact#3#Handcraft#50860882577_8482143b1b_o.jpg +DIS5K/DIS-TE2/im/8#Electronics#10#Robot#3093360210_fee54dc5c5_o.jpg +DIS5K/DIS-TE2/im/8#Electronics#6#Microphone#47411477652_6da66cbc10_o.jpg +DIS5K/DIS-TE3/im/14#Kitchenware#4#Kitchenware#2451122898_ef883175dd_o.jpg +DIS5K/DIS-TE3/im/15#Machine#4#SewingMachine#9311164128_97ba1d3947_o.jpg +DIS5K/DIS-TE3/im/16#Music Instrument#2#Harp#7670920550_59e992fd7b_o.jpg +DIS5K/DIS-TE3/im/17#Non-motor Vehicle#1#BabyCarriage#8389984877_1fddf8715c_o.jpg +DIS5K/DIS-TE3/im/17#Non-motor Vehicle#3#Carriage#5947122724_98e0fc3d1f_o.jpg +DIS5K/DIS-TE3/im/2#Aircraft#2#Balloon#2487168092_641505883f_o.jpg +DIS5K/DIS-TE3/im/2#Aircraft#4#Helicopter#8401177591_06c71c8df2_o.jpg +DIS5K/DIS-TE3/im/20#Sports#1#Archery#12520003103_faa43ea3e0_o.jpg +DIS5K/DIS-TE3/im/21#Tool#11#Stand#IMG_20210709_221507.jpg +DIS5K/DIS-TE3/im/21#Tool#2#Clip#5656649687_63d0c6696d_o.jpg +DIS5K/DIS-TE3/im/21#Tool#6#Key#12878459244_6387a140ea_o.jpg +DIS5K/DIS-TE3/im/3#Aquatic#1#Lobster#109214461_f52b4b6093_o.jpg +DIS5K/DIS-TE3/im/4#Architecture#19#Windmill#20195851863_2627117e0e_o.jpg +DIS5K/DIS-TE3/im/5#Artifact#2#Cage#5821476369_ea23927487_o.jpg +DIS5K/DIS-TE3/im/8#Electronics#7#MobileHolder#49732997896_7f53c290b5_o.jpg +DIS5K/DIS-TE4/im/13#Insect#6#Centipede#15302179708_a267850881_o.jpg +DIS5K/DIS-TE4/im/17#Non-motor Vehicle#11#Tricycle#5771069105_a3aef6f665_o.jpg +DIS5K/DIS-TE4/im/17#Non-motor Vehicle#2#Bicycle#4245936196_fdf812dcb7_o.jpg +DIS5K/DIS-TE4/im/17#Non-motor Vehicle#9#ShoppingCart#4674052920_a5b7a2b236_o.jpg +DIS5K/DIS-TE4/im/18#Plant#1#Bonsai#3539420884_ca8973e2c0_o.jpg +DIS5K/DIS-TE4/im/2#Aircraft#6#Parachute#33590416634_9d6f2325e7_o.jpg +DIS5K/DIS-TE4/im/20#Sports#1#Archery#46924476515_0be1caa684_o.jpg +DIS5K/DIS-TE4/im/20#Sports#8#Racket#19337607166_dd1985fb59_o.jpg +DIS5K/DIS-TE4/im/21#Tool#6#Key#3193329588_839b0c74ce_o.jpg +DIS5K/DIS-TE4/im/5#Artifact#2#Cage#5821886526_0573ba2d0d_o.jpg +DIS5K/DIS-TE4/im/5#Artifact#3#Handcraft#50105138282_3c1d02c968_o.jpg +DIS5K/DIS-TE4/im/8#Electronics#1#Antenna#4305034305_874f21a701_o.jpg +DIS5K/DIS-TR/im/1#Accessories#1#Bag#15554964549_3105e51b6f_o.jpg +DIS5K/DIS-TR/im/1#Accessories#1#Bag#41104261980_098a6c4a56_o.jpg +DIS5K/DIS-TR/im/1#Accessories#2#Clothes#2284764037_871b2e8ca4_o.jpg +DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#1824643784_70d0134156_o.jpg +DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#3590020230_37b09a29b3_o.jpg +DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#4809652879_4da8a69f3b_o.jpg +DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#792204934_f9b28f99b4_o.jpg +DIS5K/DIS-TR/im/1#Accessories#5#Jewelry#13909132974_c4750c5fb7_o.jpg +DIS5K/DIS-TR/im/1#Accessories#7#Shoe#2483391615_9199ece8d6_o.jpg +DIS5K/DIS-TR/im/1#Accessories#8#Watch#4343266960_f6633b029b_o.jpg +DIS5K/DIS-TR/im/10#Frame#2#BicycleFrame#17897573_42964dd104_o.jpg +DIS5K/DIS-TR/im/10#Frame#5#Rack#15898634812_64807069ff_o.jpg +DIS5K/DIS-TR/im/10#Frame#5#Rack#23928546819_c184cb0b60_o.jpg +DIS5K/DIS-TR/im/11#Furniture#19#Shower#6189119596_77bcfe80ee_o.jpg +DIS5K/DIS-TR/im/11#Furniture#2#Bench#3263647075_9306e280b5_o.jpg +DIS5K/DIS-TR/im/11#Furniture#5#CoatHanger#12774091054_cd5ff520ef_o.jpg +DIS5K/DIS-TR/im/11#Furniture#6#DentalChair#13878156865_d0439dcb32_o.jpg +DIS5K/DIS-TR/im/11#Furniture#9#Easel#5861024714_2070cd480c_o.jpg +DIS5K/DIS-TR/im/12#Graphics#4#TrafficSign#40621867334_f3c32ec189_o.jpg +DIS5K/DIS-TR/im/13#Insect#1#Ant#3295038190_db5dd0d4f4_o.jpg +DIS5K/DIS-TR/im/13#Insect#10#Mosquito#24341339_a88a1dad4c_o.jpg +DIS5K/DIS-TR/im/13#Insect#11#Spider#27171518270_63b78069ff_o.jpg +DIS5K/DIS-TR/im/13#Insect#11#Spider#49925050281_fa727c154e_o.jpg +DIS5K/DIS-TR/im/13#Insect#2#Beatle#279616486_2f1e64f591_o.jpg +DIS5K/DIS-TR/im/13#Insect#3#Bee#43892067695_82cf3e536b_o.jpg +DIS5K/DIS-TR/im/13#Insect#6#Centipede#20874281788_3e15c90a1c_o.jpg +DIS5K/DIS-TR/im/13#Insect#7#Dragonfly#14106671120_1b824d77e4_o.jpg +DIS5K/DIS-TR/im/13#Insect#8#Locust#21637491048_676ef7c9f7_o.jpg +DIS5K/DIS-TR/im/13#Insect#9#Mantis#1381120202_9dff6987b2_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#1#Cup#12812517473_327d6474b8_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#10#WineGlass#6402491641_389275d4d1_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#3#Hydrovalve#3129932040_8c05825004_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#4#Kitchenware#2881934780_87d5218ebb_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#4#Kitchenware#IMG_20210520_205527.jpg +DIS5K/DIS-TR/im/14#Kitchenware#6#Spoon#32989113501_b69eccf0df_o.jpg +DIS5K/DIS-TR/im/14#Kitchenware#8#SweetStand#2867322189_c56d1e0b87_o.jpg +DIS5K/DIS-TR/im/15#Machine#1#Gear#19217846720_f5f2807475_o.jpg +DIS5K/DIS-TR/im/15#Machine#2#Machine#1620160659_9571b7a7ab_o.jpg +DIS5K/DIS-TR/im/16#Music Instrument#2#Harp#6012801603_1a6e2c16a6_o.jpg +DIS5K/DIS-TR/im/16#Music Instrument#5#Trombone#8683292118_d223c17ccb_o.jpg +DIS5K/DIS-TR/im/16#Music Instrument#6#Trumpet#8393262740_b8c216142c_o.jpg +DIS5K/DIS-TR/im/16#Music Instrument#8#Violin#1511267391_40e4949d68_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#1#BabyCarriage#6989512997_38b3dbc88b_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#14627183228_b2d68cf501_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#2932226475_1b2403e549_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#5420155648_86459905b8_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#2#Bicycle#IMG_20210513_134904.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#3#Carriage#3311962551_6f211b7bd6_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#4#Cart#2609732026_baf7fff3a1_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#5#Handcart#5821282211_201cefeaf2_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#7#Mower#5779003232_3bb3ae531a_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#9#ShoppingCart#10051622843_ace07e32b8_o.jpg +DIS5K/DIS-TR/im/17#Non-motor Vehicle#9#ShoppingCart#8075259294_f23e243849_o.jpg +DIS5K/DIS-TR/im/18#Plant#2#Tree#44800999741_e377e16dbb_o.jpg +DIS5K/DIS-TR/im/2#Aircraft#1#Airplane#2631761913_3ac67d0223_o.jpg +DIS5K/DIS-TR/im/2#Aircraft#1#Airplane#37707911566_e908a261b6_o.jpg +DIS5K/DIS-TR/im/2#Aircraft#3#HangGlider#2557220131_b8506920c5_o.jpg +DIS5K/DIS-TR/im/2#Aircraft#4#Helicopter#6215659280_5dbd9b4546_o.jpg +DIS5K/DIS-TR/im/2#Aircraft#6#Parachute#20185790493_e56fcaf8c6_o.jpg +DIS5K/DIS-TR/im/20#Sports#1#Archery#3871269982_ae4c59a7eb_o.jpg +DIS5K/DIS-TR/im/20#Sports#9#RockClimbing#9662433268_51299bc50e_o.jpg +DIS5K/DIS-TR/im/21#Tool#14#Sword#26258479365_2950d7fa37_o.jpg +DIS5K/DIS-TR/im/21#Tool#15#Tapeline#15505703447_e0fdeaa5a6_o.jpg +DIS5K/DIS-TR/im/21#Tool#4#Flag#26678602024_9b665742de_o.jpg +DIS5K/DIS-TR/im/21#Tool#4#Flag#5774823110_d603ce3cc8_o.jpg +DIS5K/DIS-TR/im/21#Tool#5#Hook#6867989814_dba18d673c_o.jpg +DIS5K/DIS-TR/im/22#Weapon#4#Rifle#4451713125_cd91719189_o.jpg +DIS5K/DIS-TR/im/3#Aquatic#2#Seadragon#4910944581_913139b238_o.jpg +DIS5K/DIS-TR/im/4#Architecture#12#Scaffold#3661448960_8aff24cc4d_o.jpg +DIS5K/DIS-TR/im/4#Architecture#13#Sculpture#6385318715_9a88d4eba7_o.jpg +DIS5K/DIS-TR/im/4#Architecture#17#Well#5011603479_75cf42808a_o.jpg +DIS5K/DIS-TR/im/5#Artifact#2#Cage#4892828841_7f1bc05682_o.jpg +DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#15404211628_9e9ff2ce2e_o.jpg +DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#3200169865_7c84cfcccf_o.jpg +DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#5859295071_c217e7c22f_o.jpg +DIS5K/DIS-TR/im/6#Automobile#10#SteeringWheel#17200338026_f1e2122d8e_o.jpg +DIS5K/DIS-TR/im/6#Automobile#3#Car#3780893425_1a7d275e09_o.jpg +DIS5K/DIS-TR/im/6#Automobile#5#Crane#15282506502_1b1132a7c3_o.jpg +DIS5K/DIS-TR/im/7#Electrical#1#Cable#16767791875_8e6df41752_o.jpg +DIS5K/DIS-TR/im/7#Electrical#1#Cable#3291433361_38747324c4_o.jpg +DIS5K/DIS-TR/im/7#Electrical#1#Cable#4195104238_12a754c61a_o.jpg +DIS5K/DIS-TR/im/7#Electrical#1#Cable#49645415132_61e5664ecf_o.jpg +DIS5K/DIS-TR/im/7#Electrical#1#Cable#IMG_20210521_232406.jpg +DIS5K/DIS-TR/im/7#Electrical#10#UtilityPole#3298312021_92f431e3e9_o.jpg +DIS5K/DIS-TR/im/7#Electrical#10#UtilityPole#47950134773_fbfff63f4e_o.jpg +DIS5K/DIS-TR/im/7#Electrical#11#VacuumCleaner#5448403677_6a29e21881_o.jpg +DIS5K/DIS-TR/im/7#Electrical#2#CeilingLamp#611568868_680ed5d39f_o.jpg +DIS5K/DIS-TR/im/7#Electrical#3#Fan#3391683115_990525a693_o.jpg +DIS5K/DIS-TR/im/7#Electrical#6#StreetLamp#150049122_0692266618_o.jpg +DIS5K/DIS-TR/im/7#Electrical#9#TransmissionTower#31433908671_7e7e277dfe_o.jpg +DIS5K/DIS-TR/im/8#Electronics#1#Antenna#8727884873_e0622ee5c4_o.jpg +DIS5K/DIS-TR/im/8#Electronics#2#Camcorder#4172690390_7e5f280ace_o.jpg +DIS5K/DIS-TR/im/8#Electronics#3#Earphone#413984555_f290febdf5_o.jpg +DIS5K/DIS-TR/im/8#Electronics#5#Headset#30574225373_3717ed9fa4_o.jpg +DIS5K/DIS-TR/im/8#Electronics#6#Microphone#538006482_4aae4f5bd6_o.jpg +DIS5K/DIS-TR/im/8#Electronics#9#MusicPlayer#1306012480_2ea80d2afd_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#1#GymEquipment#33071754135_8f3195cbd1_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#2#KidsPlayground#2305807849_be53d724ea_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#2#KidsPlayground#3862040422_5bbf903204_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#3#OutdoorFitnessEquipment#10814507005_3dacaa28b3_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#4#FerrisWheel#81640293_4b0ee62040_o.jpg +DIS5K/DIS-TR/im/9#Entertainment#5#Swing#49867339188_08073f4b76_o.jpg +DIS5K/DIS-VD/im/1#Accessories#1#Bag#6815402415_e01c1a41e6_o.jpg +DIS5K/DIS-VD/im/1#Accessories#5#Jewelry#2744070193_1486582e8d_o.jpg +DIS5K/DIS-VD/im/10#Frame#1#BasketballHoop#IMG_20210521_232650.jpg +DIS5K/DIS-VD/im/10#Frame#5#Rack#6156611713_49ebf12b1e_o.jpg +DIS5K/DIS-VD/im/11#Furniture#11#Handrail#3276641240_1b84b5af85_o.jpg +DIS5K/DIS-VD/im/11#Furniture#13#Ladder#33423266_5391cf47e9_o.jpg +DIS5K/DIS-VD/im/11#Furniture#17#Table#3725111755_4fc101e7ab_o.jpg +DIS5K/DIS-VD/im/11#Furniture#2#Bench#35556410400_7235b58070_o.jpg +DIS5K/DIS-VD/im/11#Furniture#4#Chair#3301769985_e49de6739f_o.jpg +DIS5K/DIS-VD/im/11#Furniture#6#DentalChair#23811071619_2a95c3a688_o.jpg +DIS5K/DIS-VD/im/11#Furniture#9#Easel#8322807354_df6d56542e_o.jpg +DIS5K/DIS-VD/im/13#Insect#10#Mosquito#12391674863_0cdf430d3f_o.jpg +DIS5K/DIS-VD/im/13#Insect#7#Dragonfly#14693028899_344ea118f2_o.jpg +DIS5K/DIS-VD/im/14#Kitchenware#10#WineGlass#4450148455_8f460f541a_o.jpg +DIS5K/DIS-VD/im/14#Kitchenware#3#Hydrovalve#IMG_20210520_203410.jpg +DIS5K/DIS-VD/im/15#Machine#3#PlowHarrow#34521712846_df4babb024_o.jpg +DIS5K/DIS-VD/im/16#Music Instrument#5#Trombone#6222242743_e7189405cd_o.jpg +DIS5K/DIS-VD/im/17#Non-motor Vehicle#12#Wheel#25677578797_ea47e1d9e8_o.jpg +DIS5K/DIS-VD/im/17#Non-motor Vehicle#2#Bicycle#5153474856_21560b081b_o.jpg +DIS5K/DIS-VD/im/17#Non-motor Vehicle#7#Mower#16992510572_8a6ff27398_o.jpg +DIS5K/DIS-VD/im/19#Ship#2#Canoe#40571458163_7faf8b73d9_o.jpg +DIS5K/DIS-VD/im/2#Aircraft#1#Airplane#4270588164_66a619e834_o.jpg +DIS5K/DIS-VD/im/2#Aircraft#4#Helicopter#86789665_650b94b2ee_o.jpg +DIS5K/DIS-VD/im/20#Sports#14#Wakesurfing#5589577652_5061c168d2_o.jpg +DIS5K/DIS-VD/im/21#Tool#10#Spade#37018312543_63b21b0784_o.jpg +DIS5K/DIS-VD/im/21#Tool#14#Sword#24789047250_42df9bf422_o.jpg +DIS5K/DIS-VD/im/21#Tool#18#Umbrella#IMG_20210513_140445.jpg +DIS5K/DIS-VD/im/21#Tool#6#Key#43939732715_5a6e28b518_o.jpg +DIS5K/DIS-VD/im/22#Weapon#1#Cannon#12758066705_90b54295e7_o.jpg +DIS5K/DIS-VD/im/22#Weapon#4#Rifle#8019368790_fb6dc469a7_o.jpg +DIS5K/DIS-VD/im/3#Aquatic#5#Shrimp#2582833427_7a99e7356e_o.jpg +DIS5K/DIS-VD/im/4#Architecture#12#Scaffold#1013402687_590750354e_o.jpg +DIS5K/DIS-VD/im/4#Architecture#13#Sculpture#17176841759_272a3ed6e3_o.jpg +DIS5K/DIS-VD/im/4#Architecture#14#Stair#15079108505_0d11281624_o.jpg +DIS5K/DIS-VD/im/4#Architecture#19#Windmill#2928111082_ceb3051c04_o.jpg +DIS5K/DIS-VD/im/4#Architecture#3#Crack#3551574032_17dd106d31_o.jpg +DIS5K/DIS-VD/im/4#Architecture#5#GasStation#4564307581_c3069bdc62_o.jpg +DIS5K/DIS-VD/im/4#Architecture#8#ObservationTower#2704526950_d4f0ddc807_o.jpg +DIS5K/DIS-VD/im/5#Artifact#3#Handcraft#10873642323_1bafce3aa5_o.jpg +DIS5K/DIS-VD/im/6#Automobile#11#Tractor#8594504006_0c2c557d85_o.jpg +DIS5K/DIS-VD/im/8#Electronics#3#Earphone#8106454803_1178d867cc_o.jpg \ No newline at end of file diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__init__.py b/third_party/ml-depth-pro/src/depth_pro/network/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..74882c0eacac7e9bde0e13008fab31037eae671d --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +"""Depth Pro network blocks.""" diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed46f0783bee72234e3b0280a8d6989e10312902 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b895ea4297037d59c2a4edcfa82a9d22820face Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/__init__.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba7e28a46beb319e9b98f170304d7b51f2de0dde Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d32950a4ac4cccd7acb70d0e4cc960091c324bd1 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/decoder.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..38f73d2f3732e132e5e9d6af24705b7fa381f64c Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..938b3e49245e57b77ce7567910a675f4c1392179 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/encoder.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fdcd268b85d584e9b64a5b05ffcab603e89491d8 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6f6e47ea7b6a689cdceeb95187e57a0ec4de4e00 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/fov.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..680acb6239525c0f0238c5c97af1c7c45e5246d4 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..570fb7de7c7a5e54a04bb436793922cfe2e8d348 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-311.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..044e3ddb3178b7f9de0632608379ba20458473a7 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-311.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c218a9010e592f3d3bdd3f892f59942d771bd034 Binary files /dev/null and b/third_party/ml-depth-pro/src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc differ diff --git a/third_party/ml-depth-pro/src/depth_pro/network/decoder.py b/third_party/ml-depth-pro/src/depth_pro/network/decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..770665fcd3e47948388d5da43487d9e75dc0f3fc --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/decoder.py @@ -0,0 +1,206 @@ +"""Copyright (C) 2024 Apple Inc. All Rights Reserved. + +Dense Prediction Transformer Decoder architecture. + +Implements a variant of Vision Transformers for Dense Prediction, https://arxiv.org/abs/2103.13413 +""" + +from __future__ import annotations + +from typing import Iterable + +import torch +from torch import nn + + +class MultiresConvDecoder(nn.Module): + """Decoder for multi-resolution encodings.""" + + def __init__( + self, + dims_encoder: Iterable[int], + dim_decoder: int, + ): + """Initialize multiresolution convolutional decoder. + + Args: + ---- + dims_encoder: Expected dims at each level from the encoder. + dim_decoder: Dim of decoder features. + + """ + super().__init__() + self.dims_encoder = list(dims_encoder) + self.dim_decoder = dim_decoder + self.dim_out = dim_decoder + + num_encoders = len(self.dims_encoder) + + # At the highest resolution, i.e. level 0, we apply projection w/ 1x1 convolution + # when the dimensions mismatch. Otherwise we do not do anything, which is + # the default behavior of monodepth. + conv0 = ( + nn.Conv2d(self.dims_encoder[0], dim_decoder, kernel_size=1, bias=False) + if self.dims_encoder[0] != dim_decoder + else nn.Identity() + ) + + convs = [conv0] + for i in range(1, num_encoders): + convs.append( + nn.Conv2d( + self.dims_encoder[i], + dim_decoder, + kernel_size=3, + stride=1, + padding=1, + bias=False, + ) + ) + + self.convs = nn.ModuleList(convs) + + fusions = [] + for i in range(num_encoders): + fusions.append( + FeatureFusionBlock2d( + num_features=dim_decoder, + deconv=(i != 0), + batch_norm=False, + ) + ) + self.fusions = nn.ModuleList(fusions) + + def forward(self, encodings: torch.Tensor) -> torch.Tensor: + """Decode the multi-resolution encodings.""" + num_levels = len(encodings) + num_encoders = len(self.dims_encoder) + + if num_levels != num_encoders: + raise ValueError( + f"Got encoder output levels={num_levels}, expected levels={num_encoders+1}." + ) + + # Project features of different encoder dims to the same decoder dim. + # Fuse features from the lowest resolution (num_levels-1) + # to the highest (0). + features = self.convs[-1](encodings[-1]) + lowres_features = features + features = self.fusions[-1](features) + for i in range(num_levels - 2, -1, -1): + features_i = self.convs[i](encodings[i]) + features = self.fusions[i](features, features_i) + return features, lowres_features + + +class ResidualBlock(nn.Module): + """Generic implementation of residual blocks. + + This implements a generic residual block from + He et al. - Identity Mappings in Deep Residual Networks (2016), + https://arxiv.org/abs/1603.05027 + which can be further customized via factory functions. + """ + + def __init__(self, residual: nn.Module, shortcut: nn.Module | None = None) -> None: + """Initialize ResidualBlock.""" + super().__init__() + self.residual = residual + self.shortcut = shortcut + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Apply residual block.""" + delta_x = self.residual(x) + + if self.shortcut is not None: + x = self.shortcut(x) + + return x + delta_x + + +class FeatureFusionBlock2d(nn.Module): + """Feature fusion for DPT.""" + + def __init__( + self, + num_features: int, + deconv: bool = False, + batch_norm: bool = False, + ): + """Initialize feature fusion block. + + Args: + ---- + num_features: Input and output dimensions. + deconv: Whether to use deconv before the final output conv. + batch_norm: Whether to use batch normalization in resnet blocks. + + """ + super().__init__() + + self.resnet1 = self._residual_block(num_features, batch_norm) + self.resnet2 = self._residual_block(num_features, batch_norm) + + self.use_deconv = deconv + if deconv: + self.deconv = nn.ConvTranspose2d( + in_channels=num_features, + out_channels=num_features, + kernel_size=2, + stride=2, + padding=0, + bias=False, + ) + + self.out_conv = nn.Conv2d( + num_features, + num_features, + kernel_size=1, + stride=1, + padding=0, + bias=True, + ) + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x0: torch.Tensor, x1: torch.Tensor | None = None) -> torch.Tensor: + """Process and fuse input features.""" + x = x0 + + if x1 is not None: + res = self.resnet1(x1) + x = self.skip_add.add(x, res) + + x = self.resnet2(x) + + if self.use_deconv: + x = self.deconv(x) + x = self.out_conv(x) + + return x + + @staticmethod + def _residual_block(num_features: int, batch_norm: bool): + """Create a residual block.""" + + def _create_block(dim: int, batch_norm: bool) -> list[nn.Module]: + layers = [ + nn.ReLU(False), + nn.Conv2d( + num_features, + num_features, + kernel_size=3, + stride=1, + padding=1, + bias=not batch_norm, + ), + ] + if batch_norm: + layers.append(nn.BatchNorm2d(dim)) + return layers + + residual = nn.Sequential( + *_create_block(dim=num_features, batch_norm=batch_norm), + *_create_block(dim=num_features, batch_norm=batch_norm), + ) + return ResidualBlock(residual) diff --git a/third_party/ml-depth-pro/src/depth_pro/network/encoder.py b/third_party/ml-depth-pro/src/depth_pro/network/encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..a3a3da17d47bf91662463520afaf413f08676c3b --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/encoder.py @@ -0,0 +1,332 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +# DepthProEncoder combining patch and image encoders. + +from __future__ import annotations + +import math +from typing import Iterable, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class DepthProEncoder(nn.Module): + """DepthPro Encoder. + + An encoder aimed at creating multi-resolution encodings from Vision Transformers. + """ + + def __init__( + self, + dims_encoder: Iterable[int], + patch_encoder: nn.Module, + image_encoder: nn.Module, + hook_block_ids: Iterable[int], + decoder_features: int, + ): + """Initialize DepthProEncoder. + + The framework + 1. creates an image pyramid, + 2. generates overlapping patches with a sliding window at each pyramid level, + 3. creates batched encodings via vision transformer backbones, + 4. produces multi-resolution encodings. + + Args: + ---- + img_size: Backbone image resolution. + dims_encoder: Dimensions of the encoder at different layers. + patch_encoder: Backbone used for patches. + image_encoder: Backbone used for global image encoder. + hook_block_ids: Hooks to obtain intermediate features for the patch encoder model. + decoder_features: Number of feature output in the decoder. + + """ + super().__init__() + + self.dims_encoder = list(dims_encoder) + self.patch_encoder = patch_encoder + self.image_encoder = image_encoder + self.hook_block_ids = list(hook_block_ids) + + patch_encoder_embed_dim = patch_encoder.embed_dim + image_encoder_embed_dim = image_encoder.embed_dim + + self.out_size = int( + patch_encoder.patch_embed.img_size[0] // patch_encoder.patch_embed.patch_size[0] + ) + + def _create_project_upsample_block( + dim_in: int, + dim_out: int, + upsample_layers: int, + dim_int: Optional[int] = None, + ) -> nn.Module: + if dim_int is None: + dim_int = dim_out + # Projection. + blocks = [ + nn.Conv2d( + in_channels=dim_in, + out_channels=dim_int, + kernel_size=1, + stride=1, + padding=0, + bias=False, + ) + ] + + # Upsampling. + blocks += [ + nn.ConvTranspose2d( + in_channels=dim_int if i == 0 else dim_out, + out_channels=dim_out, + kernel_size=2, + stride=2, + padding=0, + bias=False, + ) + for i in range(upsample_layers) + ] + + return nn.Sequential(*blocks) + + self.upsample_latent0 = _create_project_upsample_block( + dim_in=patch_encoder_embed_dim, + dim_int=self.dims_encoder[0], + dim_out=decoder_features, + upsample_layers=3, + ) + self.upsample_latent1 = _create_project_upsample_block( + dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[0], upsample_layers=2 + ) + + self.upsample0 = _create_project_upsample_block( + dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[1], upsample_layers=1 + ) + self.upsample1 = _create_project_upsample_block( + dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[2], upsample_layers=1 + ) + self.upsample2 = _create_project_upsample_block( + dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[3], upsample_layers=1 + ) + + self.upsample_lowres = nn.ConvTranspose2d( + in_channels=image_encoder_embed_dim, + out_channels=self.dims_encoder[3], + kernel_size=2, + stride=2, + padding=0, + bias=True, + ) + self.fuse_lowres = nn.Conv2d( + in_channels=(self.dims_encoder[3] + self.dims_encoder[3]), + out_channels=self.dims_encoder[3], + kernel_size=1, + stride=1, + padding=0, + bias=True, + ) + + # Obtain intermediate outputs of the blocks. + self.patch_encoder.blocks[self.hook_block_ids[0]].register_forward_hook( + self._hook0 + ) + self.patch_encoder.blocks[self.hook_block_ids[1]].register_forward_hook( + self._hook1 + ) + + def _hook0(self, model, input, output): + self.backbone_highres_hook0 = output + + def _hook1(self, model, input, output): + self.backbone_highres_hook1 = output + + @property + def img_size(self) -> int: + """Return the full image size of the SPN network.""" + return self.patch_encoder.patch_embed.img_size[0] * 4 + + def _create_pyramid( + self, x: torch.Tensor + ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Create a 3-level image pyramid.""" + # Original resolution: 1536 by default. + x0 = x + + # Middle resolution: 768 by default. + x1 = F.interpolate( + x, size=None, scale_factor=0.5, mode="bilinear", align_corners=False + ) + + # Low resolution: 384 by default, corresponding to the backbone resolution. + x2 = F.interpolate( + x, size=None, scale_factor=0.25, mode="bilinear", align_corners=False + ) + + return x0, x1, x2 + + def split(self, x: torch.Tensor, overlap_ratio: float = 0.25) -> torch.Tensor: + """Split the input into small patches with sliding window.""" + patch_size = 384 + patch_stride = int(patch_size * (1 - overlap_ratio)) + + image_size = x.shape[-1] + steps = int(math.ceil((image_size - patch_size) / patch_stride)) + 1 + + x_patch_list = [] + for j in range(steps): + j0 = j * patch_stride + j1 = j0 + patch_size + + for i in range(steps): + i0 = i * patch_stride + i1 = i0 + patch_size + x_patch_list.append(x[..., j0:j1, i0:i1]) + + return torch.cat(x_patch_list, dim=0) + + def merge(self, x: torch.Tensor, batch_size: int, padding: int = 3) -> torch.Tensor: + """Merge the patched input into a image with sliding window.""" + steps = int(math.sqrt(x.shape[0] // batch_size)) + + idx = 0 + + output_list = [] + for j in range(steps): + output_row_list = [] + for i in range(steps): + output = x[batch_size * idx : batch_size * (idx + 1)] + + if j != 0: + output = output[..., padding:, :] + if i != 0: + output = output[..., :, padding:] + if j != steps - 1: + output = output[..., :-padding, :] + if i != steps - 1: + output = output[..., :, :-padding] + + output_row_list.append(output) + idx += 1 + + output_row = torch.cat(output_row_list, dim=-1) + output_list.append(output_row) + output = torch.cat(output_list, dim=-2) + return output + + def reshape_feature( + self, embeddings: torch.Tensor, width, height, cls_token_offset=1 + ): + """Discard class token and reshape 1D feature map to a 2D grid.""" + b, hw, c = embeddings.shape + + # Remove class token. + if cls_token_offset > 0: + embeddings = embeddings[:, cls_token_offset:, :] + + # Shape: (batch, height, width, dim) -> (batch, dim, height, width) + embeddings = embeddings.reshape(b, height, width, c).permute(0, 3, 1, 2) + return embeddings + + def forward(self, x: torch.Tensor) -> list[torch.Tensor]: + """Encode input at multiple resolutions. + + Args: + ---- + x (torch.Tensor): Input image. + + Returns: + ------- + Multi resolution encoded features. + + """ + batch_size = x.shape[0] + + # Step 0: create a 3-level image pyramid. + x0, x1, x2 = self._create_pyramid(x) + + # Step 1: split to create batched overlapped mini-images at the backbone (BeiT/ViT/Dino) + # resolution. + # 5x5 @ 384x384 at the highest resolution (1536x1536). + x0_patches = self.split(x0, overlap_ratio=0.25) + # 3x3 @ 384x384 at the middle resolution (768x768). + x1_patches = self.split(x1, overlap_ratio=0.5) + # 1x1 # 384x384 at the lowest resolution (384x384). + x2_patches = x2 + + # Concatenate all the sliding window patches and form a batch of size (35=5x5+3x3+1x1). + x_pyramid_patches = torch.cat( + (x0_patches, x1_patches, x2_patches), + dim=0, + ) + + # Step 2: Run the backbone (BeiT) model and get the result of large batch size. + x_pyramid_encodings = self.patch_encoder(x_pyramid_patches) + x_pyramid_encodings = self.reshape_feature( + x_pyramid_encodings, self.out_size, self.out_size + ) + + # Step 3: merging. + # Merge highres latent encoding. + x_latent0_encodings = self.reshape_feature( + self.backbone_highres_hook0, + self.out_size, + self.out_size, + ) + x_latent0_features = self.merge( + x_latent0_encodings[: batch_size * 5 * 5], batch_size=batch_size, padding=3 + ) + + x_latent1_encodings = self.reshape_feature( + self.backbone_highres_hook1, + self.out_size, + self.out_size, + ) + x_latent1_features = self.merge( + x_latent1_encodings[: batch_size * 5 * 5], batch_size=batch_size, padding=3 + ) + + # Split the 35 batch size from pyramid encoding back into 5x5+3x3+1x1. + x0_encodings, x1_encodings, x2_encodings = torch.split( + x_pyramid_encodings, + [len(x0_patches), len(x1_patches), len(x2_patches)], + dim=0, + ) + + # 96x96 feature maps by merging 5x5 @ 24x24 patches with overlaps. + x0_features = self.merge(x0_encodings, batch_size=batch_size, padding=3) + + # 48x84 feature maps by merging 3x3 @ 24x24 patches with overlaps. + x1_features = self.merge(x1_encodings, batch_size=batch_size, padding=6) + + # 24x24 feature maps. + x2_features = x2_encodings + + # Apply the image encoder model. + x_global_features = self.image_encoder(x2_patches) + x_global_features = self.reshape_feature( + x_global_features, self.out_size, self.out_size + ) + + # Upsample feature maps. + x_latent0_features = self.upsample_latent0(x_latent0_features) + x_latent1_features = self.upsample_latent1(x_latent1_features) + + x0_features = self.upsample0(x0_features) + x1_features = self.upsample1(x1_features) + x2_features = self.upsample2(x2_features) + + x_global_features = self.upsample_lowres(x_global_features) + x_global_features = self.fuse_lowres( + torch.cat((x2_features, x_global_features), dim=1) + ) + + return [ + x_latent0_features, + x_latent1_features, + x0_features, + x1_features, + x_global_features, + ] diff --git a/third_party/ml-depth-pro/src/depth_pro/network/fov.py b/third_party/ml-depth-pro/src/depth_pro/network/fov.py new file mode 100644 index 0000000000000000000000000000000000000000..5900286509ca9535d4d29679b88055b5b6aed938 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/fov.py @@ -0,0 +1,82 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +# Field of View network architecture. + +from typing import Optional + +import torch +from torch import nn +from torch.nn import functional as F + + +class FOVNetwork(nn.Module): + """Field of View estimation network.""" + + def __init__( + self, + num_features: int, + fov_encoder: Optional[nn.Module] = None, + ): + """Initialize the Field of View estimation block. + + Args: + ---- + num_features: Number of features used. + fov_encoder: Optional encoder to bring additional network capacity. + + """ + super().__init__() + + # Create FOV head. + fov_head0 = [ + nn.Conv2d( + num_features, num_features // 2, kernel_size=3, stride=2, padding=1 + ), # 128 x 24 x 24 + nn.ReLU(True), + ] + fov_head = [ + nn.Conv2d( + num_features // 2, num_features // 4, kernel_size=3, stride=2, padding=1 + ), # 64 x 12 x 12 + nn.ReLU(True), + nn.Conv2d( + num_features // 4, num_features // 8, kernel_size=3, stride=2, padding=1 + ), # 32 x 6 x 6 + nn.ReLU(True), + nn.Conv2d(num_features // 8, 1, kernel_size=6, stride=1, padding=0), + ] + if fov_encoder is not None: + self.encoder = nn.Sequential( + fov_encoder, nn.Linear(fov_encoder.embed_dim, num_features // 2) + ) + self.downsample = nn.Sequential(*fov_head0) + else: + fov_head = fov_head0 + fov_head + self.head = nn.Sequential(*fov_head) + + def forward(self, x: torch.Tensor, lowres_feature: torch.Tensor) -> torch.Tensor: + """Forward the fov network. + + Args: + ---- + x (torch.Tensor): Input image. + lowres_feature (torch.Tensor): Low resolution feature. + + Returns: + ------- + The field of view tensor. + + """ + if hasattr(self, "encoder"): + x = F.interpolate( + x, + size=None, + scale_factor=0.25, + mode="bilinear", + align_corners=False, + ) + x = self.encoder(x)[:, 1:].permute(0, 2, 1) + lowres_feature = self.downsample(lowres_feature) + x = x.reshape_as(lowres_feature) + lowres_feature + else: + x = lowres_feature + return self.head(x) diff --git a/third_party/ml-depth-pro/src/depth_pro/network/vit.py b/third_party/ml-depth-pro/src/depth_pro/network/vit.py new file mode 100644 index 0000000000000000000000000000000000000000..c6c3768a1dcedccd99a58f9507f4edac3cde9da0 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/vit.py @@ -0,0 +1,123 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. + + +try: + from timm.layers import resample_abs_pos_embed +except ImportError as err: + print("ImportError: {0}".format(err)) +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint + + +def make_vit_b16_backbone( + model, + encoder_feature_dims, + encoder_feature_layer_ids, + vit_features, + start_index=1, + use_grad_checkpointing=False, +) -> nn.Module: + """Make a ViTb16 backbone for the DPT model.""" + if use_grad_checkpointing: + model.set_grad_checkpointing() + + vit_model = nn.Module() + vit_model.hooks = encoder_feature_layer_ids + vit_model.model = model + vit_model.features = encoder_feature_dims + vit_model.vit_features = vit_features + vit_model.model.start_index = start_index + vit_model.model.patch_size = vit_model.model.patch_embed.patch_size + vit_model.model.is_vit = True + vit_model.model.forward = vit_model.model.forward_features + + return vit_model + + +def forward_features_eva_fixed(self, x): + """Encode features.""" + x = self.patch_embed(x) + x, rot_pos_embed = self._pos_embed(x) + for blk in self.blocks: + if self.grad_checkpointing: + x = checkpoint(blk, x, rot_pos_embed) + else: + x = blk(x, rot_pos_embed) + x = self.norm(x) + return x + + +def resize_vit(model: nn.Module, img_size) -> nn.Module: + """Resample the ViT module to the given size.""" + patch_size = model.patch_embed.patch_size + model.patch_embed.img_size = img_size + grid_size = tuple([s // p for s, p in zip(img_size, patch_size)]) + model.patch_embed.grid_size = grid_size + + pos_embed = resample_abs_pos_embed( + model.pos_embed, + grid_size, # img_size + num_prefix_tokens=( + 0 if getattr(model, "no_embed_class", False) else model.num_prefix_tokens + ), + ) + model.pos_embed = torch.nn.Parameter(pos_embed) + + return model + + +def resize_patch_embed(model: nn.Module, new_patch_size=(16, 16)) -> nn.Module: + """Resample the ViT patch size to the given one.""" + # interpolate patch embedding + if hasattr(model, "patch_embed"): + old_patch_size = model.patch_embed.patch_size + + if ( + new_patch_size[0] != old_patch_size[0] + or new_patch_size[1] != old_patch_size[1] + ): + patch_embed_proj = model.patch_embed.proj.weight + patch_embed_proj_bias = model.patch_embed.proj.bias + use_bias = True if patch_embed_proj_bias is not None else False + _, _, h, w = patch_embed_proj.shape + + new_patch_embed_proj = torch.nn.functional.interpolate( + patch_embed_proj, + size=[new_patch_size[0], new_patch_size[1]], + mode="bicubic", + align_corners=False, + ) + new_patch_embed_proj = ( + new_patch_embed_proj * (h / new_patch_size[0]) * (w / new_patch_size[1]) + ) + + model.patch_embed.proj = nn.Conv2d( + in_channels=model.patch_embed.proj.in_channels, + out_channels=model.patch_embed.proj.out_channels, + kernel_size=new_patch_size, + stride=new_patch_size, + bias=use_bias, + ) + + if use_bias: + model.patch_embed.proj.bias = patch_embed_proj_bias + + model.patch_embed.proj.weight = torch.nn.Parameter(new_patch_embed_proj) + + model.patch_size = new_patch_size + model.patch_embed.patch_size = new_patch_size + model.patch_embed.img_size = ( + int( + model.patch_embed.img_size[0] + * new_patch_size[0] + / old_patch_size[0] + ), + int( + model.patch_embed.img_size[1] + * new_patch_size[1] + / old_patch_size[1] + ), + ) + + return model diff --git a/third_party/ml-depth-pro/src/depth_pro/network/vit_factory.py b/third_party/ml-depth-pro/src/depth_pro/network/vit_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..2cd899f650978043c2c83348670beaf597e9ca30 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/network/vit_factory.py @@ -0,0 +1,124 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. +# Factory functions to build and load ViT models. + + +from __future__ import annotations + +import logging +import types +from dataclasses import dataclass +from typing import Dict, List, Literal, Optional + +import timm +import torch +import torch.nn as nn + +from .vit import ( + forward_features_eva_fixed, + make_vit_b16_backbone, + resize_patch_embed, + resize_vit, +) + +LOGGER = logging.getLogger(__name__) + + +ViTPreset = Literal[ + "dinov2l16_384", +] + + +@dataclass +class ViTConfig: + """Configuration for ViT.""" + + in_chans: int + embed_dim: int + + img_size: int = 384 + patch_size: int = 16 + + # In case we need to rescale the backbone when loading from timm. + timm_preset: Optional[str] = None + timm_img_size: int = 384 + timm_patch_size: int = 16 + + # The following 2 parameters are only used by DPT. See dpt_factory.py. + encoder_feature_layer_ids: List[int] = None + """The layers in the Beit/ViT used to constructs encoder features for DPT.""" + encoder_feature_dims: List[int] = None + """The dimension of features of encoder layers from Beit/ViT features for DPT.""" + + +VIT_CONFIG_DICT: Dict[ViTPreset, ViTConfig] = { + "dinov2l16_384": ViTConfig( + in_chans=3, + embed_dim=1024, + encoder_feature_layer_ids=[5, 11, 17, 23], + encoder_feature_dims=[256, 512, 1024, 1024], + img_size=384, + patch_size=16, + timm_preset="vit_large_patch14_dinov2", + timm_img_size=518, + timm_patch_size=14, + ), +} + + +def create_vit( + preset: ViTPreset, + use_pretrained: bool = False, + checkpoint_uri: str | None = None, + use_grad_checkpointing: bool = False, +) -> nn.Module: + """Create and load a VIT backbone module. + + Args: + ---- + preset: The VIT preset to load the pre-defined config. + use_pretrained: Load pretrained weights if True, default is False. + checkpoint_uri: Checkpoint to load the wights from. + use_grad_checkpointing: Use grandient checkpointing. + + Returns: + ------- + A Torch ViT backbone module. + + """ + config = VIT_CONFIG_DICT[preset] + + img_size = (config.img_size, config.img_size) + patch_size = (config.patch_size, config.patch_size) + + if "eva02" in preset: + model = timm.create_model(config.timm_preset, pretrained=use_pretrained) + model.forward_features = types.MethodType(forward_features_eva_fixed, model) + else: + model = timm.create_model( + config.timm_preset, pretrained=use_pretrained, dynamic_img_size=True + ) + model = make_vit_b16_backbone( + model, + encoder_feature_dims=config.encoder_feature_dims, + encoder_feature_layer_ids=config.encoder_feature_layer_ids, + vit_features=config.embed_dim, + use_grad_checkpointing=use_grad_checkpointing, + ) + if config.patch_size != config.timm_patch_size: + model.model = resize_patch_embed(model.model, new_patch_size=patch_size) + if config.img_size != config.timm_img_size: + model.model = resize_vit(model.model, img_size=img_size) + + if checkpoint_uri is not None: + state_dict = torch.load(checkpoint_uri, map_location="cpu") + missing_keys, unexpected_keys = model.load_state_dict( + state_dict=state_dict, strict=False + ) + + if len(unexpected_keys) != 0: + raise KeyError(f"Found unexpected keys when loading vit: {unexpected_keys}") + if len(missing_keys) != 0: + raise KeyError(f"Keys are missing when loading vit: {missing_keys}") + + LOGGER.info(model) + return model.model diff --git a/third_party/ml-depth-pro/src/depth_pro/utils.py b/third_party/ml-depth-pro/src/depth_pro/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..0a401def2e1d6a2dd96b204e962569e9da5e0ef1 --- /dev/null +++ b/third_party/ml-depth-pro/src/depth_pro/utils.py @@ -0,0 +1,112 @@ +# Copyright (C) 2024 Apple Inc. All Rights Reserved. + +import logging +from pathlib import Path +from typing import Any, Dict, List, Tuple, Union + +import numpy as np +import pillow_heif +from PIL import ExifTags, Image, TiffTags +from pillow_heif import register_heif_opener + +register_heif_opener() +LOGGER = logging.getLogger(__name__) + + +def extract_exif(img_pil: Image) -> Dict[str, Any]: + """Return exif information as a dictionary. + + Args: + ---- + img_pil: A Pillow image. + + Returns: + ------- + A dictionary with extracted EXIF information. + + """ + # Get full exif description from get_ifd(0x8769): + # cf https://pillow.readthedocs.io/en/stable/releasenotes/8.2.0.html#image-getexif-exif-and-gps-ifd + img_exif = img_pil.getexif().get_ifd(0x8769) + exif_dict = {ExifTags.TAGS[k]: v for k, v in img_exif.items() if k in ExifTags.TAGS} + + tiff_tags = img_pil.getexif() + tiff_dict = { + TiffTags.TAGS_V2[k].name: v + for k, v in tiff_tags.items() + if k in TiffTags.TAGS_V2 + } + return {**exif_dict, **tiff_dict} + + +def fpx_from_f35(width: float, height: float, f_mm: float = 50) -> float: + """Convert a focal length given in mm (35mm film equivalent) to pixels.""" + return f_mm * np.sqrt(width**2.0 + height**2.0) / np.sqrt(36**2 + 24**2) + + +def load_rgb( + path: Union[Path, str], auto_rotate: bool = True, remove_alpha: bool = True +) -> Tuple[np.ndarray, List[bytes], float]: + """Load an RGB image. + + Args: + ---- + path: The url to the image to load. + auto_rotate: Rotate the image based on the EXIF data, default is True. + remove_alpha: Remove the alpha channel, default is True. + + Returns: + ------- + img: The image loaded as a numpy array. + icc_profile: The color profile of the image. + f_px: The optional focal length in pixels, extracting from the exif data. + + """ + LOGGER.debug(f"Loading image {path} ...") + + path = Path(path) + if path.suffix.lower() in [".heic"]: + heif_file = pillow_heif.open_heif(path, convert_hdr_to_8bit=True) + img_pil = heif_file.to_pillow() + else: + img_pil = Image.open(path) + + img_exif = extract_exif(img_pil) + icc_profile = img_pil.info.get("icc_profile", None) + + # Rotate the image. + if auto_rotate: + exif_orientation = img_exif.get("Orientation", 1) + if exif_orientation == 3: + img_pil = img_pil.transpose(Image.ROTATE_180) + elif exif_orientation == 6: + img_pil = img_pil.transpose(Image.ROTATE_270) + elif exif_orientation == 8: + img_pil = img_pil.transpose(Image.ROTATE_90) + elif exif_orientation != 1: + LOGGER.warning(f"Ignoring image orientation {exif_orientation}.") + + img = np.array(img_pil) + # Convert to RGB if single channel. + if img.ndim < 3 or img.shape[2] == 1: + img = np.dstack((img, img, img)) + + if remove_alpha: + img = img[:, :, :3] + + LOGGER.debug(f"\tHxW: {img.shape[0]}x{img.shape[1]}") + + # Extract the focal length from exif data. + f_35mm = img_exif.get( + "FocalLengthIn35mmFilm", + img_exif.get( + "FocalLenIn35mmFilm", img_exif.get("FocalLengthIn35mmFormat", None) + ), + ) + if f_35mm is not None and f_35mm > 0: + LOGGER.debug(f"\tfocal length @ 35mm film: {f_35mm}mm") + f_px = fpx_from_f35(img.shape[1], img.shape[0], f_35mm) + else: + f_px = None + + return img, icc_profile, f_px diff --git a/third_party/raft.py b/third_party/raft.py new file mode 100644 index 0000000000000000000000000000000000000000..51fdccb4563d2b721ece41ff248ae139ebb032bd --- /dev/null +++ b/third_party/raft.py @@ -0,0 +1,77 @@ + +import sys +import argparse +import torch +import json +from os.path import dirname, join +RAFT_PATH_ROOT = join(dirname(__file__), 'RAFT') +RAFT_PATH_CORE = join(RAFT_PATH_ROOT, 'core') +sys.path.append(RAFT_PATH_CORE) +from raft import RAFT, RAFT2 # nopep8 +from utils.utils import InputPadder # nopep8 + +# %% +# utility functions + +def json_to_args(json_path): + # return a argparse.Namespace object + with open(json_path, 'r') as f: + data = json.load(f) + args = argparse.Namespace() + args_dict = args.__dict__ + for key, value in data.items(): + args_dict[key] = value + return args + +def parse_args(parser): + entry = parser.parse_args(args=[]) + json_path = entry.cfg + args = json_to_args(json_path) + args_dict = args.__dict__ + for index, (key, value) in enumerate(vars(entry).items()): + args_dict[key] = value + return args + +def get_input_padder(shape): + return InputPadder(shape, mode='sintel') + + +def load_RAFT(model_path=None): + if model_path is None or 'M' not in model_path: # RAFT1 + parser = argparse.ArgumentParser() + parser.add_argument('--model', help="restore checkpoint", default=model_path) + parser.add_argument('--path', help="dataset for evaluation") + parser.add_argument('--small', action='store_true', help='use small model') + parser.add_argument('--mixed_precision', + action='store_true', help='use mixed precision') + parser.add_argument('--alternate_corr', action='store_true', + help='use efficient correlation implementation') + + # Set default value for --model if model_path is provided + args = parser.parse_args( + ['--model', model_path if model_path else join(RAFT_PATH_ROOT, 'models', 'raft-sintel.pth'), '--path', './']) + + net = RAFT(args) + else: # RAFT2 + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', help='experiment configure file name', default="third_party/RAFT/core/configs/congif_spring_M.json") + parser.add_argument('--model', help='checkpoint path', default=model_path) + parser.add_argument('--device', help='inference device', type=str, default='cpu') + args = parse_args(parser) + net = RAFT2(args) + + state_dict = torch.load(args.model) + print('Loaded pretrained RAFT model from', args.model) + new_state_dict = {} + for k in state_dict: + if 'module' in k: + name = k[7:] + else: + name = k + new_state_dict[name] = state_dict[k] + net.load_state_dict(new_state_dict) + return net.eval() + +if __name__ == "__main__": + net = load_RAFT(model_path='third_party/RAFT/models/Tartan-C-T432x960-M.pth') + print(net) \ No newline at end of file diff --git a/third_party/sam2/.clang-format b/third_party/sam2/.clang-format new file mode 100644 index 0000000000000000000000000000000000000000..39b1b3d603ed0cf6b7f94c9c08067f148f35613f --- /dev/null +++ b/third_party/sam2/.clang-format @@ -0,0 +1,85 @@ +AccessModifierOffset: -1 +AlignAfterOpenBracket: AlwaysBreak +AlignConsecutiveAssignments: false +AlignConsecutiveDeclarations: false +AlignEscapedNewlinesLeft: true +AlignOperands: false +AlignTrailingComments: false +AllowAllParametersOfDeclarationOnNextLine: false +AllowShortBlocksOnASingleLine: false +AllowShortCaseLabelsOnASingleLine: false +AllowShortFunctionsOnASingleLine: Empty +AllowShortIfStatementsOnASingleLine: false +AllowShortLoopsOnASingleLine: false +AlwaysBreakAfterReturnType: None +AlwaysBreakBeforeMultilineStrings: true +AlwaysBreakTemplateDeclarations: true +BinPackArguments: false +BinPackParameters: false +BraceWrapping: + AfterClass: false + AfterControlStatement: false + AfterEnum: false + AfterFunction: false + AfterNamespace: false + AfterObjCDeclaration: false + AfterStruct: false + AfterUnion: false + BeforeCatch: false + BeforeElse: false + IndentBraces: false +BreakBeforeBinaryOperators: None +BreakBeforeBraces: Attach +BreakBeforeTernaryOperators: true +BreakConstructorInitializersBeforeComma: false +BreakAfterJavaFieldAnnotations: false +BreakStringLiterals: false +ColumnLimit: 80 +CommentPragmas: '^ IWYU pragma:' +ConstructorInitializerAllOnOneLineOrOnePerLine: true +ConstructorInitializerIndentWidth: 4 +ContinuationIndentWidth: 4 +Cpp11BracedListStyle: true +DerivePointerAlignment: false +DisableFormat: false +ForEachMacros: [ FOR_EACH, FOR_EACH_R, FOR_EACH_RANGE, ] +IncludeCategories: + - Regex: '^<.*\.h(pp)?>' + Priority: 1 + - Regex: '^<.*' + Priority: 2 + - Regex: '.*' + Priority: 3 +IndentCaseLabels: true +IndentWidth: 2 +IndentWrappedFunctionNames: false +KeepEmptyLinesAtTheStartOfBlocks: false +MacroBlockBegin: '' +MacroBlockEnd: '' +MaxEmptyLinesToKeep: 1 +NamespaceIndentation: None +ObjCBlockIndentWidth: 2 +ObjCSpaceAfterProperty: false +ObjCSpaceBeforeProtocolList: false +PenaltyBreakBeforeFirstCallParameter: 1 +PenaltyBreakComment: 300 +PenaltyBreakFirstLessLess: 120 +PenaltyBreakString: 1000 +PenaltyExcessCharacter: 1000000 +PenaltyReturnTypeOnItsOwnLine: 200 +PointerAlignment: Left +ReflowComments: true +SortIncludes: true +SpaceAfterCStyleCast: false +SpaceBeforeAssignmentOperators: true +SpaceBeforeParens: ControlStatements +SpaceInEmptyParentheses: false +SpacesBeforeTrailingComments: 1 +SpacesInAngles: false +SpacesInContainerLiterals: true +SpacesInCStyleCastParentheses: false +SpacesInParentheses: false +SpacesInSquareBrackets: false +Standard: Cpp11 +TabWidth: 8 +UseTab: Never diff --git a/third_party/sam2/.github/workflows/check_fmt.yml b/third_party/sam2/.github/workflows/check_fmt.yml new file mode 100644 index 0000000000000000000000000000000000000000..0a29b884af2b5c0bdb71b607e7b8220e879755be --- /dev/null +++ b/third_party/sam2/.github/workflows/check_fmt.yml @@ -0,0 +1,17 @@ +name: SAM2/fmt +on: + pull_request: + branches: + - main +jobs: + ufmt_check: + runs-on: ubuntu-latest + steps: + - name: Check formatting + uses: omnilib/ufmt@action-v1 + with: + path: sam2 tools + version: "2.0.0b2" + python-version: "3.10" + black-version: "24.2.0" + usort-version: "1.0.2" diff --git a/third_party/sam2/.gitignore b/third_party/sam2/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..50b9875ec6bfb9f19f8875c18476c4a8fe370e42 --- /dev/null +++ b/third_party/sam2/.gitignore @@ -0,0 +1,10 @@ +.vscode/ +.DS_Store +__pycache__/ +*-checkpoint.ipynb +.venv +*.egg* +build/* +_C.* +outputs/* +checkpoints/*.pt diff --git a/third_party/sam2/.watchmanconfig b/third_party/sam2/.watchmanconfig new file mode 100644 index 0000000000000000000000000000000000000000..9e26dfeeb6e641a33dae4961196235bdb965b21b --- /dev/null +++ b/third_party/sam2/.watchmanconfig @@ -0,0 +1 @@ +{} \ No newline at end of file diff --git a/third_party/sam2/CODE_OF_CONDUCT.md b/third_party/sam2/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..08b500a221857ec3f451338e80b4a9ab1173a1af --- /dev/null +++ b/third_party/sam2/CODE_OF_CONDUCT.md @@ -0,0 +1,80 @@ +# Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to make participation in our project and +our community a harassment-free experience for everyone, regardless of age, body +size, disability, ethnicity, sex characteristics, gender identity and expression, +level of experience, education, socio-economic status, nationality, personal +appearance, race, religion, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment +include: + +* Using welcoming and inclusive language +* Being respectful of differing viewpoints and experiences +* Gracefully accepting constructive criticism +* Focusing on what is best for the community +* Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or + advances +* Trolling, insulting/derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or electronic + address, without explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable +behavior and are expected to take appropriate and fair corrective action in +response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or +reject comments, commits, code, wiki edits, issues, and other contributions +that are not aligned to this Code of Conduct, or to ban temporarily or +permanently any contributor for other behaviors that they deem inappropriate, +threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies within all project spaces, and it also applies when +an individual is representing the project or its community in public spaces. +Examples of representing a project or community include using an official +project e-mail address, posting via an official social media account, or acting +as an appointed representative at an online or offline event. Representation of +a project may be further defined and clarified by project maintainers. + +This Code of Conduct also applies outside the project spaces when there is a +reasonable belief that an individual's behavior may have a negative impact on +the project or its community. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported by contacting the project team at . All +complaints will be reviewed and investigated and will result in a response that +is deemed necessary and appropriate to the circumstances. The project team is +obligated to maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good +faith may face temporary or permanent repercussions as determined by other +members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, +available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html + +[homepage]: https://www.contributor-covenant.org + +For answers to common questions about this code of conduct, see +https://www.contributor-covenant.org/faq diff --git a/third_party/sam2/CONTRIBUTING.md b/third_party/sam2/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..ad15049f583e1bc9a418686493405875b98c7f0f --- /dev/null +++ b/third_party/sam2/CONTRIBUTING.md @@ -0,0 +1,31 @@ +# Contributing to segment-anything +We want to make contributing to this project as easy and transparent as +possible. + +## Pull Requests +We actively welcome your pull requests. + +1. Fork the repo and create your branch from `main`. +2. If you've added code that should be tested, add tests. +3. If you've changed APIs, update the documentation. +4. Ensure the test suite passes. +5. Make sure your code lints, using the `ufmt format` command. Linting requires `black==24.2.0`, `usort==1.0.2`, and `ufmt==2.0.0b2`, which can be installed via `pip install -e ".[dev]"`. +6. If you haven't already, complete the Contributor License Agreement ("CLA"). + +## Contributor License Agreement ("CLA") +In order to accept your pull request, we need you to submit a CLA. You only need +to do this once to work on any of Facebook's open source projects. + +Complete your CLA here: + +## Issues +We use GitHub issues to track public bugs. Please ensure your description is +clear and has sufficient instructions to be able to reproduce the issue. + +Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe +disclosure of security bugs. In those cases, please go through the process +outlined on that page and do not file a public issue. + +## License +By contributing to segment-anything, you agree that your contributions will be licensed +under the LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/INSTALL.md b/third_party/sam2/INSTALL.md new file mode 100644 index 0000000000000000000000000000000000000000..7f32564f7e83c149da8c5fd62d2060491e6f7bda --- /dev/null +++ b/third_party/sam2/INSTALL.md @@ -0,0 +1,189 @@ +## Installation + +### Requirements + +- Linux with Python ≥ 3.10, PyTorch ≥ 2.3.1 and [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation. Install them together at https://pytorch.org to ensure this. + * Note older versions of Python or PyTorch may also work. However, the versions above are strongly recommended to provide all features such as `torch.compile`. +- [CUDA toolkits](https://developer.nvidia.com/cuda-toolkit-archive) that match the CUDA version for your PyTorch installation. This should typically be CUDA 12.1 if you follow the default installation command. +- If you are installing on Windows, it's strongly recommended to use [Windows Subsystem for Linux (WSL)](https://learn.microsoft.com/en-us/windows/wsl/install) with Ubuntu. + +Then, install SAM 2 from the root of this repository via +```bash +pip install -e ".[notebooks]" +``` + +Note that you may skip building the SAM 2 CUDA extension during installation via environment variable `SAM2_BUILD_CUDA=0`, as follows: +```bash +# skip the SAM 2 CUDA extension +SAM2_BUILD_CUDA=0 pip install -e ".[notebooks]" +``` +This would also skip the post-processing step at runtime (removing small holes and sprinkles in the output masks, which requires the CUDA extension), but shouldn't affect the results in most cases. + +### Building the SAM 2 CUDA extension + +By default, we allow the installation to proceed even if the SAM 2 CUDA extension fails to build. (In this case, the build errors are hidden unless using `-v` for verbose output in `pip install`.) + +If you see a message like `Skipping the post-processing step due to the error above` at runtime or `Failed to build the SAM 2 CUDA extension due to the error above` during installation, it indicates that the SAM 2 CUDA extension failed to build in your environment. In this case, **you can still use SAM 2 for both image and video applications**. The post-processing step (removing small holes and sprinkles in the output masks) will be skipped, but this shouldn't affect the results in most cases. + +If you would like to enable this post-processing step, you can reinstall SAM 2 on a GPU machine with environment variable `SAM2_BUILD_ALLOW_ERRORS=0` to force building the CUDA extension (and raise errors if it fails to build), as follows +```bash +pip uninstall -y SAM-2 && \ +rm -f ./sam2/*.so && \ +SAM2_BUILD_ALLOW_ERRORS=0 pip install -v -e ".[notebooks]" +``` + +Note that PyTorch needs to be installed first before building the SAM 2 CUDA extension. It's also necessary to install [CUDA toolkits](https://developer.nvidia.com/cuda-toolkit-archive) that match the CUDA version for your PyTorch installation. (This should typically be CUDA 12.1 if you follow the default installation command.) After installing the CUDA toolkits, you can check its version via `nvcc --version`. + +Please check the section below on common installation issues if the CUDA extension fails to build during installation or load at runtime. + +### Common Installation Issues + +Click each issue for its solutions: + +
+ +I got `ImportError: cannot import name '_C' from 'sam2'` + +
+ +This is usually because you haven't run the `pip install -e ".[notebooks]"` step above or the installation failed. Please install SAM 2 first, and see the other issues if your installation fails. + +In some systems, you may need to run `python setup.py build_ext --inplace` in the SAM 2 repo root as suggested in https://github.com/facebookresearch/sam2/issues/77. +
+ +
+ +I got `MissingConfigException: Cannot find primary config 'configs/sam2.1/sam2.1_hiera_l.yaml'` + +
+ +This is usually because you haven't run the `pip install -e .` step above, so `sam2` isn't in your Python's `sys.path`. Please run this installation step. In case it still fails after the installation step, you may try manually adding the root of this repo to `PYTHONPATH` via +```bash +export SAM2_REPO_ROOT=/path/to/sam2 # path to this repo +export PYTHONPATH="${SAM2_REPO_ROOT}:${PYTHONPATH}" +``` +to manually add `sam2_configs` into your Python's `sys.path`. + +
+ +
+ +I got `RuntimeError: Error(s) in loading state_dict for SAM2Base` when loading the new SAM 2.1 checkpoints + +
+ +This is likely because you have installed a previous version of this repo, which doesn't have the new modules to support the SAM 2.1 checkpoints yet. Please try the following steps: + +1. pull the latest code from the `main` branch of this repo +2. run `pip uninstall -y SAM-2` to uninstall any previous installations +3. then install the latest repo again using `pip install -e ".[notebooks]"` + +In case the steps above still don't resolve the error, please try running in your Python environment the following +```python +from sam2.modeling import sam2_base + +print(sam2_base.__file__) +``` +and check whether the content in the printed local path of `sam2/modeling/sam2_base.py` matches the latest one in https://github.com/facebookresearch/sam2/blob/main/sam2/modeling/sam2_base.py (e.g. whether your local file has `no_obj_embed_spatial`) to indentify if you're still using a previous installation. + +
+ +
+ +My installation failed with `CUDA_HOME environment variable is not set` + +
+ +This usually happens because the installation step cannot find the CUDA toolkits (that contain the NVCC compiler) to build a custom CUDA kernel in SAM 2. Please install [CUDA toolkits](https://developer.nvidia.com/cuda-toolkit-archive) or the version that matches the CUDA version for your PyTorch installation. If the error persists after installing CUDA toolkits, you may explicitly specify `CUDA_HOME` via +``` +export CUDA_HOME=/usr/local/cuda # change to your CUDA toolkit path +``` +and rerun the installation. + +Also, you should make sure +``` +python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)' +``` +print `(True, a directory with cuda)` to verify that the CUDA toolkits are correctly set up. + +If you are still having problems after verifying that the CUDA toolkit is installed and the `CUDA_HOME` environment variable is set properly, you may have to add the `--no-build-isolation` flag to the pip command: +``` +pip install --no-build-isolation -e . +``` + +
+ +
+ +I got `undefined symbol: _ZN3c1015SmallVectorBaseIjE8grow_podEPKvmm` (or similar errors) + +
+ +This usually happens because you have multiple versions of dependencies (PyTorch or CUDA) in your environment. During installation, the SAM 2 library is compiled against one version library while at run time it links against another version. This might be due to that you have different versions of PyTorch or CUDA installed separately via `pip` or `conda`. You may delete one of the duplicates to only keep a single PyTorch and CUDA version. + +In particular, if you have a lower PyTorch version than 2.3.1, it's recommended to upgrade to PyTorch 2.3.1 or higher first. Otherwise, the installation script will try to upgrade to the latest PyTorch using `pip`, which could sometimes lead to duplicated PyTorch installation if you have previously installed another PyTorch version using `conda`. + +We have been building SAM 2 against PyTorch 2.3.1 internally. However, a few user comments (e.g. https://github.com/facebookresearch/sam2/issues/22, https://github.com/facebookresearch/sam2/issues/14) suggested that downgrading to PyTorch 2.1.0 might resolve this problem. In case the error persists, you may try changing the restriction from `torch>=2.3.1` to `torch>=2.1.0` in both [`pyproject.toml`](pyproject.toml) and [`setup.py`](setup.py) to allow PyTorch 2.1.0. +
+ +
+ +I got `CUDA error: no kernel image is available for execution on the device` + +
+ +A possible cause could be that the CUDA kernel is somehow not compiled towards your GPU's CUDA [capability](https://developer.nvidia.com/cuda-gpus). This could happen if the installation is done in an environment different from the runtime (e.g. in a slurm system). + +You can try pulling the latest code from the SAM 2 repo and running the following +``` +export TORCH_CUDA_ARCH_LIST=9.0 8.0 8.6 8.9 7.0 7.2 7.5 6.0` +``` +to manually specify the CUDA capability in the compilation target that matches your GPU. +
+ +
+ +I got `RuntimeError: No available kernel. Aborting execution.` (or similar errors) + +
+ +This is probably because your machine doesn't have a GPU or a compatible PyTorch version for Flash Attention (see also https://discuss.pytorch.org/t/using-f-scaled-dot-product-attention-gives-the-error-runtimeerror-no-available-kernel-aborting-execution/180900 for a discussion in PyTorch forum). You may be able to resolve this error by replacing the line +```python +OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() +``` +in [`sam2/modeling/sam/transformer.py`](sam2/modeling/sam/transformer.py) with +```python +OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True +``` +to relax the attention kernel setting and use other kernels than Flash Attention. +
+ +
+ +I got `Error compiling objects for extension` + +
+ +You may see error log of: +> unsupported Microsoft Visual Studio version! Only the versions between 2017 and 2022 (inclusive) are supported! The nvcc flag '-allow-unsupported-compiler' can be used to override this version check; however, using an unsupported host compiler may cause compilation failure or incorrect run time execution. Use at your own risk. + +This is probably because your versions of CUDA and Visual Studio are incompatible. (see also https://stackoverflow.com/questions/78515942/cuda-compatibility-with-visual-studio-2022-version-17-10 for a discussion in stackoverflow).
+You may be able to fix this by adding the `-allow-unsupported-compiler` argument to `nvcc` after L48 in the [setup.py](https://github.com/facebookresearch/sam2/blob/main/setup.py).
+After adding the argument, `get_extension()` will look like this: +```python +def get_extensions(): + srcs = ["sam2/csrc/connected_components.cu"] + compile_args = { + "cxx": [], + "nvcc": [ + "-DCUDA_HAS_FP16=1", + "-D__CUDA_NO_HALF_OPERATORS__", + "-D__CUDA_NO_HALF_CONVERSIONS__", + "-D__CUDA_NO_HALF2_OPERATORS__", + "-allow-unsupported-compiler" # Add this argument + ], + } + ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)] + return ext_modules +``` +
diff --git a/third_party/sam2/LICENSE b/third_party/sam2/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/third_party/sam2/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/third_party/sam2/LICENSE_cctorch b/third_party/sam2/LICENSE_cctorch new file mode 100644 index 0000000000000000000000000000000000000000..23da14a65aad4c5bac18061b80ae6040bb7d2c8c --- /dev/null +++ b/third_party/sam2/LICENSE_cctorch @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2020, the respective contributors, as shown by the AUTHORS file. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/third_party/sam2/MANIFEST.in b/third_party/sam2/MANIFEST.in new file mode 100644 index 0000000000000000000000000000000000000000..794311fd9854453b134c828c0cb241a7cfdbfc65 --- /dev/null +++ b/third_party/sam2/MANIFEST.in @@ -0,0 +1,7 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +recursive-include sam2 *.yaml #include all config files diff --git a/third_party/sam2/README.md b/third_party/sam2/README.md new file mode 100644 index 0000000000000000000000000000000000000000..65654f5a00b7505493b6254b155c8a8e69145d34 --- /dev/null +++ b/third_party/sam2/README.md @@ -0,0 +1,219 @@ +# SAM 2: Segment Anything in Images and Videos + +**[AI at Meta, FAIR](https://ai.meta.com/research/)** + +[Nikhila Ravi](https://nikhilaravi.com/), [Valentin Gabeur](https://gabeur.github.io/), [Yuan-Ting Hu](https://scholar.google.com/citations?user=E8DVVYQAAAAJ&hl=en), [Ronghang Hu](https://ronghanghu.com/), [Chaitanya Ryali](https://scholar.google.com/citations?user=4LWx24UAAAAJ&hl=en), [Tengyu Ma](https://scholar.google.com/citations?user=VeTSl0wAAAAJ&hl=en), [Haitham Khedr](https://hkhedr.com/), [Roman Rädle](https://scholar.google.de/citations?user=Tpt57v0AAAAJ&hl=en), [Chloe Rolland](https://scholar.google.com/citations?hl=fr&user=n-SnMhoAAAAJ), [Laura Gustafson](https://scholar.google.com/citations?user=c8IpF9gAAAAJ&hl=en), [Eric Mintun](https://ericmintun.github.io/), [Junting Pan](https://junting.github.io/), [Kalyan Vasudev Alwala](https://scholar.google.co.in/citations?user=m34oaWEAAAAJ&hl=en), [Nicolas Carion](https://www.nicolascarion.com/), [Chao-Yuan Wu](https://chaoyuan.org/), [Ross Girshick](https://www.rossgirshick.info/), [Piotr Dollár](https://pdollar.github.io/), [Christoph Feichtenhofer](https://feichtenhofer.github.io/) + +[[`Paper`](https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/)] [[`Project`](https://ai.meta.com/sam2)] [[`Demo`](https://sam2.metademolab.com/)] [[`Dataset`](https://ai.meta.com/datasets/segment-anything-video)] [[`Blog`](https://ai.meta.com/blog/segment-anything-2)] [[`BibTeX`](#citing-sam-2)] + +![SAM 2 architecture](assets/model_diagram.png?raw=true) + +**Segment Anything Model 2 (SAM 2)** is a foundation model towards solving promptable visual segmentation in images and videos. We extend SAM to video by considering images as a video with a single frame. The model design is a simple transformer architecture with streaming memory for real-time video processing. We build a model-in-the-loop data engine, which improves model and data via user interaction, to collect [**our SA-V dataset**](https://ai.meta.com/datasets/segment-anything-video), the largest video segmentation dataset to date. SAM 2 trained on our data provides strong performance across a wide range of tasks and visual domains. + +![SA-V dataset](assets/sa_v_dataset.jpg?raw=true) + +## Latest updates + +**09/30/2024 -- SAM 2.1 Developer Suite (new checkpoints, training code, web demo) is released** + +- A new suite of improved model checkpoints (denoted as **SAM 2.1**) are released. See [Model Description](#model-description) for details. + * To use the new SAM 2.1 checkpoints, you need the latest model code from this repo. If you have installed an earlier version of this repo, please first uninstall the previous version via `pip uninstall SAM-2`, pull the latest code from this repo (with `git pull`), and then reinstall the repo following [Installation](#installation) below. +- The training (and fine-tuning) code has been released. See [`training/README.md`](training/README.md) on how to get started. +- The frontend + backend code for the SAM 2 web demo has been released. See [`demo/README.md`](demo/README.md) for details. + +## Installation + +SAM 2 needs to be installed first before use. The code requires `python>=3.10`, as well as `torch>=2.3.1` and `torchvision>=0.18.1`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. You can install SAM 2 on a GPU machine using: + +```bash +git clone https://github.com/facebookresearch/sam2.git && cd sam2 + +pip install -e . +``` +If you are installing on Windows, it's strongly recommended to use [Windows Subsystem for Linux (WSL)](https://learn.microsoft.com/en-us/windows/wsl/install) with Ubuntu. + +To use the SAM 2 predictor and run the example notebooks, `jupyter` and `matplotlib` are required and can be installed by: + +```bash +pip install -e ".[notebooks]" +``` + +Note: +1. It's recommended to create a new Python environment via [Anaconda](https://www.anaconda.com/) for this installation and install PyTorch 2.3.1 (or higher) via `pip` following https://pytorch.org/. If you have a PyTorch version lower than 2.3.1 in your current environment, the installation command above will try to upgrade it to the latest PyTorch version using `pip`. +2. The step above requires compiling a custom CUDA kernel with the `nvcc` compiler. If it isn't already available on your machine, please install the [CUDA toolkits](https://developer.nvidia.com/cuda-toolkit-archive) with a version that matches your PyTorch CUDA version. +3. If you see a message like `Failed to build the SAM 2 CUDA extension` during installation, you can ignore it and still use SAM 2 (some post-processing functionality may be limited, but it doesn't affect the results in most cases). + +Please see [`INSTALL.md`](./INSTALL.md) for FAQs on potential issues and solutions. + +## Getting Started + +### Download Checkpoints + +First, we need to download a model checkpoint. All the model checkpoints can be downloaded by running: + +```bash +cd checkpoints && \ +./download_ckpts.sh && \ +cd .. +``` + +or individually from: + +- [sam2.1_hiera_tiny.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt) +- [sam2.1_hiera_small.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt) +- [sam2.1_hiera_base_plus.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt) +- [sam2.1_hiera_large.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt) + +(note that these are the improved checkpoints denoted as SAM 2.1; see [Model Description](#model-description) for details.) + +Then SAM 2 can be used in a few lines as follows for image and video prediction. + +### Image prediction + +SAM 2 has all the capabilities of [SAM](https://github.com/facebookresearch/segment-anything) on static images, and we provide image prediction APIs that closely resemble SAM for image use cases. The `SAM2ImagePredictor` class has an easy interface for image prompting. + +```python +import torch +from sam2.build_sam import build_sam2 +from sam2.sam2_image_predictor import SAM2ImagePredictor + +checkpoint = "./checkpoints/sam2.1_hiera_large.pt" +model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" +predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint)) + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + predictor.set_image() + masks, _, _ = predictor.predict() +``` + +Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/image_predictor_example.ipynb)) for static image use cases. + +SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/automatic_mask_generator_example.ipynb)) for automatic mask generation in images. + +### Video prediction + +For promptable segmentation and tracking in videos, we provide a video predictor with APIs for example to add prompts and propagate masklets throughout a video. SAM 2 supports video inference on multiple objects and uses an inference state to keep track of the interactions in each video. + +```python +import torch +from sam2.build_sam import build_sam2_video_predictor + +checkpoint = "./checkpoints/sam2.1_hiera_large.pt" +model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" +predictor = build_sam2_video_predictor(model_cfg, checkpoint) + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + state = predictor.init_state() + + # add new prompts and instantly get the output on the same frame + frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, ): + + # propagate the prompts to get masklets throughout the video + for frame_idx, object_ids, masks in predictor.propagate_in_video(state): + ... +``` + +Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/video_predictor_example.ipynb)) for details on how to add click or box prompts, make refinements, and track multiple objects in videos. + +## Load from 🤗 Hugging Face + +Alternatively, models can also be loaded from [Hugging Face](https://huggingface.co/models?search=facebook/sam2) (requires `pip install huggingface_hub`). + +For image prediction: + +```python +import torch +from sam2.sam2_image_predictor import SAM2ImagePredictor + +predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + predictor.set_image() + masks, _, _ = predictor.predict() +``` + +For video prediction: + +```python +import torch +from sam2.sam2_video_predictor import SAM2VideoPredictor + +predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-large") + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + state = predictor.init_state() + + # add new prompts and instantly get the output on the same frame + frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, ): + + # propagate the prompts to get masklets throughout the video + for frame_idx, object_ids, masks in predictor.propagate_in_video(state): + ... +``` + +## Model Description + +### SAM 2.1 checkpoints + +The table below shows the improved SAM 2.1 checkpoints released on September 29, 2024. +| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** | +| :------------------: | :----------: | :--------------------: | :-----------------: | :----------------: | :---------------: | +| sam2.1_hiera_tiny
([config](sam2/configs/sam2.1/sam2.1_hiera_t.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt)) | 38.9 | 47.2 | 76.5 | 71.8 | 77.3 | +| sam2.1_hiera_small
([config](sam2/configs/sam2.1/sam2.1_hiera_s.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt)) | 46 | 43.3 (53.0 compiled\*) | 76.6 | 73.5 | 78.3 | +| sam2.1_hiera_base_plus
([config](sam2/configs/sam2.1/sam2.1_hiera_b+.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt)) | 80.8 | 34.8 (43.8 compiled\*) | 78.2 | 73.7 | 78.2 | +| sam2.1_hiera_large
([config](sam2/configs/sam2.1/sam2.1_hiera_l.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt)) | 224.4 | 24.2 (30.2 compiled\*) | 79.5 | 74.6 | 80.6 | + +### SAM 2 checkpoints + +The previous SAM 2 checkpoints released on July 29, 2024 can be found as follows: + +| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** | +| :------------------: | :----------: | :--------------------: | :-----------------: | :----------------: | :---------------: | +| sam2_hiera_tiny
([config](sam2/configs/sam2/sam2_hiera_t.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt)) | 38.9 | 47.2 | 75.0 | 70.9 | 75.3 | +| sam2_hiera_small
([config](sam2/configs/sam2/sam2_hiera_s.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt)) | 46 | 43.3 (53.0 compiled\*) | 74.9 | 71.5 | 76.4 | +| sam2_hiera_base_plus
([config](sam2/configs/sam2/sam2_hiera_b+.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt)) | 80.8 | 34.8 (43.8 compiled\*) | 74.7 | 72.8 | 75.8 | +| sam2_hiera_large
([config](sam2/configs/sam2/sam2_hiera_l.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt)) | 224.4 | 24.2 (30.2 compiled\*) | 76.0 | 74.6 | 79.8 | + +\* Compile the model by setting `compile_image_encoder: True` in the config. + +## Segment Anything Video Dataset + +See [sav_dataset/README.md](sav_dataset/README.md) for details. + +## Training SAM 2 + +You can train or fine-tune SAM 2 on custom datasets of images, videos, or both. Please check the training [README](training/README.md) on how to get started. + +## Web demo for SAM 2 + +We have released the frontend + backend code for the SAM 2 web demo (a locally deployable version similar to https://sam2.metademolab.com/demo). Please see the web demo [README](demo/README.md) for details. + +## License + +The SAM 2 model checkpoints, SAM 2 demo code (front-end and back-end), and SAM 2 training code are licensed under [Apache 2.0](./LICENSE), however the [Inter Font](https://github.com/rsms/inter?tab=OFL-1.1-1-ov-file) and [Noto Color Emoji](https://github.com/googlefonts/noto-emoji) used in the SAM 2 demo code are made available under the [SIL Open Font License, version 1.1](https://openfontlicense.org/open-font-license-official-text/). + +## Contributing + +See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md). + +## Contributors + +The SAM 2 project was made possible with the help of many contributors (alphabetical): + +Karen Bergan, Daniel Bolya, Alex Bosenberg, Kai Brown, Vispi Cassod, Christopher Chedeau, Ida Cheng, Luc Dahlin, Shoubhik Debnath, Rene Martinez Doehner, Grant Gardner, Sahir Gomez, Rishi Godugu, Baishan Guo, Caleb Ho, Andrew Huang, Somya Jain, Bob Kamma, Amanda Kallet, Jake Kinney, Alexander Kirillov, Shiva Koduvayur, Devansh Kukreja, Robert Kuo, Aohan Lin, Parth Malani, Jitendra Malik, Mallika Malhotra, Miguel Martin, Alexander Miller, Sasha Mitts, William Ngan, George Orlin, Joelle Pineau, Kate Saenko, Rodrick Shepard, Azita Shokrpour, David Soofian, Jonathan Torres, Jenny Truong, Sagar Vaze, Meng Wang, Claudette Ward, Pengchuan Zhang. + +Third-party code: we use a GPU-based connected component algorithm adapted from [`cc_torch`](https://github.com/zsef123/Connected_components_PyTorch) (with its license in [`LICENSE_cctorch`](./LICENSE_cctorch)) as an optional post-processing step for the mask predictions. + +## Citing SAM 2 + +If you use SAM 2 or the SA-V dataset in your research, please use the following BibTeX entry. + +```bibtex +@article{ravi2024sam2, + title={SAM 2: Segment Anything in Images and Videos}, + author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph}, + journal={arXiv preprint arXiv:2408.00714}, + url={https://arxiv.org/abs/2408.00714}, + year={2024} +} +``` diff --git a/third_party/sam2/assets/model_diagram.png b/third_party/sam2/assets/model_diagram.png new file mode 100644 index 0000000000000000000000000000000000000000..61b8b7c08722f3cf433acaf8001013aa30ce62e9 Binary files /dev/null and b/third_party/sam2/assets/model_diagram.png differ diff --git a/third_party/sam2/assets/sa_v_dataset.jpg b/third_party/sam2/assets/sa_v_dataset.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77af3b1a426e9e429b2a28ff7e5d7c13a40adfd0 Binary files /dev/null and b/third_party/sam2/assets/sa_v_dataset.jpg differ diff --git a/third_party/sam2/backend.Dockerfile b/third_party/sam2/backend.Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..adec61d56370279227f588ac4495ebf42fea8922 --- /dev/null +++ b/third_party/sam2/backend.Dockerfile @@ -0,0 +1,64 @@ +ARG BASE_IMAGE=pytorch/pytorch:2.3.1-cuda12.1-cudnn8-runtime +ARG MODEL_SIZE=base_plus + +FROM ${BASE_IMAGE} + +# Gunicorn environment variables +ENV GUNICORN_WORKERS=1 +ENV GUNICORN_THREADS=2 +ENV GUNICORN_PORT=5000 + +# SAM 2 environment variables +ENV APP_ROOT=/opt/sam2 +ENV PYTHONUNBUFFERED=1 +ENV SAM2_BUILD_CUDA=0 +ENV MODEL_SIZE=${MODEL_SIZE} + +# Install system requirements +RUN apt-get update && apt-get install -y --no-install-recommends \ + ffmpeg \ + libavutil-dev \ + libavcodec-dev \ + libavformat-dev \ + libswscale-dev \ + pkg-config \ + build-essential \ + libffi-dev + +COPY setup.py . +COPY README.md . + +RUN pip install --upgrade pip setuptools +RUN pip install -e ".[interactive-demo]" + +# https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite/issues/69#issuecomment-1826764707 +RUN rm /opt/conda/bin/ffmpeg && ln -s /bin/ffmpeg /opt/conda/bin/ffmpeg + +# Make app directory. This directory will host all files required for the +# backend and SAM 2 inference files. +RUN mkdir ${APP_ROOT} + +# Copy backend server files +COPY demo/backend/server ${APP_ROOT}/server + +# Copy SAM 2 inference files +COPY sam2 ${APP_ROOT}/server/sam2 + +# Download SAM 2.1 checkpoints +ADD https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt ${APP_ROOT}/checkpoints/sam2.1_hiera_tiny.pt +ADD https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt ${APP_ROOT}/checkpoints/sam2.1_hiera_small.pt +ADD https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt ${APP_ROOT}/checkpoints/sam2.1_hiera_base_plus.pt +ADD https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt ${APP_ROOT}/checkpoints/sam2.1_hiera_large.pt + +WORKDIR ${APP_ROOT}/server + +# https://pythonspeed.com/articles/gunicorn-in-docker/ +CMD gunicorn --worker-tmp-dir /dev/shm \ + --worker-class gthread app:app \ + --log-level info \ + --access-logfile /dev/stdout \ + --log-file /dev/stderr \ + --workers ${GUNICORN_WORKERS} \ + --threads ${GUNICORN_THREADS} \ + --bind 0.0.0.0:${GUNICORN_PORT} \ + --timeout 60 diff --git a/third_party/sam2/docker-compose.yaml b/third_party/sam2/docker-compose.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7a5395a585daa7d5a6e0e97d3a30b48f225fb2cf --- /dev/null +++ b/third_party/sam2/docker-compose.yaml @@ -0,0 +1,42 @@ +services: + frontend: + image: sam2/frontend + build: + context: ./demo/frontend + dockerfile: frontend.Dockerfile + ports: + - 7262:80 + + backend: + image: sam2/backend + build: + context: . + dockerfile: backend.Dockerfile + ports: + - 7263:5000 + volumes: + - ./demo/data/:/data/:rw + environment: + - SERVER_ENVIRONMENT=DEV + - GUNICORN_WORKERS=1 + # Inference API needs to have at least 2 threads to handle an incoming + # parallel cancel propagation request + - GUNICORN_THREADS=2 + - GUNICORN_PORT=5000 + - API_URL=http://localhost:7263 + - DEFAULT_VIDEO_PATH=gallery/05_default_juggle.mp4 + # # ffmpeg/video encode settings + - FFMPEG_NUM_THREADS=1 + - VIDEO_ENCODE_CODEC=libx264 + - VIDEO_ENCODE_CRF=23 + - VIDEO_ENCODE_FPS=24 + - VIDEO_ENCODE_MAX_WIDTH=1280 + - VIDEO_ENCODE_MAX_HEIGHT=720 + - VIDEO_ENCODE_VERBOSE=False + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: 1 + capabilities: [gpu] diff --git a/third_party/sam2/pyproject.toml b/third_party/sam2/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..f7e865232d225043e50a406435bbd7d7fc03a314 --- /dev/null +++ b/third_party/sam2/pyproject.toml @@ -0,0 +1,6 @@ +[build-system] +requires = [ + "setuptools>=61.0", + "torch>=2.3.1", + ] +build-backend = "setuptools.build_meta" diff --git a/third_party/sam2/sam2/__init__.py b/third_party/sam2/sam2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0712dd03cb280ab94ba04f8a32aa8ddc8aa3db4a --- /dev/null +++ b/third_party/sam2/sam2/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from hydra import initialize_config_module +from hydra.core.global_hydra import GlobalHydra + +if not GlobalHydra.instance().is_initialized(): + initialize_config_module("sam2", version_base="1.2") diff --git a/third_party/sam2/sam2/automatic_mask_generator.py b/third_party/sam2/sam2/automatic_mask_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..065e469e27c2d3af40d51d072031e828692c799b --- /dev/null +++ b/third_party/sam2/sam2/automatic_mask_generator.py @@ -0,0 +1,454 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py +from typing import Any, Dict, List, Optional, Tuple + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from sam2.modeling.sam2_base import SAM2Base +from sam2.sam2_image_predictor import SAM2ImagePredictor +from sam2.utils.amg import ( + area_from_rle, + batch_iterator, + batched_mask_to_box, + box_xyxy_to_xywh, + build_all_layer_point_grids, + calculate_stability_score, + coco_encode_rle, + generate_crop_boxes, + is_box_near_crop_edge, + mask_to_rle_pytorch, + MaskData, + remove_small_regions, + rle_to_mask, + uncrop_boxes_xyxy, + uncrop_masks, + uncrop_points, +) + + +class SAM2AutomaticMaskGenerator: + def __init__( + self, + model: SAM2Base, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.8, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + mask_threshold: float = 0.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + use_m2m: bool = False, + multimask_output: bool = True, + **kwargs, + ) -> None: + """ + Using a SAM 2 model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM 2 with a HieraL backbone. + + Arguments: + model (Sam): The SAM 2 model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + mask_threshold (float): Threshold for binarizing the mask logits + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + use_m2m (bool): Whether to add a one step refinement using previous mask predictions. + multimask_output (bool): Whether to output multimask at each point of the grid. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + try: + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + except ImportError as e: + print("Please install pycocotools") + raise e + + self.predictor = SAM2ImagePredictor( + model, + max_hole_area=min_mask_region_area, + max_sprinkle_area=min_mask_region_area, + ) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.mask_threshold = mask_threshold + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + self.use_m2m = use_m2m + self.multimask_output = multimask_output + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2AutomaticMaskGenerator): The loaded model. + """ + from sam2.build_sam import build_sam2_hf + + sam_model = build_sam2_hf(model_id, **kwargs) + return cls(sam_model, **kwargs) + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Encode masks + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [ + coco_encode_rle(rle) for rle in mask_data["rles"] + ] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch( + points, cropped_im_size, crop_box, orig_size, normalize=True + ) + data.cat(batch_data) + del batch_data + self.predictor.reset_predictor() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + normalize=False, + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + points = torch.as_tensor( + points, dtype=torch.float32, device=self.predictor.device + ) + in_points = self.predictor._transforms.transform_coords( + points, normalize=normalize, orig_hw=im_size + ) + in_labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, iou_preds, low_res_masks = self.predictor._predict( + in_points[:, None, :], + in_labels[:, None], + multimask_output=self.multimask_output, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=points.repeat_interleave(masks.shape[1], dim=0), + low_res_masks=low_res_masks.flatten(0, 1), + ) + del masks + + if not self.use_m2m: + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate and filter by stability score + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + else: + # One step refinement using previous mask predictions + in_points = self.predictor._transforms.transform_coords( + data["points"], normalize=normalize, orig_hw=im_size + ) + labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, ious = self.refine_with_m2m( + in_points, labels, data["low_res_masks"], self.points_per_batch + ) + data["masks"] = masks.squeeze(1) + data["iou_preds"] = ious.squeeze(1) + + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge( + data["boxes"], crop_box, [0, 0, orig_w, orig_h] + ) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data + + def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): + new_masks = [] + new_iou_preds = [] + + for cur_points, cur_point_labels, low_res_mask in batch_iterator( + points_per_batch, points, point_labels, low_res_masks + ): + best_masks, best_iou_preds, _ = self.predictor._predict( + cur_points[:, None, :], + cur_point_labels[:, None], + mask_input=low_res_mask[:, None, :], + multimask_output=False, + return_logits=True, + ) + new_masks.append(best_masks) + new_iou_preds.append(best_iou_preds) + masks = torch.cat(new_masks, dim=0) + return masks, torch.cat(new_iou_preds, dim=0) diff --git a/third_party/sam2/sam2/build_sam.py b/third_party/sam2/sam2/build_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..7cfc451395792350eabf17bbb466e45e3f4a8d49 --- /dev/null +++ b/third_party/sam2/sam2/build_sam.py @@ -0,0 +1,167 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import os + +import torch +from hydra import compose +from hydra.utils import instantiate +from omegaconf import OmegaConf + +import sam2 + +# Check if the user is running Python from the parent directory of the sam2 repo +# (i.e. the directory where this repo is cloned into) -- this is not supported since +# it could shadow the sam2 package and cause issues. +if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")): + # If the user has "sam2/sam2" in their path, they are likey importing the repo itself + # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory). + # This typically happens because the user is running Python from the parent directory + # that contains the sam2 repo they cloned. + raise RuntimeError( + "You're likely running Python from the parent directory of the sam2 repository " + "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). " + "This is not supported since the `sam2` Python package could be shadowed by the " + "repository name (the repository is also named `sam2` and contains the Python package " + "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir " + "rather than its parent dir, or from your home directory) after installing SAM 2." + ) + + +HF_MODEL_ID_TO_FILENAMES = { + "facebook/sam2-hiera-tiny": ( + "configs/sam2/sam2_hiera_t.yaml", + "sam2_hiera_tiny.pt", + ), + "facebook/sam2-hiera-small": ( + "configs/sam2/sam2_hiera_s.yaml", + "sam2_hiera_small.pt", + ), + "facebook/sam2-hiera-base-plus": ( + "configs/sam2/sam2_hiera_b+.yaml", + "sam2_hiera_base_plus.pt", + ), + "facebook/sam2-hiera-large": ( + "configs/sam2/sam2_hiera_l.yaml", + "sam2_hiera_large.pt", + ), + "facebook/sam2.1-hiera-tiny": ( + "configs/sam2.1/sam2.1_hiera_t.yaml", + "sam2.1_hiera_tiny.pt", + ), + "facebook/sam2.1-hiera-small": ( + "configs/sam2.1/sam2.1_hiera_s.yaml", + "sam2.1_hiera_small.pt", + ), + "facebook/sam2.1-hiera-base-plus": ( + "configs/sam2.1/sam2.1_hiera_b+.yaml", + "sam2.1_hiera_base_plus.pt", + ), + "facebook/sam2.1-hiera-large": ( + "configs/sam2.1/sam2.1_hiera_l.yaml", + "sam2.1_hiera_large.pt", + ), +} + + +def build_sam2( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, + **kwargs, +): + + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + ] + # Read config and init model + cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def build_sam2_video_predictor( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, + **kwargs, +): + hydra_overrides = [ + "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor", + ] + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking + "++model.binarize_mask_from_pts_for_mem_enc=true", + # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) + "++model.fill_hole_area=8", + ] + hydra_overrides.extend(hydra_overrides_extra) + + # Read config and init model + cfg = compose(config_name=config_file, overrides=hydra_overrides) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def _hf_download(model_id): + from huggingface_hub import hf_hub_download + + config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id] + ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) + return config_name, ckpt_path + + +def build_sam2_hf(model_id, **kwargs): + config_name, ckpt_path = _hf_download(model_id) + return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs) + + +def build_sam2_video_predictor_hf(model_id, **kwargs): + config_name, ckpt_path = _hf_download(model_id) + return build_sam2_video_predictor( + config_file=config_name, ckpt_path=ckpt_path, **kwargs + ) + + +def _load_checkpoint(model, ckpt_path): + if ckpt_path is not None: + sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"] + missing_keys, unexpected_keys = model.load_state_dict(sd) + if missing_keys: + logging.error(missing_keys) + raise RuntimeError() + if unexpected_keys: + logging.error(unexpected_keys) + raise RuntimeError() + logging.info("Loaded checkpoint sucessfully") diff --git a/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cbee3cf9b3977ebe4cc868797a9bfa9e348cb3a3 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml @@ -0,0 +1,116 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_l.yaml b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_l.yaml new file mode 100644 index 0000000000000000000000000000000000000000..33c9097f34ea90beae52776eb88ad8eb1632ab66 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_l.yaml @@ -0,0 +1,120 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 144 + num_heads: 2 + stages: [2, 6, 36, 4] + global_att_blocks: [23, 33, 43] + window_pos_embed_bkg_spatial_size: [7, 7] + window_spec: [8, 4, 16, 8] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [1152, 576, 288, 144] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_s.yaml b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_s.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8e803dfea5904f5eb5e73981918c913197587728 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_s.yaml @@ -0,0 +1,119 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 11, 2] + global_att_blocks: [7, 10, 13] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_t.yaml b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_t.yaml new file mode 100644 index 0000000000000000000000000000000000000000..983c2ea031b7a17db439fe89fa8b7bd426ecd9bb --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2.1/sam2.1_hiera_t.yaml @@ -0,0 +1,121 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 7, 2] + global_att_blocks: [5, 7, 9] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + # SAM decoder + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # HieraT does not currently support compilation, should always be set to False + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml b/third_party/sam2/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml new file mode 100644 index 0000000000000000000000000000000000000000..204679146854110ce8a59e9adc462a6688e56d30 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml @@ -0,0 +1,339 @@ +# @package _global_ + +scratch: + resolution: 1024 + train_batch_size: 1 + num_train_workers: 10 + num_frames: 8 + max_num_objects: 3 + base_lr: 5.0e-6 + vision_lr: 3.0e-06 + phases_per_epoch: 1 + num_epochs: 40 + +dataset: + # PATHS to Dataset + img_folder: null # PATH to MOSE JPEGImages folder + gt_folder: null # PATH to MOSE Annotations folder + file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training + multiplier: 2 + +# Video transforms +vos: + train_transforms: + - _target_: training.dataset.transforms.ComposeAPI + transforms: + - _target_: training.dataset.transforms.RandomHorizontalFlip + consistent_transform: True + - _target_: training.dataset.transforms.RandomAffine + degrees: 25 + shear: 20 + image_interpolation: bilinear + consistent_transform: True + - _target_: training.dataset.transforms.RandomResizeAPI + sizes: ${scratch.resolution} + square: true + consistent_transform: True + - _target_: training.dataset.transforms.ColorJitter + consistent_transform: True + brightness: 0.1 + contrast: 0.03 + saturation: 0.03 + hue: null + - _target_: training.dataset.transforms.RandomGrayscale + p: 0.05 + consistent_transform: True + - _target_: training.dataset.transforms.ColorJitter + consistent_transform: False + brightness: 0.1 + contrast: 0.05 + saturation: 0.05 + hue: null + - _target_: training.dataset.transforms.ToTensorAPI + - _target_: training.dataset.transforms.NormalizeAPI + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + +trainer: + _target_: training.trainer.Trainer + mode: train_only + max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}} + accelerator: cuda + seed_value: 123 + + model: + _target_: training.model.sam2.SAM2Train + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + drop_path_rate: 0.1 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: ${scratch.resolution} + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # compile_image_encoder: False + + ####### Training specific params ####### + # box/point input and corrections + prob_to_use_pt_input_for_train: 0.5 + prob_to_use_pt_input_for_eval: 0.0 + prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points + prob_to_use_box_input_for_eval: 0.0 + prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors + num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame) + num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame + rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2 + add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame) + # maximum 2 initial conditioning frames + num_init_cond_frames_for_train: 2 + rand_init_cond_frames_for_train: True # random 1~2 + num_correction_pt_per_frame: 7 + use_act_ckpt_iterative_pt_sampling: false + + + + num_init_cond_frames_for_eval: 1 # only mask on the first frame + forward_backbone_per_frame_for_eval: True + + + data: + train: + _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset + phases_per_epoch: ${scratch.phases_per_epoch} + batch_sizes: + - ${scratch.train_batch_size} + + datasets: + - _target_: training.dataset.utils.RepeatFactorWrapper + dataset: + _target_: training.dataset.utils.ConcatDataset + datasets: + - _target_: training.dataset.vos_dataset.VOSDataset + transforms: ${vos.train_transforms} + training: true + video_dataset: + _target_: training.dataset.vos_raw_dataset.PNGRawDataset + img_folder: ${dataset.img_folder} + gt_folder: ${dataset.gt_folder} + file_list_txt: ${dataset.file_list_txt} + sampler: + _target_: training.dataset.vos_sampler.RandomUniformSampler + num_frames: ${scratch.num_frames} + max_num_objects: ${scratch.max_num_objects} + multiplier: ${dataset.multiplier} + shuffle: True + num_workers: ${scratch.num_train_workers} + pin_memory: True + drop_last: True + collate_fn: + _target_: training.utils.data_utils.collate_fn + _partial_: true + dict_key: all + + optim: + amp: + enabled: True + amp_dtype: bfloat16 + + optimizer: + _target_: torch.optim.AdamW + + gradient_clip: + _target_: training.optimizer.GradientClipper + max_norm: 0.1 + norm_type: 2 + + param_group_modifiers: + - _target_: training.optimizer.layer_decay_param_modifier + _partial_: True + layer_decay_value: 0.9 + apply_to: 'image_encoder.trunk' + overrides: + - pattern: '*pos_embed*' + value: 1.0 + + options: + lr: + - scheduler: + _target_: fvcore.common.param_scheduler.CosineParamScheduler + start_value: ${scratch.base_lr} + end_value: ${divide:${scratch.base_lr},10} + - scheduler: + _target_: fvcore.common.param_scheduler.CosineParamScheduler + start_value: ${scratch.vision_lr} + end_value: ${divide:${scratch.vision_lr},10} + param_names: + - 'image_encoder.*' + weight_decay: + - scheduler: + _target_: fvcore.common.param_scheduler.ConstantParamScheduler + value: 0.1 + - scheduler: + _target_: fvcore.common.param_scheduler.ConstantParamScheduler + value: 0.0 + param_names: + - '*bias*' + module_cls_names: ['torch.nn.LayerNorm'] + + loss: + all: + _target_: training.loss_fns.MultiStepMultiMasksAndIous + weight_dict: + loss_mask: 20 + loss_dice: 1 + loss_iou: 1 + loss_class: 1 + supervise_all_iou: true + iou_use_l1_loss: true + pred_obj_scores: true + focal_gamma_obj_score: 0.0 + focal_alpha_obj_score: -1.0 + + distributed: + backend: nccl + find_unused_parameters: True + + logging: + tensorboard_writer: + _target_: training.utils.logger.make_tensorboard_logger + log_dir: ${launcher.experiment_log_dir}/tensorboard + flush_secs: 120 + should_log: True + log_dir: ${launcher.experiment_log_dir}/logs + log_freq: 10 + + # initialize from a SAM 2 checkpoint + checkpoint: + save_dir: ${launcher.experiment_log_dir}/checkpoints + save_freq: 0 # 0 only last checkpoint is saved. + model_weight_initializer: + _partial_: True + _target_: training.utils.checkpoint_utils.load_state_dict_into_model + strict: True + ignore_unexpected_keys: null + ignore_missing_keys: null + + state_dict: + _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels + checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint + ckpt_state_dict_keys: ['model'] + +launcher: + num_nodes: 1 + gpus_per_node: 8 + experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name} + +# SLURM args if running on a cluster +submitit: + partition: null + account: null + qos: null + cpus_per_task: 10 + use_cluster: false + timeout_hour: 24 + name: null + port_range: [10000, 65000] + diff --git a/third_party/sam2/sam2/configs/sam2/sam2_hiera_b+.yaml b/third_party/sam2/sam2/configs/sam2/sam2_hiera_b+.yaml new file mode 100644 index 0000000000000000000000000000000000000000..58f3eb81554018e873f8515ecb98e36d16ac29e4 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2/sam2_hiera_b+.yaml @@ -0,0 +1,113 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2/sam2_hiera_l.yaml b/third_party/sam2/sam2/configs/sam2/sam2_hiera_l.yaml new file mode 100644 index 0000000000000000000000000000000000000000..918667f50c3e1ad2dcf77c0c14cb4dd114cfd080 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2/sam2_hiera_l.yaml @@ -0,0 +1,117 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 144 + num_heads: 2 + stages: [2, 6, 36, 4] + global_att_blocks: [23, 33, 43] + window_pos_embed_bkg_spatial_size: [7, 7] + window_spec: [8, 4, 16, 8] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [1152, 576, 288, 144] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2/sam2_hiera_s.yaml b/third_party/sam2/sam2/configs/sam2/sam2_hiera_s.yaml new file mode 100644 index 0000000000000000000000000000000000000000..26e5d4d39f7b2892396106005c37c7ffe6c83bc2 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2/sam2_hiera_s.yaml @@ -0,0 +1,116 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 11, 2] + global_att_blocks: [7, 10, 13] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/third_party/sam2/sam2/configs/sam2/sam2_hiera_t.yaml b/third_party/sam2/sam2/configs/sam2/sam2_hiera_t.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a62c903aaa5f80828077c6e06a59626926570ed6 --- /dev/null +++ b/third_party/sam2/sam2/configs/sam2/sam2_hiera_t.yaml @@ -0,0 +1,118 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 7, 2] + global_att_blocks: [5, 7, 9] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + # SAM decoder + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # HieraT does not currently support compilation, should always be set to False + compile_image_encoder: False diff --git a/third_party/sam2/sam2/csrc/connected_components.cu b/third_party/sam2/sam2/csrc/connected_components.cu new file mode 100644 index 0000000000000000000000000000000000000000..ced21eb32eaaadb818d441c1322b99d1bf068f45 --- /dev/null +++ b/third_party/sam2/sam2/csrc/connected_components.cu @@ -0,0 +1,289 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// All rights reserved. + +// This source code is licensed under the license found in the +// LICENSE file in the root directory of this source tree. + +// adapted from https://github.com/zsef123/Connected_components_PyTorch +// with license found in the LICENSE_cctorch file in the root directory. +#include +#include +#include +#include +#include +#include + +// 2d +#define BLOCK_ROWS 16 +#define BLOCK_COLS 16 + +namespace cc2d { + +template +__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { + return (bitmap >> pos) & 1; +} + +__device__ int32_t find(const int32_t* s_buf, int32_t n) { + while (s_buf[n] != n) + n = s_buf[n]; + return n; +} + +__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { + const int32_t id = n; + while (s_buf[n] != n) { + n = s_buf[n]; + s_buf[id] = n; + } + return n; +} + +__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { + bool done; + do { + a = find(s_buf, a); + b = find(s_buf, b); + + if (a < b) { + int32_t old = atomicMin(s_buf + b, a); + done = (old == b); + b = old; + } else if (b < a) { + int32_t old = atomicMin(s_buf + a, b); + done = (old == a); + a = old; + } else + done = true; + + } while (!done); +} + +__global__ void +init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + label[idx] = idx; +} + +__global__ void +merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + uint32_t P = 0; + + if (img[idx]) + P |= 0x777; + if (row + 1 < H && img[idx + W]) + P |= 0x777 << 4; + if (col + 1 < W && img[idx + 1]) + P |= 0x777 << 1; + + if (col == 0) + P &= 0xEEEE; + if (col + 1 >= W) + P &= 0x3333; + else if (col + 2 >= W) + P &= 0x7777; + + if (row == 0) + P &= 0xFFF0; + if (row + 1 >= H) + P &= 0xFF; + + if (P > 0) { + // If need check about top-left pixel(if flag the first bit) and hit the + // top-left pixel + if (hasBit(P, 0) && img[idx - W - 1]) { + union_(label, idx, idx - 2 * W - 2); // top left block + } + + if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) + union_(label, idx, idx - 2 * W); // top bottom block + + if (hasBit(P, 3) && img[idx + 2 - W]) + union_(label, idx, idx - 2 * W + 2); // top right block + + if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) + union_(label, idx, idx - 2); // just left block + } +} + +__global__ void compression(int32_t* label, const int32_t W, const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + find_n_compress(label, idx); +} + +__global__ void final_labeling( + const uint8_t* img, + int32_t* label, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx] + 1; + + if (img[idx]) + label[idx] = y; + else + label[idx] = 0; + + if (col + 1 < W) { + if (img[idx + 1]) + label[idx + 1] = y; + else + label[idx + 1] = 0; + + if (row + 1 < H) { + if (img[idx + W + 1]) + label[idx + W + 1] = y; + else + label[idx + W + 1] = 0; + } + } + + if (row + 1 < H) { + if (img[idx + W]) + label[idx + W] = y; + else + label[idx + W] = 0; + } +} + +__global__ void init_counting( + const int32_t* label, + int32_t* count_init, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + atomicAdd(count_init + count_idx, 1); + } +} + +__global__ void final_counting( + const int32_t* label, + const int32_t* count_init, + int32_t* count_final, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + count_final[idx] = count_init[count_idx]; + } else { + count_final[idx] = 0; + } +} + +} // namespace cc2d + +std::vector get_connected_componnets( + const torch::Tensor& inputs) { + AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); + AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM( + inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); + + const uint32_t N = inputs.size(0); + const uint32_t C = inputs.size(1); + const uint32_t H = inputs.size(2); + const uint32_t W = inputs.size(3); + + AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM((H % 2) == 0, "height must be an even number"); + AT_ASSERTM((W % 2) == 0, "width must be an even number"); + + // label must be uint32_t + auto label_options = + torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); + torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); + + dim3 grid = dim3( + ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, + ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); + dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); + dim3 grid_count = + dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); + dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + for (int n = 0; n < N; n++) { + uint32_t offset = n * H * W; + + cc2d::init_labeling<<>>( + labels.data_ptr() + offset, W, H); + cc2d::merge<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + cc2d::compression<<>>( + labels.data_ptr() + offset, W, H); + cc2d::final_labeling<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + + // get the counting of each pixel + cc2d::init_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + W, + H); + cc2d::final_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + counts_final.data_ptr() + offset, + W, + H); + } + + // returned values are [labels, counts] + std::vector outputs; + outputs.push_back(labels); + outputs.push_back(counts_final); + return outputs; +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def( + "get_connected_componnets", + &get_connected_componnets, + "get_connected_componnets"); +} diff --git a/third_party/sam2/sam2/modeling/__init__.py b/third_party/sam2/sam2/modeling/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/sam2/modeling/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/sam2/modeling/backbones/__init__.py b/third_party/sam2/sam2/modeling/backbones/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/sam2/modeling/backbones/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/sam2/modeling/backbones/hieradet.py b/third_party/sam2/sam2/modeling/backbones/hieradet.py new file mode 100644 index 0000000000000000000000000000000000000000..19ac77b61d8e1345a301686d39ef2ab6e4b035fb --- /dev/null +++ b/third_party/sam2/sam2/modeling/backbones/hieradet.py @@ -0,0 +1,317 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +from functools import partial +from typing import List, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from iopath.common.file_io import g_pathmgr + +from sam2.modeling.backbones.utils import ( + PatchEmbed, + window_partition, + window_unpartition, +) + +from sam2.modeling.sam2_utils import DropPath, MLP + + +def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: + if pool is None: + return x + # (B, H, W, C) -> (B, C, H, W) + x = x.permute(0, 3, 1, 2) + x = pool(x) + # (B, C, H', W') -> (B, H', W', C) + x = x.permute(0, 2, 3, 1) + if norm: + x = norm(x) + + return x + + +class MultiScaleAttention(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + q_pool: nn.Module = None, + ): + super().__init__() + + self.dim = dim + self.dim_out = dim_out + self.num_heads = num_heads + self.q_pool = q_pool + self.qkv = nn.Linear(dim, dim_out * 3) + self.proj = nn.Linear(dim_out, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (B, H * W, 3, nHead, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) + # q, k, v with shape (B, H * W, nheads, C) + q, k, v = torch.unbind(qkv, 2) + + # Q pooling (for downsample at stage changes) + if self.q_pool: + q = do_pool(q.reshape(B, H, W, -1), self.q_pool) + H, W = q.shape[1:3] # downsampled shape + q = q.reshape(B, H * W, self.num_heads, -1) + + # Torch's SDPA expects [B, nheads, H*W, C] so we transpose + x = F.scaled_dot_product_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + ) + # Transpose back + x = x.transpose(1, 2) + x = x.reshape(B, H, W, -1) + + x = self.proj(x) + + return x + + +class MultiScaleBlock(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + mlp_ratio: float = 4.0, + drop_path: float = 0.0, + norm_layer: Union[nn.Module, str] = "LayerNorm", + q_stride: Tuple[int, int] = None, + act_layer: nn.Module = nn.GELU, + window_size: int = 0, + ): + super().__init__() + + if isinstance(norm_layer, str): + norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) + + self.dim = dim + self.dim_out = dim_out + self.norm1 = norm_layer(dim) + + self.window_size = window_size + + self.pool, self.q_stride = None, q_stride + if self.q_stride: + self.pool = nn.MaxPool2d( + kernel_size=q_stride, stride=q_stride, ceil_mode=False + ) + + self.attn = MultiScaleAttention( + dim, + dim_out, + num_heads=num_heads, + q_pool=self.pool, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = MLP( + dim_out, + int(dim_out * mlp_ratio), + dim_out, + num_layers=2, + activation=act_layer, + ) + + if dim != dim_out: + self.proj = nn.Linear(dim, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x # B, H, W, C + x = self.norm1(x) + + # Skip connection + if self.dim != self.dim_out: + shortcut = do_pool(self.proj(x), self.pool) + + # Window partition + window_size = self.window_size + if window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, window_size) + + # Window Attention + Q Pooling (if stage change) + x = self.attn(x) + if self.q_stride: + # Shapes have changed due to Q pooling + window_size = self.window_size // self.q_stride[0] + H, W = shortcut.shape[1:3] + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + pad_hw = (H + pad_h, W + pad_w) + + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, window_size, pad_hw, (H, W)) + + x = shortcut + self.drop_path(x) + # MLP + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class Hiera(nn.Module): + """ + Reference: https://arxiv.org/abs/2306.00989 + """ + + def __init__( + self, + embed_dim: int = 96, # initial embed dim + num_heads: int = 1, # initial number of heads + drop_path_rate: float = 0.0, # stochastic depth + q_pool: int = 3, # number of q_pool stages + q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages + stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage + dim_mul: float = 2.0, # dim_mul factor at stage shift + head_mul: float = 2.0, # head_mul factor at stage shift + window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), + # window size per stage, when not using global att. + window_spec: Tuple[int, ...] = ( + 8, + 4, + 14, + 7, + ), + # global attn in these blocks + global_att_blocks: Tuple[int, ...] = ( + 12, + 16, + 20, + ), + weights_path=None, + return_interm_layers=True, # return feats from every stage + ): + super().__init__() + + assert len(stages) == len(window_spec) + self.window_spec = window_spec + + depth = sum(stages) + self.q_stride = q_stride + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + assert 0 <= q_pool <= len(self.stage_ends[:-1]) + self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] + self.return_interm_layers = return_interm_layers + + self.patch_embed = PatchEmbed( + embed_dim=embed_dim, + ) + # Which blocks have global att? + self.global_att_blocks = global_att_blocks + + # Windowed positional embedding (https://arxiv.org/abs/2311.05613) + self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size + self.pos_embed = nn.Parameter( + torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) + ) + self.pos_embed_window = nn.Parameter( + torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) + ) + + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, depth) + ] # stochastic depth decay rule + + cur_stage = 1 + self.blocks = nn.ModuleList() + + for i in range(depth): + dim_out = embed_dim + # lags by a block, so first block of + # next stage uses an initial window size + # of previous stage and final window size of current stage + window_size = self.window_spec[cur_stage - 1] + + if self.global_att_blocks is not None: + window_size = 0 if i in self.global_att_blocks else window_size + + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + + block = MultiScaleBlock( + dim=embed_dim, + dim_out=dim_out, + num_heads=num_heads, + drop_path=dpr[i], + q_stride=self.q_stride if i in self.q_pool_blocks else None, + window_size=window_size, + ) + + embed_dim = dim_out + self.blocks.append(block) + + self.channel_list = ( + [self.blocks[i].dim_out for i in self.stage_ends[::-1]] + if return_interm_layers + else [self.blocks[-1].dim_out] + ) + + if weights_path is not None: + with g_pathmgr.open(weights_path, "rb") as f: + chkpt = torch.load(f, map_location="cpu") + logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False)) + + def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: + h, w = hw + window_embed = self.pos_embed_window + pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") + pos_embed = pos_embed + window_embed.tile( + [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] + ) + pos_embed = pos_embed.permute(0, 2, 3, 1) + return pos_embed + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.patch_embed(x) + # x: (B, H, W, C) + + # Add pos embed + x = x + self._get_pos_embed(x.shape[1:3]) + + outputs = [] + for i, blk in enumerate(self.blocks): + x = blk(x) + if (i == self.stage_ends[-1]) or ( + i in self.stage_ends and self.return_interm_layers + ): + feats = x.permute(0, 3, 1, 2) + outputs.append(feats) + + return outputs + + def get_layer_id(self, layer_name): + # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33 + num_layers = self.get_num_layers() + + if layer_name.find("rel_pos") != -1: + return num_layers + 1 + elif layer_name.find("pos_embed") != -1: + return 0 + elif layer_name.find("patch_embed") != -1: + return 0 + elif layer_name.find("blocks") != -1: + return int(layer_name.split("blocks")[1].split(".")[1]) + 1 + else: + return num_layers + 1 + + def get_num_layers(self) -> int: + return len(self.blocks) diff --git a/third_party/sam2/sam2/modeling/backbones/image_encoder.py b/third_party/sam2/sam2/modeling/backbones/image_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..37e9266bc98596e97ca303118c910ed24f6cee2c --- /dev/null +++ b/third_party/sam2/sam2/modeling/backbones/image_encoder.py @@ -0,0 +1,134 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class ImageEncoder(nn.Module): + def __init__( + self, + trunk: nn.Module, + neck: nn.Module, + scalp: int = 0, + ): + super().__init__() + self.trunk = trunk + self.neck = neck + self.scalp = scalp + assert ( + self.trunk.channel_list == self.neck.backbone_channel_list + ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" + + def forward(self, sample: torch.Tensor): + # Forward through backbone + features, pos = self.neck(self.trunk(sample)) + if self.scalp > 0: + # Discard the lowest resolution features + features, pos = features[: -self.scalp], pos[: -self.scalp] + + src = features[-1] + output = { + "vision_features": src, + "vision_pos_enc": pos, + "backbone_fpn": features, + } + return output + + +class FpnNeck(nn.Module): + """ + A modified variant of Feature Pyramid Network (FPN) neck + (we remove output conv and also do bicubic interpolation similar to ViT + pos embed interpolation) + """ + + def __init__( + self, + position_encoding: nn.Module, + d_model: int, + backbone_channel_list: List[int], + kernel_size: int = 1, + stride: int = 1, + padding: int = 0, + fpn_interp_model: str = "bilinear", + fuse_type: str = "sum", + fpn_top_down_levels: Optional[List[int]] = None, + ): + """Initialize the neck + :param trunk: the backbone + :param position_encoding: the positional encoding to use + :param d_model: the dimension of the model + :param neck_norm: the normalization to use + """ + super().__init__() + self.position_encoding = position_encoding + self.convs = nn.ModuleList() + self.backbone_channel_list = backbone_channel_list + self.d_model = d_model + for dim in backbone_channel_list: + current = nn.Sequential() + current.add_module( + "conv", + nn.Conv2d( + in_channels=dim, + out_channels=d_model, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ), + ) + + self.convs.append(current) + self.fpn_interp_model = fpn_interp_model + assert fuse_type in ["sum", "avg"] + self.fuse_type = fuse_type + + # levels to have top-down features in its outputs + # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3 + # have top-down propagation, while outputs of level 0 and level 1 have only + # lateral features from the same backbone level. + if fpn_top_down_levels is None: + # default is to have top-down features on all levels + fpn_top_down_levels = range(len(self.convs)) + self.fpn_top_down_levels = list(fpn_top_down_levels) + + def forward(self, xs: List[torch.Tensor]): + + out = [None] * len(self.convs) + pos = [None] * len(self.convs) + assert len(xs) == len(self.convs) + # fpn forward pass + # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py + prev_features = None + # forward in top-down order (from low to high resolution) + n = len(self.convs) - 1 + for i in range(n, -1, -1): + x = xs[i] + lateral_features = self.convs[n - i](x) + if i in self.fpn_top_down_levels and prev_features is not None: + top_down_features = F.interpolate( + prev_features.to(dtype=torch.float32), + scale_factor=2.0, + mode=self.fpn_interp_model, + align_corners=( + None if self.fpn_interp_model == "nearest" else False + ), + antialias=False, + ) + prev_features = lateral_features + top_down_features + if self.fuse_type == "avg": + prev_features /= 2 + else: + prev_features = lateral_features + x_out = prev_features + out[i] = x_out + pos[i] = self.position_encoding(x_out).to(x_out.dtype) + + return out, pos diff --git a/third_party/sam2/sam2/modeling/backbones/utils.py b/third_party/sam2/sam2/modeling/backbones/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..32d55c7545f064de133a5ff0200ba1ece9b504b7 --- /dev/null +++ b/third_party/sam2/sam2/modeling/backbones/utils.py @@ -0,0 +1,95 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +"""Some utilities for backbones, in particular for windowing""" + +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def window_partition(x, window_size): + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows, (Hp, Wp) + + +def window_unpartition(windows, window_size, pad_hw, hw): + """ + Window unpartition into original sequences and removing padding. + Args: + x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view( + B, Hp // window_size, Wp // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, ...] = (7, 7), + stride: Tuple[int, ...] = (4, 4), + padding: Tuple[int, ...] = (3, 3), + in_chans: int = 3, + embed_dim: int = 768, + ): + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): embed_dim (int): Patch embedding dimension. + """ + super().__init__() + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/third_party/sam2/sam2/modeling/memory_attention.py b/third_party/sam2/sam2/modeling/memory_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..0b07f9d87e3d8194ca5e11fc20f01604d591a59d --- /dev/null +++ b/third_party/sam2/sam2/modeling/memory_attention.py @@ -0,0 +1,169 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional + +import torch +from torch import nn, Tensor + +from sam2.modeling.sam.transformer import RoPEAttention + +from sam2.modeling.sam2_utils import get_activation_fn, get_clones + + +class MemoryAttentionLayer(nn.Module): + + def __init__( + self, + activation: str, + cross_attention: nn.Module, + d_model: int, + dim_feedforward: int, + dropout: float, + pos_enc_at_attn: bool, + pos_enc_at_cross_attn_keys: bool, + pos_enc_at_cross_attn_queries: bool, + self_attention: nn.Module, + ): + super().__init__() + self.d_model = d_model + self.dim_feedforward = dim_feedforward + self.dropout_value = dropout + self.self_attn = self_attention + self.cross_attn_image = cross_attention + + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.norm3 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + + self.activation_str = activation + self.activation = get_activation_fn(activation) + + # Where to add pos enc + self.pos_enc_at_attn = pos_enc_at_attn + self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries + self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys + + def _forward_sa(self, tgt, query_pos): + # Self-Attention + tgt2 = self.norm1(tgt) + q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 + tgt2 = self.self_attn(q, k, v=tgt2) + tgt = tgt + self.dropout1(tgt2) + return tgt + + def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): + kwds = {} + if num_k_exclude_rope > 0: + assert isinstance(self.cross_attn_image, RoPEAttention) + kwds = {"num_k_exclude_rope": num_k_exclude_rope} + + # Cross-Attention + tgt2 = self.norm2(tgt) + tgt2 = self.cross_attn_image( + q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, + k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, + v=memory, + **kwds, + ) + tgt = tgt + self.dropout2(tgt2) + return tgt + + def forward( + self, + tgt, + memory, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + num_k_exclude_rope: int = 0, + ) -> torch.Tensor: + + # Self-Attn, Cross-Attn + tgt = self._forward_sa(tgt, query_pos) + tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) + # MLP + tgt2 = self.norm3(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout3(tgt2) + return tgt + + +class MemoryAttention(nn.Module): + def __init__( + self, + d_model: int, + pos_enc_at_input: bool, + layer: nn.Module, + num_layers: int, + batch_first: bool = True, # Do layers expect batch first input? + ): + super().__init__() + self.d_model = d_model + self.layers = get_clones(layer, num_layers) + self.num_layers = num_layers + self.norm = nn.LayerNorm(d_model) + self.pos_enc_at_input = pos_enc_at_input + self.batch_first = batch_first + + def forward( + self, + curr: torch.Tensor, # self-attention inputs + memory: torch.Tensor, # cross-attention inputs + curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs + memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs + num_obj_ptr_tokens: int = 0, # number of object pointer *tokens* + ): + if isinstance(curr, list): + assert isinstance(curr_pos, list) + assert len(curr) == len(curr_pos) == 1 + curr, curr_pos = ( + curr[0], + curr_pos[0], + ) + + assert ( + curr.shape[1] == memory.shape[1] + ), "Batch size must be the same for curr and memory" + + output = curr + if self.pos_enc_at_input and curr_pos is not None: + output = output + 0.1 * curr_pos + + if self.batch_first: + # Convert to batch first + output = output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + memory = memory.transpose(0, 1) + memory_pos = memory_pos.transpose(0, 1) + + for layer in self.layers: + kwds = {} + if isinstance(layer.cross_attn_image, RoPEAttention): + kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} + + output = layer( + tgt=output, + memory=memory, + pos=memory_pos, + query_pos=curr_pos, + **kwds, + ) + normed_output = self.norm(output) + + if self.batch_first: + # Convert back to seq first + normed_output = normed_output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + + return normed_output diff --git a/third_party/sam2/sam2/modeling/memory_encoder.py b/third_party/sam2/sam2/modeling/memory_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..f60202dfaba87232c3870fb2101b5322a119d985 --- /dev/null +++ b/third_party/sam2/sam2/modeling/memory_encoder.py @@ -0,0 +1,181 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d + + +class MaskDownSampler(nn.Module): + """ + Progressively downsample a mask by total_stride, each time by stride. + Note that LayerNorm is applied per *token*, like in ViT. + + With each downsample (by a factor stride**2), channel capacity increases by the same factor. + In the end, we linearly project to embed_dim channels. + """ + + def __init__( + self, + embed_dim=256, + kernel_size=4, + stride=4, + padding=0, + total_stride=16, + activation=nn.GELU, + ): + super().__init__() + num_layers = int(math.log2(total_stride) // math.log2(stride)) + assert stride**num_layers == total_stride + self.encoder = nn.Sequential() + mask_in_chans, mask_out_chans = 1, 1 + for _ in range(num_layers): + mask_out_chans = mask_in_chans * (stride**2) + self.encoder.append( + nn.Conv2d( + mask_in_chans, + mask_out_chans, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + ) + self.encoder.append(LayerNorm2d(mask_out_chans)) + self.encoder.append(activation()) + mask_in_chans = mask_out_chans + + self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) + + def forward(self, x): + return self.encoder(x) + + +# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) +class CXBlock(nn.Module): + r"""ConvNeXt Block. There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + We use (2) as we find it slightly faster in PyTorch + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + dim, + kernel_size=7, + padding=3, + drop_path=0.0, + layer_scale_init_value=1e-6, + use_dwconv=True, + ): + super().__init__() + self.dwconv = nn.Conv2d( + dim, + dim, + kernel_size=kernel_size, + padding=padding, + groups=dim if use_dwconv else 1, + ) # depthwise conv + self.norm = LayerNorm2d(dim, eps=1e-6) + self.pwconv1 = nn.Linear( + dim, 4 * dim + ) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.pwconv2 = nn.Linear(4 * dim, dim) + self.gamma = ( + nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) + if layer_scale_init_value > 0 + else None + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + input = x + x = self.dwconv(x) + x = self.norm(x) + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.pwconv1(x) + x = self.act(x) + x = self.pwconv2(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = input + self.drop_path(x) + return x + + +class Fuser(nn.Module): + def __init__(self, layer, num_layers, dim=None, input_projection=False): + super().__init__() + self.proj = nn.Identity() + self.layers = get_clones(layer, num_layers) + + if input_projection: + assert dim is not None + self.proj = nn.Conv2d(dim, dim, kernel_size=1) + + def forward(self, x): + # normally x: (N, C, H, W) + x = self.proj(x) + for layer in self.layers: + x = layer(x) + return x + + +class MemoryEncoder(nn.Module): + def __init__( + self, + out_dim, + mask_downsampler, + fuser, + position_encoding, + in_dim=256, # in_dim of pix_feats + ): + super().__init__() + + self.mask_downsampler = mask_downsampler + + self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) + self.fuser = fuser + self.position_encoding = position_encoding + self.out_proj = nn.Identity() + if out_dim != in_dim: + self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) + + def forward( + self, + pix_feat: torch.Tensor, + masks: torch.Tensor, + skip_mask_sigmoid: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + ## Process masks + # sigmoid, so that less domain shift from gt masks which are bool + if not skip_mask_sigmoid: + masks = F.sigmoid(masks) + masks = self.mask_downsampler(masks) + + ## Fuse pix_feats and downsampled masks + # in case the visual features are on CPU, cast them to CUDA + pix_feat = pix_feat.to(masks.device) + + x = self.pix_feat_proj(pix_feat) + x = x + masks + x = self.fuser(x) + x = self.out_proj(x) + + pos = self.position_encoding(x).to(x.dtype) + + return {"vision_features": x, "vision_pos_enc": [pos]} diff --git a/third_party/sam2/sam2/modeling/position_encoding.py b/third_party/sam2/sam2/modeling/position_encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..52ac22674d5d4fdd9e83b6bdf034bff56d04bc0d --- /dev/null +++ b/third_party/sam2/sam2/modeling/position_encoding.py @@ -0,0 +1,221 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Any, Optional, Tuple + +import numpy as np + +import torch +from torch import nn + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention Is All You Need paper, generalized to work on images. + """ + + def __init__( + self, + num_pos_feats, + temperature: int = 10000, + normalize: bool = True, + scale: Optional[float] = None, + ): + super().__init__() + assert num_pos_feats % 2 == 0, "Expecting even model width" + self.num_pos_feats = num_pos_feats // 2 + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + self.cache = {} + + def _encode_xy(self, x, y): + # The positions are expected to be normalized + assert len(x) == len(y) and x.ndim == y.ndim == 1 + x_embed = x * self.scale + y_embed = y * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, None] / dim_t + pos_y = y_embed[:, None] / dim_t + pos_x = torch.stack( + (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 + ).flatten(1) + pos_y = torch.stack( + (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 + ).flatten(1) + return pos_x, pos_y + + @torch.no_grad() + def encode_boxes(self, x, y, w, h): + pos_x, pos_y = self._encode_xy(x, y) + pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) + return pos + + encode = encode_boxes # Backwards compatibility + + @torch.no_grad() + def encode_points(self, x, y, labels): + (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape + assert bx == by and nx == ny and bx == bl and nx == nl + pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) + pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) + pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) + return pos + + @torch.no_grad() + def forward(self, x: torch.Tensor): + cache_key = (x.shape[-2], x.shape[-1]) + if cache_key in self.cache: + return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) + y_embed = ( + torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) + .view(1, -1, 1) + .repeat(x.shape[0], 1, x.shape[-1]) + ) + x_embed = ( + torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) + .view(1, 1, -1) + .repeat(x.shape[0], x.shape[-2], 1) + ) + + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + self.cache[cache_key] = pos[0] + return pos + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C + + +# Rotary Positional Encoding, adapted from: +# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py +# 2. https://github.com/naver-ai/rope-vit +# 3. https://github.com/lucidrains/rotary-embedding-torch + + +def init_t_xy(end_x: int, end_y: int): + t = torch.arange(end_x * end_y, dtype=torch.float32) + t_x = (t % end_x).float() + t_y = torch.div(t, end_x, rounding_mode="floor").float() + return t_x, t_y + + +def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): + freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + + t_x, t_y = init_t_xy(end_x, end_y) + freqs_x = torch.outer(t_x, freqs_x) + freqs_y = torch.outer(t_y, freqs_y) + freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) + freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) + return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) + + +def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): + ndim = x.ndim + assert 0 <= 1 < ndim + assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) + shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] + return freqs_cis.view(*shape) + + +def apply_rotary_enc( + xq: torch.Tensor, + xk: torch.Tensor, + freqs_cis: torch.Tensor, + repeat_freqs_k: bool = False, +): + xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) + xk_ = ( + torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) + if xk.shape[-2] != 0 + else None + ) + freqs_cis = reshape_for_broadcast(freqs_cis, xq_) + xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) + if xk_ is None: + # no keys to rotate, due to dropout + return xq_out.type_as(xq).to(xq.device), xk + # repeat freqs along seq_len dim to match k seq_len + if repeat_freqs_k: + r = xk_.shape[-2] // xq_.shape[-2] + if freqs_cis.is_cuda: + freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) + else: + # torch.repeat on complex numbers may not be supported on non-CUDA devices + # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten + freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3) + xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) + return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) diff --git a/third_party/sam2/sam2/modeling/sam/__init__.py b/third_party/sam2/sam2/modeling/sam/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/sam2/modeling/sam/mask_decoder.py b/third_party/sam2/sam2/modeling/sam/mask_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..9bebc0366b2703ffcb80a44bfd19cce8339b4fed --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam/mask_decoder.py @@ -0,0 +1,295 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.sam2_utils import LayerNorm2d, MLP + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + use_high_res_features: bool = False, + iou_prediction_use_sigmoid=False, + dynamic_multimask_via_stability=False, + dynamic_multimask_stability_delta=0.05, + dynamic_multimask_stability_thresh=0.98, + pred_obj_scores: bool = False, + pred_obj_scores_mlp: bool = False, + use_multimask_token_for_obj_ptr: bool = False, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.pred_obj_scores = pred_obj_scores + if self.pred_obj_scores: + self.obj_score_token = nn.Embedding(1, transformer_dim) + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + activation(), + ) + self.use_high_res_features = use_high_res_features + if use_high_res_features: + self.conv_s0 = nn.Conv2d( + transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 + ) + self.conv_s1 = nn.Conv2d( + transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 + ) + + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, + iou_head_hidden_dim, + self.num_mask_tokens, + iou_head_depth, + sigmoid_output=iou_prediction_use_sigmoid, + ) + if self.pred_obj_scores: + self.pred_obj_score_head = nn.Linear(transformer_dim, 1) + if pred_obj_scores_mlp: + self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) + + # When outputting a single mask, optionally we can dynamically fall back to the best + # multimask output token if the single mask output token gives low stability scores. + self.dynamic_multimask_via_stability = dynamic_multimask_via_stability + self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta + self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + torch.Tensor: batched SAM token for mask output + """ + masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + repeat_image=repeat_image, + high_res_features=high_res_features, + ) + + # Select the correct mask or masks for output + if multimask_output: + masks = masks[:, 1:, :, :] + iou_pred = iou_pred[:, 1:] + elif self.dynamic_multimask_via_stability and not self.training: + masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) + else: + masks = masks[:, 0:1, :, :] + iou_pred = iou_pred[:, 0:1] + + if multimask_output and self.use_multimask_token_for_obj_ptr: + sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape + else: + # Take the mask output token. Here we *always* use the token for single mask output. + # At test time, even if we track after 1-click (and using multimask_output=True), + # we still take the single mask token here. The rationale is that we always track + # after multiple clicks during training, so the past tokens seen during training + # are always the single mask token (and we'll let it be the object-memory token). + sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape + + # Prepare output + return masks, iou_pred, sam_tokens_out, object_score_logits + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + s = 0 + if self.pred_obj_scores: + output_tokens = torch.cat( + [ + self.obj_score_token.weight, + self.iou_token.weight, + self.mask_tokens.weight, + ], + dim=0, + ) + s = 1 + else: + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight], dim=0 + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + if repeat_image: + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + else: + assert image_embeddings.shape[0] == tokens.shape[0] + src = image_embeddings + src = src + dense_prompt_embeddings + assert ( + image_pe.size(0) == 1 + ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, s, :] + mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + if not self.use_high_res_features: + upscaled_embedding = self.output_upscaling(src) + else: + dc1, ln1, act1, dc2, act2 = self.output_upscaling + feat_s0, feat_s1 = high_res_features + upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) + upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) + + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + if self.pred_obj_scores: + assert s == 1 + object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) + else: + # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 + object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) + + return masks, iou_pred, mask_tokens_out, object_score_logits + + def _get_stability_scores(self, mask_logits): + """ + Compute stability scores of the mask logits based on the IoU between upper and + lower thresholds. + """ + mask_logits = mask_logits.flatten(-2) + stability_delta = self.dynamic_multimask_stability_delta + area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() + area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() + stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) + return stability_scores + + def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): + """ + When outputting a single mask, if the stability score from the current single-mask + output (based on output token 0) falls below a threshold, we instead select from + multi-mask outputs (based on output token 1~3) the mask with the highest predicted + IoU score. This is intended to ensure a valid mask for both clicking and tracking. + """ + # The best mask from multimask output tokens (1~3) + multimask_logits = all_mask_logits[:, 1:, :, :] + multimask_iou_scores = all_iou_scores[:, 1:] + best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) + batch_inds = torch.arange( + multimask_iou_scores.size(0), device=all_iou_scores.device + ) + best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] + best_multimask_logits = best_multimask_logits.unsqueeze(1) + best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] + best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) + + # The mask from singlemask output token 0 and its stability score + singlemask_logits = all_mask_logits[:, 0:1, :, :] + singlemask_iou_scores = all_iou_scores[:, 0:1] + stability_scores = self._get_stability_scores(singlemask_logits) + is_stable = stability_scores >= self.dynamic_multimask_stability_thresh + + # Dynamically fall back to best multimask output upon low stability scores. + mask_logits_out = torch.where( + is_stable[..., None, None].expand_as(singlemask_logits), + singlemask_logits, + best_multimask_logits, + ) + iou_scores_out = torch.where( + is_stable.expand_as(singlemask_iou_scores), + singlemask_iou_scores, + best_multimask_iou_scores, + ) + return mask_logits_out, iou_scores_out diff --git a/third_party/sam2/sam2/modeling/sam/prompt_encoder.py b/third_party/sam2/sam2/modeling/sam/prompt_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..6b3bbb95be0aea9c88f49f586ac959a9fda1b18b --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam/prompt_encoder.py @@ -0,0 +1,182 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.position_encoding import PositionEmbeddingRandom + +from sam2.modeling.sam2_utils import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [ + nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) + ] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = ( + 4 * image_embedding_size[0], + 4 * image_embedding_size[1], + ) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords( + points, self.input_image_size + ) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + point_embedding[labels == 2] += self.point_embeddings[2].weight + point_embedding[labels == 3] += self.point_embeddings[3].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords( + coords, self.input_image_size + ) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty( + (bs, 0, self.embed_dim), device=self._get_device() + ) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings diff --git a/third_party/sam2/sam2/modeling/sam/transformer.py b/third_party/sam2/sam2/modeling/sam/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..b5b6fa2f87e85a7f222fb2ba0b661734dc57a08a --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam/transformer.py @@ -0,0 +1,360 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import contextlib +import math +import warnings +from functools import partial +from typing import Tuple, Type + +import torch +import torch.nn.functional as F +from torch import nn, Tensor + +from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis +from sam2.modeling.sam2_utils import MLP +from sam2.utils.misc import get_sdpa_settings + +warnings.simplefilter(action="ignore", category=FutureWarning) +# Check whether Flash Attention is available (and use it by default) +OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() +# A fallback setting to allow all available kernels if Flash Attention fails +ALLOW_ALL_KERNELS = False + + +def sdp_kernel_context(dropout_p): + """ + Get the context for the attention scaled dot-product kernel. We use Flash Attention + by default, but fall back to all available kernels if Flash Attention fails. + """ + if ALLOW_ALL_KERNELS: + return contextlib.nullcontext() + + return torch.backends.cuda.sdp_kernel( + enable_flash=USE_FLASH_ATTN, + # if Flash attention kernel is off, then math kernel needs to be enabled + enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, + enable_mem_efficient=OLD_GPU, + ) + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLP( + embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation + ) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + dropout: float = 0.0, + kv_in_dim: int = None, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert ( + self.internal_dim % num_heads == 0 + ), "num_heads must divide embedding_dim." + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + self.dropout_p = dropout + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + try: + with sdp_kernel_context(dropout_p): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + except Exception as e: + # Fall back to all kernels if the Flash attention kernel fails + warnings.warn( + f"Flash Attention kernel failed due to: {e}\nFalling back to all available " + f"kernels for scaled_dot_product_attention (which may have a slower speed).", + category=UserWarning, + stacklevel=2, + ) + global ALLOW_ALL_KERNELS + ALLOW_ALL_KERNELS = True + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out + + +class RoPEAttention(Attention): + """Attention with rotary position encoding.""" + + def __init__( + self, + *args, + rope_theta=10000.0, + # whether to repeat q rope to match k length + # this is needed for cross-attention to memories + rope_k_repeat=False, + feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.compute_cis = partial( + compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta + ) + freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) + self.freqs_cis = freqs_cis + self.rope_k_repeat = rope_k_repeat + + def forward( + self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 + ) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Apply rotary position encoding + w = h = math.sqrt(q.shape[-2]) + self.freqs_cis = self.freqs_cis.to(q.device) + if self.freqs_cis.shape[0] != q.shape[-2]: + self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) + if q.shape[-2] != k.shape[-2]: + assert self.rope_k_repeat + + num_k_rope = k.size(-2) - num_k_exclude_rope + q, k[:, :, :num_k_rope] = apply_rotary_enc( + q, + k[:, :, :num_k_rope], + freqs_cis=self.freqs_cis, + repeat_freqs_k=self.rope_k_repeat, + ) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + try: + with sdp_kernel_context(dropout_p): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + except Exception as e: + # Fall back to all kernels if the Flash attention kernel fails + warnings.warn( + f"Flash Attention kernel failed due to: {e}\nFalling back to all available " + f"kernels for scaled_dot_product_attention (which may have a slower speed).", + category=UserWarning, + stacklevel=2, + ) + global ALLOW_ALL_KERNELS + ALLOW_ALL_KERNELS = True + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/third_party/sam2/sam2/modeling/sam2_base.py b/third_party/sam2/sam2/modeling/sam2_base.py new file mode 100644 index 0000000000000000000000000000000000000000..a5d243adc9d7071f254dee115f92ff03d3b6e871 --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam2_base.py @@ -0,0 +1,907 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.distributed +import torch.nn.functional as F + +from torch.nn.init import trunc_normal_ + +from sam2.modeling.sam.mask_decoder import MaskDecoder +from sam2.modeling.sam.prompt_encoder import PromptEncoder +from sam2.modeling.sam.transformer import TwoWayTransformer +from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames + +# a large negative value as a placeholder score for missing objects +NO_OBJ_SCORE = -1024.0 + + +class SAM2Base(torch.nn.Module): + def __init__( + self, + image_encoder, + memory_attention, + memory_encoder, + num_maskmem=7, # default 1 input frame + 6 previous frames + image_size=512, + backbone_stride=16, # stride of the image backbone output + sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob + sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob + # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks + binarize_mask_from_pts_for_mem_enc=False, + use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder + # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit, + # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model + # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM. + max_cond_frames_in_attn=-1, + # on the first frame, whether to directly add the no-memory embedding to the image feature + # (instead of using the transformer encoder) + directly_add_no_mem_embed=False, + # whether to use high-resolution feature maps in the SAM mask decoder + use_high_res_features_in_sam=False, + # whether to output multiple (3) masks for the first click on initial conditioning frames + multimask_output_in_sam=False, + # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`; + # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points) + multimask_min_pt_num=1, + multimask_max_pt_num=1, + # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`) + multimask_output_for_tracking=False, + # Whether to use multimask tokens for obj ptr; Only relevant when both + # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True + use_multimask_token_for_obj_ptr: bool = False, + # whether to use sigmoid to restrict ious prediction to [0-1] + iou_prediction_use_sigmoid=False, + # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5). + # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of + # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame. + memory_temporal_stride_for_eval=1, + # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks) + non_overlap_masks_for_mem_enc=False, + # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder=False, + # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`) + max_obj_ptrs_in_encoder=16, + # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`) + add_tpos_enc_to_obj_ptrs=True, + # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference + # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) + proj_tpos_enc_in_obj_ptrs=False, + # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers + # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) + use_signed_tpos_enc_to_obj_ptrs=False, + # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation + # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking) + only_obj_ptrs_in_the_past_for_eval=False, + # Whether to predict if there is an object in the frame + pred_obj_scores: bool = False, + # Whether to use an MLP to predict object scores + pred_obj_scores_mlp: bool = False, + # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True; + # Whether to have a fixed no obj pointer when there is no object present + # or to use it as an additive embedding with obj_ptr produced by decoder + fixed_no_obj_ptr: bool = False, + # Soft no object, i.e. mix in no_obj_ptr softly, + # hope to make recovery easier if there is a mistake and mitigate accumulation of errors + soft_no_obj_ptr: bool = False, + use_mlp_for_obj_ptr_proj: bool = False, + # add no obj embedding to spatial frames + no_obj_embed_spatial: bool = False, + # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class. + sam_mask_decoder_extra_args=None, + compile_image_encoder: bool = False, + ): + super().__init__() + + # Part 1: the image backbone + self.image_encoder = image_encoder + # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting + self.use_high_res_features_in_sam = use_high_res_features_in_sam + self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 + self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder + self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder + if use_obj_ptrs_in_encoder: + # A conv layer to downsample the mask prompt to stride 4 (the same stride as + # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale, + # so that it can be fed into the SAM mask decoder to generate a pointer. + self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) + self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs + if proj_tpos_enc_in_obj_ptrs: + assert add_tpos_enc_to_obj_ptrs # these options need to be used together + self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs + self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs + self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval + + # Part 2: memory attention to condition current frame's visual features + # with memories (and obj ptrs) from past frames + self.memory_attention = memory_attention + self.hidden_dim = image_encoder.neck.d_model + + # Part 3: memory encoder for the previous frame's outputs + self.memory_encoder = memory_encoder + self.mem_dim = self.hidden_dim + if hasattr(self.memory_encoder, "out_proj") and hasattr( + self.memory_encoder.out_proj, "weight" + ): + # if there is compression of memories along channel dim + self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] + self.num_maskmem = num_maskmem # Number of memories accessible + # Temporal encoding of the memories + self.maskmem_tpos_enc = torch.nn.Parameter( + torch.zeros(num_maskmem, 1, 1, self.mem_dim) + ) + trunc_normal_(self.maskmem_tpos_enc, std=0.02) + # a single token to indicate no memory embedding from previous frames + self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + trunc_normal_(self.no_mem_embed, std=0.02) + trunc_normal_(self.no_mem_pos_enc, std=0.02) + self.directly_add_no_mem_embed = directly_add_no_mem_embed + # Apply sigmoid to the output raw mask logits (to turn them from + # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder + self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc + self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc + self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc + self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc + self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval + # On frames with mask input, whether to directly output the input mask without + # using a SAM prompt encoder + mask decoder + self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam + self.multimask_output_in_sam = multimask_output_in_sam + self.multimask_min_pt_num = multimask_min_pt_num + self.multimask_max_pt_num = multimask_max_pt_num + self.multimask_output_for_tracking = multimask_output_for_tracking + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid + + # Part 4: SAM-style prompt encoder (for both mask and point inputs) + # and SAM-style mask decoder for the final mask output + self.image_size = image_size + self.backbone_stride = backbone_stride + self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args + self.pred_obj_scores = pred_obj_scores + self.pred_obj_scores_mlp = pred_obj_scores_mlp + self.fixed_no_obj_ptr = fixed_no_obj_ptr + self.soft_no_obj_ptr = soft_no_obj_ptr + if self.fixed_no_obj_ptr: + assert self.pred_obj_scores + assert self.use_obj_ptrs_in_encoder + if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: + self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) + trunc_normal_(self.no_obj_ptr, std=0.02) + self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj + self.no_obj_embed_spatial = None + if no_obj_embed_spatial: + self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim)) + trunc_normal_(self.no_obj_embed_spatial, std=0.02) + + self._build_sam_heads() + self.max_cond_frames_in_attn = max_cond_frames_in_attn + + # Model compilation + if compile_image_encoder: + # Compile the forward function (not the full module) to allow loading checkpoints. + print( + "Image encoder compilation is enabled. First forward pass will be slow." + ) + self.image_encoder.forward = torch.compile( + self.image_encoder.forward, + mode="max-autotune", + fullgraph=True, + dynamic=False, + ) + + @property + def device(self): + return next(self.parameters()).device + + def forward(self, *args, **kwargs): + raise NotImplementedError( + "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning" + "See notebooks/video_predictor_example.ipynb for an inference example." + ) + + def _build_sam_heads(self): + """Build SAM-style prompt encoder and mask decoder.""" + self.sam_prompt_embed_dim = self.hidden_dim + self.sam_image_embedding_size = self.image_size // self.backbone_stride + + # build PromptEncoder and MaskDecoder from SAM + # (their hyperparameters like `mask_in_chans=16` are from SAM code) + self.sam_prompt_encoder = PromptEncoder( + embed_dim=self.sam_prompt_embed_dim, + image_embedding_size=( + self.sam_image_embedding_size, + self.sam_image_embedding_size, + ), + input_image_size=(self.image_size, self.image_size), + mask_in_chans=16, + ) + self.sam_mask_decoder = MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=self.sam_prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=self.sam_prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + use_high_res_features=self.use_high_res_features_in_sam, + iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, + pred_obj_scores=self.pred_obj_scores, + pred_obj_scores_mlp=self.pred_obj_scores_mlp, + use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, + **(self.sam_mask_decoder_extra_args or {}), + ) + if self.use_obj_ptrs_in_encoder: + # a linear projection on SAM output tokens to turn them into object pointers + self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) + if self.use_mlp_for_obj_ptr_proj: + self.obj_ptr_proj = MLP( + self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 + ) + else: + self.obj_ptr_proj = torch.nn.Identity() + if self.proj_tpos_enc_in_obj_ptrs: + # a linear projection on temporal positional encoding in object pointers to + # avoid potential interference with spatial positional encoding + self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) + else: + self.obj_ptr_tpos_proj = torch.nn.Identity() + + def _forward_sam_heads( + self, + backbone_features, + point_inputs=None, + mask_inputs=None, + high_res_features=None, + multimask_output=False, + ): + """ + Forward SAM prompt encoders and mask heads. + + Inputs: + - backbone_features: image features of [B, C, H, W] shape + - point_inputs: a dictionary with "point_coords" and "point_labels", where + 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the + absolute pixel-unit coordinate in (x, y) format of the P input points + 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means + positive clicks, 0 means negative clicks, and -1 means padding + - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the + same spatial size as the image. + - high_res_features: either 1) None or 2) or a list of length 2 containing + two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, + which will be used as high-resolution feature maps for SAM decoder. + - multimask_output: if it's True, we output 3 candidate masks and their 3 + corresponding IoU estimates, and if it's False, we output only 1 mask and + its corresponding IoU estimate. + + Outputs: + - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if + `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM + output mask logits (before sigmoid) for the low-resolution masks, with 4x + the resolution (1/4 stride) of the input backbone_features. + - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 + if `multimask_output=True` and M = 1 if `multimask_output=False`), + upsampled from the low-resolution masks, with shape size as the image + (stride is 1 pixel). + - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 + if `multimask_output=False`), the estimated IoU of each output mask. + - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `low_res_multimasks`. + - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `high_res_multimasks`. + - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted + based on the output token from the SAM mask decoder. + """ + B = backbone_features.size(0) + device = backbone_features.device + assert backbone_features.size(1) == self.sam_prompt_embed_dim + assert backbone_features.size(2) == self.sam_image_embedding_size + assert backbone_features.size(3) == self.sam_image_embedding_size + + # a) Handle point prompts + if point_inputs is not None: + sam_point_coords = point_inputs["point_coords"] + sam_point_labels = point_inputs["point_labels"] + assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B + else: + # If no points are provide, pad with an empty point (with label -1) + sam_point_coords = torch.zeros(B, 1, 2, device=device) + sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) + + # b) Handle mask prompts + if mask_inputs is not None: + # If mask_inputs is provided, downsize it into low-res mask input if needed + # and feed it as a dense mask prompt into the SAM mask encoder + assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) + if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: + sam_mask_prompt = F.interpolate( + mask_inputs.float(), + size=self.sam_prompt_encoder.mask_input_size, + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + else: + sam_mask_prompt = mask_inputs + else: + # Otherwise, simply feed None (and SAM's prompt encoder will add + # a learned `no_mask_embed` to indicate no mask input in this case). + sam_mask_prompt = None + + sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( + points=(sam_point_coords, sam_point_labels), + boxes=None, + masks=sam_mask_prompt, + ) + ( + low_res_multimasks, + ious, + sam_output_tokens, + object_score_logits, + ) = self.sam_mask_decoder( + image_embeddings=backbone_features, + image_pe=self.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=False, # the image is already batched + high_res_features=high_res_features, + ) + if self.pred_obj_scores: + is_obj_appearing = object_score_logits > 0 + + # Mask used for spatial memories is always a *hard* choice between obj and no obj, + # consistent with the actual mask prediction + low_res_multimasks = torch.where( + is_obj_appearing[:, None, None], + low_res_multimasks, + NO_OBJ_SCORE, + ) + + # convert masks from possibly bfloat16 (or float16) to float32 + # (older PyTorch versions before 2.1 don't support `interpolate` on bf16) + low_res_multimasks = low_res_multimasks.float() + high_res_multimasks = F.interpolate( + low_res_multimasks, + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + + sam_output_token = sam_output_tokens[:, 0] + if multimask_output: + # take the best mask prediction (with the highest IoU estimation) + best_iou_inds = torch.argmax(ious, dim=-1) + batch_inds = torch.arange(B, device=device) + low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + if sam_output_tokens.size(1) > 1: + sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] + else: + low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks + + # Extract object pointer from the SAM output token (with occlusion handling) + obj_ptr = self.obj_ptr_proj(sam_output_token) + if self.pred_obj_scores: + # Allow *soft* no obj ptr, unlike for masks + if self.soft_no_obj_ptr: + lambda_is_obj_appearing = object_score_logits.sigmoid() + else: + lambda_is_obj_appearing = is_obj_appearing.float() + + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): + """ + Directly turn binary `mask_inputs` into a output mask logits without using SAM. + (same input and output shapes as in _forward_sam_heads above). + """ + # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid). + out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05 + mask_inputs_float = mask_inputs.float() + high_res_masks = mask_inputs_float * out_scale + out_bias + low_res_masks = F.interpolate( + high_res_masks, + size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + # a dummy IoU prediction of all 1's under mask input + ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() + if not self.use_obj_ptrs_in_encoder: + # all zeros as a dummy object pointer (of shape [B, C]) + obj_ptr = torch.zeros( + mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device + ) + else: + # produce an object pointer using the SAM decoder from the mask input + _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( + backbone_features=backbone_features, + mask_inputs=self.mask_downsample(mask_inputs_float), + high_res_features=high_res_features, + ) + # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem; + # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying + # on the object_scores from the SAM decoder. + is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) + is_obj_appearing = is_obj_appearing[..., None] + lambda_is_obj_appearing = is_obj_appearing.float() + object_score_logits = out_scale * lambda_is_obj_appearing + out_bias + if self.pred_obj_scores: + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_masks, + high_res_masks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def forward_image(self, img_batch: torch.Tensor): + """Get the image feature on the input batch.""" + backbone_out = self.image_encoder(img_batch) + if self.use_high_res_features_in_sam: + # precompute projected level 0 and level 1 features in SAM decoder + # to avoid running it again on every SAM click + backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( + backbone_out["backbone_fpn"][0] + ) + backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( + backbone_out["backbone_fpn"][1] + ) + return backbone_out + + def _prepare_backbone_features(self, backbone_out): + """Prepare and flatten visual features.""" + backbone_out = backbone_out.copy() + assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) + assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels + + feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] + vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] + + feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] + # flatten NxCxHxW to HWxNxC + vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] + vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] + + return backbone_out, vision_feats, vision_pos_embeds, feat_sizes + + def _prepare_memory_conditioned_features( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + ): + """Fuse the current frame's visual feature map with previous memory.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + device = current_vision_feats[-1].device + # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images. + # In this case, we skip the fusion with any memory. + if self.num_maskmem == 0: # Disable memory and skip fusion + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + return pix_feat + + num_obj_ptr_tokens = 0 + tpos_sign_mul = -1 if track_in_reverse else 1 + # Step 1: condition the visual features of the current frame on previous memories + if not is_init_cond_frame: + # Retrieve the memories encoded with the maskmem backbone + to_cat_memory, to_cat_memory_pos_embed = [], [] + # Add conditioning frames's output first (all cond frames have t_pos=0 for + # when getting temporal positional embedding below) + assert len(output_dict["cond_frame_outputs"]) > 0 + # Select a maximum number of temporally closest cond frames for cross attention + cond_outputs = output_dict["cond_frame_outputs"] + selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( + frame_idx, cond_outputs, self.max_cond_frames_in_attn + ) + t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] + # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory + # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 + # We also allow taking the memory frame non-consecutively (with stride>1), in which case + # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame. + stride = 1 if self.training else self.memory_temporal_stride_for_eval + for t_pos in range(1, self.num_maskmem): + t_rel = self.num_maskmem - t_pos # how many frames before current frame + if t_rel == 1: + # for t_rel == 1, we take the last frame (regardless of r) + if not track_in_reverse: + # the frame immediately before this frame (i.e. frame_idx - 1) + prev_frame_idx = frame_idx - t_rel + else: + # the frame immediately after this frame (i.e. frame_idx + 1) + prev_frame_idx = frame_idx + t_rel + else: + # for t_rel >= 2, we take the memory frame from every r-th frames + if not track_in_reverse: + # first find the nearest frame among every r-th frames before this frame + # for r=1, this would be (frame_idx - 2) + prev_frame_idx = ((frame_idx - 2) // stride) * stride + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride + else: + # first find the nearest frame among every r-th frames after this frame + # for r=1, this would be (frame_idx + 2) + prev_frame_idx = -(-(frame_idx + 2) // stride) * stride + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride + out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) + if out is None: + # If an unselected conditioning frame is among the last (self.num_maskmem - 1) + # frames, we still attend to it as if it's a non-conditioning frame. + out = unselected_cond_outputs.get(prev_frame_idx, None) + t_pos_and_prevs.append((t_pos, out)) + + for t_pos, prev in t_pos_and_prevs: + if prev is None: + continue # skip padding frames + # "maskmem_features" might have been offloaded to CPU in demo use cases, + # so we load it back to GPU (it's a no-op if it's already on GPU). + feats = prev["maskmem_features"].to(device, non_blocking=True) + to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) + # Spatial positional encoding (it might have been offloaded to CPU in eval) + maskmem_enc = prev["maskmem_pos_enc"][-1].to(device) + maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) + # Temporal positional encoding + maskmem_enc = ( + maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] + ) + to_cat_memory_pos_embed.append(maskmem_enc) + + # Construct the list of past object pointers + if self.use_obj_ptrs_in_encoder: + max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) + # First add those object pointers from selected conditioning frames + # (optionally, only include object pointers in the past during evaluation) + if not self.training and self.only_obj_ptrs_in_the_past_for_eval: + ptr_cond_outputs = { + t: out + for t, out in selected_cond_outputs.items() + if (t >= frame_idx if track_in_reverse else t <= frame_idx) + } + else: + ptr_cond_outputs = selected_cond_outputs + pos_and_ptrs = [ + # Temporal pos encoding contains how far away each pointer is from current frame + ( + ( + (frame_idx - t) * tpos_sign_mul + if self.use_signed_tpos_enc_to_obj_ptrs + else abs(frame_idx - t) + ), + out["obj_ptr"], + ) + for t, out in ptr_cond_outputs.items() + ] + # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame + for t_diff in range(1, max_obj_ptrs_in_encoder): + t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff + if t < 0 or (num_frames is not None and t >= num_frames): + break + out = output_dict["non_cond_frame_outputs"].get( + t, unselected_cond_outputs.get(t, None) + ) + if out is not None: + pos_and_ptrs.append((t_diff, out["obj_ptr"])) + # If we have at least one object pointer, add them to the across attention + if len(pos_and_ptrs) > 0: + pos_list, ptrs_list = zip(*pos_and_ptrs) + # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape + obj_ptrs = torch.stack(ptrs_list, dim=0) + # a temporal positional embedding based on how far each object pointer is from + # the current frame (sine embedding normalized by the max pointer num). + if self.add_tpos_enc_to_obj_ptrs: + t_diff_max = max_obj_ptrs_in_encoder - 1 + tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim + obj_pos = torch.tensor(pos_list, device=device) + obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) + obj_pos = self.obj_ptr_tpos_proj(obj_pos) + obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) + else: + obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) + if self.mem_dim < C: + # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C + obj_ptrs = obj_ptrs.reshape( + -1, B, C // self.mem_dim, self.mem_dim + ) + obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) + obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) + to_cat_memory.append(obj_ptrs) + to_cat_memory_pos_embed.append(obj_pos) + num_obj_ptr_tokens = obj_ptrs.shape[0] + else: + num_obj_ptr_tokens = 0 + else: + # for initial conditioning frames, encode them without using any previous memory + if self.directly_add_no_mem_embed: + # directly add no-mem embedding (instead of using the transformer encoder) + pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder) + to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] + to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] + + # Step 2: Concatenate the memories and forward through the transformer encoder + memory = torch.cat(to_cat_memory, dim=0) + memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) + + pix_feat_with_mem = self.memory_attention( + curr=current_vision_feats, + curr_pos=current_vision_pos_embeds, + memory=memory, + memory_pos=memory_pos_embed, + num_obj_ptr_tokens=num_obj_ptr_tokens, + ) + # reshape the output (HW)BC => BCHW + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + def _encode_new_memory( + self, + current_vision_feats, + feat_sizes, + pred_masks_high_res, + object_score_logits, + is_mask_from_pts, + ): + """Encode the current image and its prediction into a memory feature.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + # top-level feature, (HW)BC => BCHW + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + if self.non_overlap_masks_for_mem_enc and not self.training: + # optionally, apply non-overlapping constraints to the masks (it's applied + # in the batch dimension and should only be used during eval, where all + # the objects come from the same video under batch size 1). + pred_masks_high_res = self._apply_non_overlapping_constraints( + pred_masks_high_res + ) + # scale the raw mask logits with a temperature before applying sigmoid + binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts + if binarize and not self.training: + mask_for_mem = (pred_masks_high_res > 0).float() + else: + # apply sigmoid on the raw mask logits to turn them into range (0, 1) + mask_for_mem = torch.sigmoid(pred_masks_high_res) + # apply scale and bias terms to the sigmoid probabilities + if self.sigmoid_scale_for_mem_enc != 1.0: + mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc + if self.sigmoid_bias_for_mem_enc != 0.0: + mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc + maskmem_out = self.memory_encoder( + pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied + ) + maskmem_features = maskmem_out["vision_features"] + maskmem_pos_enc = maskmem_out["vision_pos_enc"] + # add a no-object embedding to the spatial memory to indicate that the frame + # is predicted to be occluded (i.e. no object is appearing in the frame) + if self.no_obj_embed_spatial is not None: + is_obj_appearing = (object_score_logits > 0).float() + maskmem_features += ( + 1 - is_obj_appearing[..., None, None] + ) * self.no_obj_embed_spatial[..., None, None].expand( + *maskmem_features.shape + ) + + return maskmem_features, maskmem_pos_enc + + def _track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse, + prev_sam_mask_logits, + ): + current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} + # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW + if len(current_vision_feats) > 1: + high_res_features = [ + x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) + for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) + ] + else: + high_res_features = None + if mask_inputs is not None and self.use_mask_input_as_output_without_sam: + # When use_mask_input_as_output_without_sam=True, we directly output the mask input + # (see it as a GT mask) without using a SAM prompt encoder + mask decoder. + pix_feat = current_vision_feats[-1].permute(1, 2, 0) + pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) + sam_outputs = self._use_mask_as_output( + pix_feat, high_res_features, mask_inputs + ) + else: + # fused the visual feature with previous memory features in the memory bank + pix_feat = self._prepare_memory_conditioned_features( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats[-1:], + current_vision_pos_embeds=current_vision_pos_embeds[-1:], + feat_sizes=feat_sizes[-1:], + output_dict=output_dict, + num_frames=num_frames, + track_in_reverse=track_in_reverse, + ) + # apply SAM-style segmentation head + # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, + # e.g. in demo where such logits come from earlier interaction instead of correction sampling + # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) + if prev_sam_mask_logits is not None: + assert point_inputs is not None and mask_inputs is None + mask_inputs = prev_sam_mask_logits + multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) + sam_outputs = self._forward_sam_heads( + backbone_features=pix_feat, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + high_res_features=high_res_features, + multimask_output=multimask_output, + ) + + return current_out, sam_outputs, high_res_features, pix_feat + + def _encode_memory_in_output( + self, + current_vision_feats, + feat_sizes, + point_inputs, + run_mem_encoder, + high_res_masks, + object_score_logits, + current_out, + ): + if run_mem_encoder and self.num_maskmem > 0: + high_res_masks_for_mem_enc = high_res_masks + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks_for_mem_enc, + object_score_logits=object_score_logits, + is_mask_from_pts=(point_inputs is not None), + ) + current_out["maskmem_features"] = maskmem_features + current_out["maskmem_pos_enc"] = maskmem_pos_enc + else: + current_out["maskmem_features"] = None + current_out["maskmem_pos_enc"] = None + + def track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + # Whether to run the memory encoder on the predicted masks. Sometimes we might want + # to skip the memory encoder with `run_mem_encoder=False`. For example, + # in demo we might call `track_step` multiple times for each user click, + # and only encode the memory when the user finalizes their clicks. And in ablation + # settings like SAM training on static images, we don't need the memory encoder. + run_mem_encoder=True, + # The previously predicted SAM mask logits (which can be fed together with new clicks in demo). + prev_sam_mask_logits=None, + ): + current_out, sam_outputs, _, _ = self._track_step( + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse, + prev_sam_mask_logits, + ) + + ( + _, + _, + _, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) = sam_outputs + + current_out["pred_masks"] = low_res_masks + current_out["pred_masks_high_res"] = high_res_masks + current_out["obj_ptr"] = obj_ptr + if not self.training: + # Only add this in inference (to avoid unused param in activation checkpointing; + # it's mainly used in the demo to encode spatial memories w/ consolidated masks) + current_out["object_score_logits"] = object_score_logits + + # Finally run the memory encoder on the predicted mask to encode + # it into a new memory feature (that can be used in future frames) + self._encode_memory_in_output( + current_vision_feats, + feat_sizes, + point_inputs, + run_mem_encoder, + high_res_masks, + object_score_logits, + current_out, + ) + + return current_out + + def _use_multimask(self, is_init_cond_frame, point_inputs): + """Whether to use multimask output in the SAM head.""" + num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) + multimask_output = ( + self.multimask_output_in_sam + and (is_init_cond_frame or self.multimask_output_for_tracking) + and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) + ) + return multimask_output + + def _apply_non_overlapping_constraints(self, pred_masks): + """ + Apply non-overlapping constraints to the object scores in pred_masks. Here we + keep only the highest scoring object at each spatial location in pred_masks. + """ + batch_size = pred_masks.size(0) + if batch_size == 1: + return pred_masks + + device = pred_masks.device + # "max_obj_inds": object index of the object with the highest score at each location + max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) + # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks` + batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] + keep = max_obj_inds == batch_obj_inds + # suppress overlapping regions' scores below -10.0 so that the foreground regions + # don't overlap (here sigmoid(-10.0)=4.5398e-05) + pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) + return pred_masks diff --git a/third_party/sam2/sam2/modeling/sam2_utils.py b/third_party/sam2/sam2/modeling/sam2_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e16caae3a9a49e451b2d03d1ee60c47f8e9ed23c --- /dev/null +++ b/third_party/sam2/sam2/modeling/sam2_utils.py @@ -0,0 +1,323 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + + +import copy +from typing import Tuple + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.utils.misc import mask_to_box + + +def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): + """ + Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` + that are temporally closest to the current frame at `frame_idx`. Here, we take + - a) the closest conditioning frame before `frame_idx` (if any); + - b) the closest conditioning frame after `frame_idx` (if any); + - c) any other temporally closest conditioning frames until reaching a total + of `max_cond_frame_num` conditioning frames. + + Outputs: + - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. + - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. + """ + if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: + selected_outputs = cond_frame_outputs + unselected_outputs = {} + else: + assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" + selected_outputs = {} + + # the closest conditioning frame before `frame_idx` (if any) + idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) + if idx_before is not None: + selected_outputs[idx_before] = cond_frame_outputs[idx_before] + + # the closest conditioning frame after `frame_idx` (if any) + idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) + if idx_after is not None: + selected_outputs[idx_after] = cond_frame_outputs[idx_after] + + # add other temporally closest conditioning frames until reaching a total + # of `max_cond_frame_num` conditioning frames. + num_remain = max_cond_frame_num - len(selected_outputs) + inds_remain = sorted( + (t for t in cond_frame_outputs if t not in selected_outputs), + key=lambda x: abs(x - frame_idx), + )[:num_remain] + selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) + unselected_outputs = { + t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs + } + + return selected_outputs, unselected_outputs + + +def get_1d_sine_pe(pos_inds, dim, temperature=10000): + """ + Get 1D sine positional embedding as in the original Transformer paper. + """ + pe_dim = dim // 2 + dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) + dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) + + pos_embed = pos_inds.unsqueeze(-1) / dim_t + pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) + return pos_embed + + +def get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") + + +def get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +class DropPath(nn.Module): + # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py + def __init__(self, drop_prob=0.0, scale_by_keep=True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + if self.drop_prob == 0.0 or not self.training: + return x + keep_prob = 1 - self.drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and self.scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + activation: nn.Module = nn.ReLU, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + self.act = activation() + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +def sample_box_points( + masks: torch.Tensor, + noise: float = 0.1, # SAM default + noise_bound: int = 20, # SAM default + top_left_label: int = 2, + bottom_right_label: int = 3, +) -> Tuple[np.array, np.array]: + """ + Sample a noised version of the top left and bottom right corners of a given `bbox` + + Inputs: + - masks: [B, 1, H,W] boxes, dtype=torch.Tensor + - noise: noise as a fraction of box width and height, dtype=float + - noise_bound: maximum amount of noise (in pure pixesl), dtype=int + + Returns: + - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float + - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32 + """ + device = masks.device + box_coords = mask_to_box(masks) + B, _, H, W = masks.shape + box_labels = torch.tensor( + [top_left_label, bottom_right_label], dtype=torch.int, device=device + ).repeat(B) + if noise > 0.0: + if not isinstance(noise_bound, torch.Tensor): + noise_bound = torch.tensor(noise_bound, device=device) + bbox_w = box_coords[..., 2] - box_coords[..., 0] + bbox_h = box_coords[..., 3] - box_coords[..., 1] + max_dx = torch.min(bbox_w * noise, noise_bound) + max_dy = torch.min(bbox_h * noise, noise_bound) + box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1 + box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1) + + box_coords = box_coords + box_noise + img_bounds = ( + torch.tensor([W, H, W, H], device=device) - 1 + ) # uncentered pixel coords + box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping + + box_coords = box_coords.reshape(-1, 2, 2) # always 2 points + box_labels = box_labels.reshape(-1, 2) + return box_coords, box_labels + + +def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1): + """ + Sample `num_pt` random points (along with their labels) independently from the error regions. + + Inputs: + - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool + - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None + - num_pt: int, number of points to sample independently for each of the B error maps + + Outputs: + - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point + - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means + negative clicks + """ + if pred_masks is None: # if pred_masks is not provided, treat it as empty + pred_masks = torch.zeros_like(gt_masks) + assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 + assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape + assert num_pt >= 0 + + B, _, H_im, W_im = gt_masks.shape + device = gt_masks.device + + # false positive region, a new point sampled in this region should have + # negative label to correct the FP error + fp_masks = ~gt_masks & pred_masks + # false negative region, a new point sampled in this region should have + # positive label to correct the FN error + fn_masks = gt_masks & ~pred_masks + # whether the prediction completely match the ground-truth on each mask + all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2) + all_correct = all_correct[..., None, None] + + # channel 0 is FP map, while channel 1 is FN map + pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device) + # sample a negative new click from FP region or a positive new click + # from FN region, depend on where the maximum falls, + # and in case the predictions are all correct (no FP or FN), we just + # sample a negative click from the background region + pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks) + pts_noise[..., 1] *= fn_masks + pts_idx = pts_noise.flatten(2).argmax(dim=2) + labels = (pts_idx % 2).to(torch.int32) + pts_idx = pts_idx // 2 + pts_x = pts_idx % W_im + pts_y = pts_idx // W_im + points = torch.stack([pts_x, pts_y], dim=2).to(torch.float) + return points, labels + + +def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True): + """ + Sample 1 random point (along with its label) from the center of each error region, + that is, the point with the largest distance to the boundary of each error region. + This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py + + Inputs: + - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool + - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None + - padding: if True, pad with boundary of 1 px for distance transform + + Outputs: + - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point + - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks + """ + import cv2 + + if pred_masks is None: + pred_masks = torch.zeros_like(gt_masks) + assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 + assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape + + B, _, _, W_im = gt_masks.shape + device = gt_masks.device + + # false positive region, a new point sampled in this region should have + # negative label to correct the FP error + fp_masks = ~gt_masks & pred_masks + # false negative region, a new point sampled in this region should have + # positive label to correct the FN error + fn_masks = gt_masks & ~pred_masks + + fp_masks = fp_masks.cpu().numpy() + fn_masks = fn_masks.cpu().numpy() + points = torch.zeros(B, 1, 2, dtype=torch.float) + labels = torch.ones(B, 1, dtype=torch.int32) + for b in range(B): + fn_mask = fn_masks[b, 0] + fp_mask = fp_masks[b, 0] + if padding: + fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant") + fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant") + # compute the distance of each point in FN/FP region to its boundary + fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0) + fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0) + if padding: + fn_mask_dt = fn_mask_dt[1:-1, 1:-1] + fp_mask_dt = fp_mask_dt[1:-1, 1:-1] + + # take the point in FN/FP region with the largest distance to its boundary + fn_mask_dt_flat = fn_mask_dt.reshape(-1) + fp_mask_dt_flat = fp_mask_dt.reshape(-1) + fn_argmax = np.argmax(fn_mask_dt_flat) + fp_argmax = np.argmax(fp_mask_dt_flat) + is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax] + pt_idx = fn_argmax if is_positive else fp_argmax + points[b, 0, 0] = pt_idx % W_im # x + points[b, 0, 1] = pt_idx // W_im # y + labels[b, 0] = int(is_positive) + + points = points.to(device) + labels = labels.to(device) + return points, labels + + +def get_next_point(gt_masks, pred_masks, method): + if method == "uniform": + return sample_random_points_from_errors(gt_masks, pred_masks) + elif method == "center": + return sample_one_point_from_error_center(gt_masks, pred_masks) + else: + raise ValueError(f"unknown sampling method {method}") diff --git a/third_party/sam2/sam2/sam2_hiera_b+.yaml b/third_party/sam2/sam2/sam2_hiera_b+.yaml new file mode 120000 index 0000000000000000000000000000000000000000..998d9c98c9ff4e8ddd55deff72aa0d9067977418 --- /dev/null +++ b/third_party/sam2/sam2/sam2_hiera_b+.yaml @@ -0,0 +1 @@ +configs/sam2/sam2_hiera_b+.yaml \ No newline at end of file diff --git a/third_party/sam2/sam2/sam2_hiera_l.yaml b/third_party/sam2/sam2/sam2_hiera_l.yaml new file mode 120000 index 0000000000000000000000000000000000000000..c0e7e58e1951d5c55a3a3ebe6b803dd814cf9d86 --- /dev/null +++ b/third_party/sam2/sam2/sam2_hiera_l.yaml @@ -0,0 +1 @@ +configs/sam2/sam2_hiera_l.yaml \ No newline at end of file diff --git a/third_party/sam2/sam2/sam2_hiera_s.yaml b/third_party/sam2/sam2/sam2_hiera_s.yaml new file mode 120000 index 0000000000000000000000000000000000000000..41896a26beb2aa831d18b0bf3c349ed43deeef68 --- /dev/null +++ b/third_party/sam2/sam2/sam2_hiera_s.yaml @@ -0,0 +1 @@ +configs/sam2/sam2_hiera_s.yaml \ No newline at end of file diff --git a/third_party/sam2/sam2/sam2_hiera_t.yaml b/third_party/sam2/sam2/sam2_hiera_t.yaml new file mode 120000 index 0000000000000000000000000000000000000000..71ff3abbb1e11f8b82100a0a1d63cb267eefe52a --- /dev/null +++ b/third_party/sam2/sam2/sam2_hiera_t.yaml @@ -0,0 +1 @@ +configs/sam2/sam2_hiera_t.yaml \ No newline at end of file diff --git a/third_party/sam2/sam2/sam2_image_predictor.py b/third_party/sam2/sam2/sam2_image_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..41ce53af5924504c07216df52b2d2eefaeec7ae9 --- /dev/null +++ b/third_party/sam2/sam2/sam2_image_predictor.py @@ -0,0 +1,466 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging + +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +from PIL.Image import Image + +from sam2.modeling.sam2_base import SAM2Base + +from sam2.utils.transforms import SAM2Transforms + + +class SAM2ImagePredictor: + def __init__( + self, + sam_model: SAM2Base, + mask_threshold=0.0, + max_hole_area=0.0, + max_sprinkle_area=0.0, + **kwargs, + ) -> None: + """ + Uses SAM-2 to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam-2): The model to use for mask prediction. + mask_threshold (float): The threshold to use when converting mask logits + to binary masks. Masks are thresholded at 0 by default. + max_hole_area (int): If max_hole_area > 0, we fill small holes in up to + the maximum area of max_hole_area in low_res_masks. + max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to + the maximum area of max_sprinkle_area in low_res_masks. + """ + super().__init__() + self.model = sam_model + self._transforms = SAM2Transforms( + resolution=self.model.image_size, + mask_threshold=mask_threshold, + max_hole_area=max_hole_area, + max_sprinkle_area=max_sprinkle_area, + ) + + # Predictor state + self._is_image_set = False + self._features = None + self._orig_hw = None + # Whether the predictor is set for single image or a batch of images + self._is_batch = False + + # Predictor config + self.mask_threshold = mask_threshold + + # Spatial dim for backbone feature maps + self._bb_feat_sizes = [ + (256, 256), + (128, 128), + (64, 64), + ] + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2ImagePredictor): The loaded model. + """ + from sam2.build_sam import build_sam2_hf + + sam_model = build_sam2_hf(model_id, **kwargs) + return cls(sam_model, **kwargs) + + @torch.no_grad() + def set_image( + self, + image: Union[np.ndarray, Image], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image + with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + self.reset_predictor() + # Transform the image to the form expected by the model + if isinstance(image, np.ndarray): + logging.info("For numpy array image, we assume (HxWxC) format") + self._orig_hw = [image.shape[:2]] + elif isinstance(image, Image): + w, h = image.size + self._orig_hw = [(h, w)] + else: + raise NotImplementedError("Image format not supported") + + input_image = self._transforms(image) + input_image = input_image[None, ...].to(self.device) + + assert ( + len(input_image.shape) == 4 and input_image.shape[1] == 3 + ), f"input_image must be of size 1x3xHxW, got {input_image.shape}" + logging.info("Computing image embeddings for the provided image...") + backbone_out = self.model.forward_image(input_image) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(1, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + logging.info("Image embeddings computed.") + + @torch.no_grad() + def set_image_batch( + self, + image_list: List[Union[np.ndarray]], + ) -> None: + """ + Calculates the image embeddings for the provided image batch, allowing + masks to be predicted with the 'predict_batch' method. + + Arguments: + image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray + with pixel values in [0, 255]. + """ + self.reset_predictor() + assert isinstance(image_list, list) + self._orig_hw = [] + for image in image_list: + assert isinstance( + image, np.ndarray + ), "Images are expected to be an np.ndarray in RGB format, and of shape HWC" + self._orig_hw.append(image.shape[:2]) + # Transform the image to the form expected by the model + img_batch = self._transforms.forward_batch(image_list) + img_batch = img_batch.to(self.device) + batch_size = img_batch.shape[0] + assert ( + len(img_batch.shape) == 4 and img_batch.shape[1] == 3 + ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}" + logging.info("Computing image embeddings for the provided images...") + backbone_out = self.model.forward_image(img_batch) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + self._is_batch = True + logging.info("Image embeddings computed.") + + def predict_batch( + self, + point_coords_batch: List[np.ndarray] = None, + point_labels_batch: List[np.ndarray] = None, + box_batch: List[np.ndarray] = None, + mask_input_batch: List[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: + """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images. + It returns a tuple of lists of masks, ious, and low_res_masks_logits. + """ + assert self._is_batch, "This function should only be used when in batched mode" + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image_batch(...) before mask prediction." + ) + num_images = len(self._features["image_embed"]) + all_masks = [] + all_ious = [] + all_low_res_masks = [] + for img_idx in range(num_images): + # Transform input prompts + point_coords = ( + point_coords_batch[img_idx] if point_coords_batch is not None else None + ) + point_labels = ( + point_labels_batch[img_idx] if point_labels_batch is not None else None + ) + box = box_batch[img_idx] if box_batch is not None else None + mask_input = ( + mask_input_batch[img_idx] if mask_input_batch is not None else None + ) + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, + point_labels, + box, + mask_input, + normalize_coords, + img_idx=img_idx, + ) + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + img_idx=img_idx, + ) + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = ( + iou_predictions.squeeze(0).float().detach().cpu().numpy() + ) + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + all_masks.append(masks_np) + all_ious.append(iou_predictions_np) + all_low_res_masks.append(low_res_masks_np) + + return all_masks, all_ious, all_low_res_masks + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + # Transform input prompts + + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, point_labels, box, mask_input, normalize_coords + ) + + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + ) + + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + def _prep_prompts( + self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1 + ): + + unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = torch.as_tensor( + point_coords, dtype=torch.float, device=self.device + ) + unnorm_coords = self._transforms.transform_coords( + point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) + labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + if len(unnorm_coords.shape) == 2: + unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...] + if box is not None: + box = torch.as_tensor(box, dtype=torch.float, device=self.device) + unnorm_box = self._transforms.transform_boxes( + box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) # Bx2x2 + if mask_logits is not None: + mask_input = torch.as_tensor( + mask_logits, dtype=torch.float, device=self.device + ) + if len(mask_input.shape) == 3: + mask_input = mask_input[None, :, :, :] + return mask_input, unnorm_coords, labels, unnorm_box + + @torch.no_grad() + def _predict( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + img_idx: int = -1, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using SAM2Transforms. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + if point_coords is not None: + concat_points = (point_coords, point_labels) + else: + concat_points = None + + # Embed prompts + if boxes is not None: + box_coords = boxes.reshape(-1, 2, 2) + box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) + box_labels = box_labels.repeat(boxes.size(0), 1) + # we merge "boxes" and "points" into a single "concat_points" input (where + # boxes are added at the beginning) to sam_prompt_encoder + if concat_points is not None: + concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) + concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) + concat_points = (concat_coords, concat_labels) + else: + concat_points = (box_coords, box_labels) + + sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder( + points=concat_points, + boxes=None, + masks=mask_input, + ) + + # Predict masks + batched_mode = ( + concat_points is not None and concat_points[0].shape[0] > 1 + ) # multi object prediction + high_res_features = [ + feat_level[img_idx].unsqueeze(0) + for feat_level in self._features["high_res_feats"] + ] + low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder( + image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0), + image_pe=self.model.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=batched_mode, + high_res_features=high_res_features, + ) + + # Upscale the masks to the original image resolution + masks = self._transforms.postprocess_masks( + low_res_masks, self._orig_hw[img_idx] + ) + low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) + if not return_logits: + masks = masks > self.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert ( + self._features is not None + ), "Features must exist if an image has been set." + return self._features["image_embed"] + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_predictor(self) -> None: + """ + Resets the image embeddings and other state variables. + """ + self._is_image_set = False + self._features = None + self._orig_hw = None + self._is_batch = False diff --git a/third_party/sam2/sam2/sam2_video_predictor.py b/third_party/sam2/sam2/sam2_video_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..c7e01ccf972491904b013526333826b337354db1 --- /dev/null +++ b/third_party/sam2/sam2/sam2_video_predictor.py @@ -0,0 +1,1172 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import warnings +from collections import OrderedDict + +import torch + +from tqdm import tqdm + +from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base +from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames + + +class SAM2VideoPredictor(SAM2Base): + """The predictor class to handle user interactions and manage inference states.""" + + def __init__( + self, + fill_hole_area=0, + # whether to apply non-overlapping constraints on the output object masks + non_overlap_masks=False, + # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; + # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) + clear_non_cond_mem_around_input=False, + # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). + clear_non_cond_mem_for_multi_obj=False, + # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click + # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames + add_all_frames_to_correct_as_cond=False, + **kwargs, + ): + super().__init__(**kwargs) + self.fill_hole_area = fill_hole_area + self.non_overlap_masks = non_overlap_masks + self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input + self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj + self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond + + @torch.inference_mode() + def init_state( + self, + video_path, + offload_video_to_cpu=False, + offload_state_to_cpu=False, + async_loading_frames=False, + ): + """Initialize an inference state.""" + compute_device = self.device # device of the model + images, video_height, video_width = load_video_frames( + video_path=video_path, + image_size=self.image_size, + offload_video_to_cpu=offload_video_to_cpu, + async_loading_frames=async_loading_frames, + compute_device=compute_device, + ) + inference_state = {} + inference_state["images"] = images + inference_state["num_frames"] = len(images) + # whether to offload the video frames to CPU memory + # turning on this option saves the GPU memory with only a very small overhead + inference_state["offload_video_to_cpu"] = offload_video_to_cpu + # whether to offload the inference state to CPU memory + # turning on this option saves the GPU memory at the cost of a lower tracking fps + # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object + # and from 24 to 21 when tracking two objects) + inference_state["offload_state_to_cpu"] = offload_state_to_cpu + # the original video height and width, used for resizing final output scores + inference_state["video_height"] = video_height + inference_state["video_width"] = video_width + inference_state["device"] = compute_device + if offload_state_to_cpu: + inference_state["storage_device"] = torch.device("cpu") + else: + inference_state["storage_device"] = compute_device + # inputs on each frame + inference_state["point_inputs_per_obj"] = {} + inference_state["mask_inputs_per_obj"] = {} + # visual features on a small number of recently visited frames for quick interactions + inference_state["cached_features"] = {} + # values that don't change across frames (so we only need to hold one copy of them) + inference_state["constants"] = {} + # mapping between client-side object id and model-side object index + inference_state["obj_id_to_idx"] = OrderedDict() + inference_state["obj_idx_to_id"] = OrderedDict() + inference_state["obj_ids"] = [] + # A storage to hold the model's tracking results and states on each frame + inference_state["output_dict"] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + # Slice (view) of each object tracking results, sharing the same memory with "output_dict" + inference_state["output_dict_per_obj"] = {} + # A temporary storage to hold new outputs when user interact with a frame + # to add clicks or mask (it's merged into "output_dict" before propagation starts) + inference_state["temp_output_dict_per_obj"] = {} + # Frames that already holds consolidated outputs from click or mask inputs + # (we directly use their consolidated outputs during tracking) + inference_state["consolidated_frame_inds"] = { + "cond_frame_outputs": set(), # set containing frame indices + "non_cond_frame_outputs": set(), # set containing frame indices + } + # metadata for each tracking frame (e.g. which direction it's tracked) + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"] = {} + # Warm up the visual backbone and cache the image feature on frame 0 + self._get_image_feature(inference_state, frame_idx=0, batch_size=1) + return inference_state + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2VideoPredictor): The loaded model. + """ + from sam2.build_sam import build_sam2_video_predictor_hf + + sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) + return sam_model + + def _obj_id_to_idx(self, inference_state, obj_id): + """Map client-side object id to model-side object index.""" + obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) + if obj_idx is not None: + return obj_idx + + # This is a new object id not sent to the server before. We only allow adding + # new objects *before* the tracking starts. + allow_new_object = not inference_state["tracking_has_started"] + if allow_new_object: + # get the next object slot + obj_idx = len(inference_state["obj_id_to_idx"]) + inference_state["obj_id_to_idx"][obj_id] = obj_idx + inference_state["obj_idx_to_id"][obj_idx] = obj_id + inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) + # set up input and output structures for this object + inference_state["point_inputs_per_obj"][obj_idx] = {} + inference_state["mask_inputs_per_obj"][obj_idx] = {} + inference_state["output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + inference_state["temp_output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + return obj_idx + else: + raise RuntimeError( + f"Cannot add new object id {obj_id} after tracking starts. " + f"All existing object ids: {inference_state['obj_ids']}. " + f"Please call 'reset_state' to restart from scratch." + ) + + def _obj_idx_to_id(self, inference_state, obj_idx): + """Map model-side object index to client-side object id.""" + return inference_state["obj_idx_to_id"][obj_idx] + + def _get_obj_num(self, inference_state): + """Get the total number of unique object ids received so far in this session.""" + return len(inference_state["obj_idx_to_id"]) + + @torch.inference_mode() + def add_new_points_or_box( + self, + inference_state, + frame_idx, + obj_id, + points=None, + labels=None, + clear_old_points=True, + normalize_coords=True, + box=None, + ): + """Add new points to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if (points is not None) != (labels is not None): + raise ValueError("points and labels must be provided together") + if points is None and box is None: + raise ValueError("at least one of points or box must be provided as input") + + if points is None: + points = torch.zeros(0, 2, dtype=torch.float32) + elif not isinstance(points, torch.Tensor): + points = torch.tensor(points, dtype=torch.float32) + if labels is None: + labels = torch.zeros(0, dtype=torch.int32) + elif not isinstance(labels, torch.Tensor): + labels = torch.tensor(labels, dtype=torch.int32) + if points.dim() == 2: + points = points.unsqueeze(0) # add batch dimension + if labels.dim() == 1: + labels = labels.unsqueeze(0) # add batch dimension + + # If `box` is provided, we add it as the first two points with labels 2 and 3 + # along with the user-provided points (consistent with how SAM 2 is trained). + if box is not None: + if not clear_old_points: + raise ValueError( + "cannot add box without clearing old points, since " + "box prompt must be provided before any point prompt " + "(please use clear_old_points=True instead)" + ) + if inference_state["tracking_has_started"]: + warnings.warn( + "You are adding a box after tracking starts. SAM 2 may not always be " + "able to incorporate a box prompt for *refinement*. If you intend to " + "use box prompt as an *initial* input before tracking, please call " + "'reset_state' on the inference state to restart from scratch.", + category=UserWarning, + stacklevel=2, + ) + if not isinstance(box, torch.Tensor): + box = torch.tensor(box, dtype=torch.float32, device=points.device) + box_coords = box.reshape(1, 2, 2) + box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) + box_labels = box_labels.reshape(1, 2) + points = torch.cat([box_coords, points], dim=1) + labels = torch.cat([box_labels, labels], dim=1) + + if normalize_coords: + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + points = points / torch.tensor([video_W, video_H]).to(points.device) + # scale the (normalized) coordinates by the model's internal image size + points = points * self.image_size + points = points.to(inference_state["device"]) + labels = labels.to(inference_state["device"]) + + if not clear_old_points: + point_inputs = point_inputs_per_frame.get(frame_idx, None) + else: + point_inputs = None + point_inputs = concat_points(point_inputs, points, labels) + + point_inputs_per_frame[frame_idx] = point_inputs + mask_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + # Get any previously predicted mask logits on this object and feed it along with + # the new clicks into the SAM mask decoder. + prev_sam_mask_logits = None + # lookup temporary output dict first, which contains the most recent output + # (if not found, then lookup conditioning and non-conditioning frame output) + prev_out = obj_temp_output_dict[storage_key].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) + + if prev_out is not None and prev_out["pred_masks"] is not None: + device = inference_state["device"] + prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) + # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. + prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=point_inputs, + mask_inputs=None, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + def add_new_points(self, *args, **kwargs): + """Deprecated method. Please use `add_new_points_or_box` instead.""" + return self.add_new_points_or_box(*args, **kwargs) + + @torch.inference_mode() + def add_new_mask( + self, + inference_state, + frame_idx, + obj_id, + mask, + ): + """Add new mask to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if not isinstance(mask, torch.Tensor): + mask = torch.tensor(mask, dtype=torch.bool) + assert mask.dim() == 2 + mask_H, mask_W = mask.shape + mask_inputs_orig = mask[None, None] # add batch and channel dimension + mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"]) + + # resize the mask if it doesn't match the model's image size + if mask_H != self.image_size or mask_W != self.image_size: + mask_inputs = torch.nn.functional.interpolate( + mask_inputs_orig, + size=(self.image_size, self.image_size), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + mask_inputs = (mask_inputs >= 0.5).float() + else: + mask_inputs = mask_inputs_orig + + mask_inputs_per_frame[frame_idx] = mask_inputs + point_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=None, + mask_inputs=mask_inputs, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + def _get_orig_video_res_output(self, inference_state, any_res_masks): + """ + Resize the object scores to the original video resolution (video_res_masks) + and apply non-overlapping constraints for final output. + """ + device = inference_state["device"] + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + any_res_masks = any_res_masks.to(device, non_blocking=True) + if any_res_masks.shape[-2:] == (video_H, video_W): + video_res_masks = any_res_masks + else: + video_res_masks = torch.nn.functional.interpolate( + any_res_masks, + size=(video_H, video_W), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks: + video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) + return any_res_masks, video_res_masks + + def _consolidate_temp_output_across_obj( + self, + inference_state, + frame_idx, + is_cond, + run_mem_encoder, + consolidate_at_video_res=False, + ): + """ + Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on + a frame into a single output for all objects, including + 1) fill any missing objects either from `output_dict_per_obj` (if they exist in + `output_dict_per_obj` for this frame) or leave them as placeholder values + (if they don't exist in `output_dict_per_obj` for this frame); + 2) if specified, rerun memory encoder after apply non-overlapping constraints + on the object scores. + """ + batch_size = self._get_obj_num(inference_state) + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Optionally, we allow consolidating the temporary outputs at the original + # video resolution (to provide a better editing experience for mask prompts). + if consolidate_at_video_res: + assert not run_mem_encoder, "memory encoder cannot run at video resolution" + consolidated_H = inference_state["video_height"] + consolidated_W = inference_state["video_width"] + consolidated_mask_key = "pred_masks_video_res" + else: + consolidated_H = consolidated_W = self.image_size // 4 + consolidated_mask_key = "pred_masks" + + # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" + # will be added when rerunning the memory encoder after applying non-overlapping + # constraints to object scores. Its "pred_masks" are prefilled with a large + # negative value (NO_OBJ_SCORE) to represent missing objects. + consolidated_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + consolidated_mask_key: torch.full( + size=(batch_size, 1, consolidated_H, consolidated_W), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["storage_device"], + ), + "obj_ptr": torch.full( + size=(batch_size, self.hidden_dim), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["device"], + ), + "object_score_logits": torch.full( + size=(batch_size, 1), + # default to 10.0 for object_score_logits, i.e. assuming the object is + # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder` + fill_value=10.0, + dtype=torch.float32, + device=inference_state["device"], + ), + } + empty_mask_ptr = None + for obj_idx in range(batch_size): + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + out = obj_temp_output_dict[storage_key].get(frame_idx, None) + # If the object doesn't appear in "temp_output_dict_per_obj" on this frame, + # we fall back and look up its previous output in "output_dict_per_obj". + # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in + # "output_dict_per_obj" to find a previous output for this object. + if out is None: + out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) + if out is None: + out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) + # If the object doesn't appear in "output_dict_per_obj" either, we skip it + # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE + # placeholder above) and set its object pointer to be a dummy pointer. + if out is None: + # Fill in dummy object pointers for those objects without any inputs or + # tracking outcomes on this frame (only do it under `run_mem_encoder=True`, + # i.e. when we need to build the memory for tracking). + if run_mem_encoder: + if empty_mask_ptr is None: + empty_mask_ptr = self._get_empty_mask_ptr( + inference_state, frame_idx + ) + # fill object pointer with a dummy pointer (based on an empty mask) + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr + continue + # Add the temporary object output mask to consolidated output mask + obj_mask = out["pred_masks"] + consolidated_pred_masks = consolidated_out[consolidated_mask_key] + if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: + consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask + else: + # Resize first if temporary object mask has a different resolution + resized_obj_mask = torch.nn.functional.interpolate( + obj_mask, + size=consolidated_pred_masks.shape[-2:], + mode="bilinear", + align_corners=False, + ) + consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] + consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[ + "object_score_logits" + ] + + # Optionally, apply non-overlapping constraints on the consolidated scores + # and rerun the memory encoder + if run_mem_encoder: + device = inference_state["device"] + high_res_masks = torch.nn.functional.interpolate( + consolidated_out["pred_masks"].to(device, non_blocking=True), + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks_for_mem_enc: + high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) + maskmem_features, maskmem_pos_enc = self._run_memory_encoder( + inference_state=inference_state, + frame_idx=frame_idx, + batch_size=batch_size, + high_res_masks=high_res_masks, + object_score_logits=consolidated_out["object_score_logits"], + is_mask_from_pts=True, # these frames are what the user interacted with + ) + consolidated_out["maskmem_features"] = maskmem_features + consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc + + return consolidated_out + + def _get_empty_mask_ptr(self, inference_state, frame_idx): + """Get a dummy object pointer based on an empty mask on the current frame.""" + # A dummy (empty) mask with a single object + batch_size = 1 + mask_inputs = torch.zeros( + (batch_size, 1, self.image_size, self.image_size), + dtype=torch.float32, + device=inference_state["device"], + ) + + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # Feed the empty mask and image feature above to get a dummy object pointer + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=True, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=None, + mask_inputs=mask_inputs, + output_dict={}, + num_frames=inference_state["num_frames"], + track_in_reverse=False, + run_mem_encoder=False, + prev_sam_mask_logits=None, + ) + return current_out["obj_ptr"] + + @torch.inference_mode() + def propagate_in_video_preflight(self, inference_state): + """Prepare inference_state and consolidate temporary outputs before tracking.""" + # Tracking has started and we don't allow adding new objects until session is reset. + inference_state["tracking_has_started"] = True + batch_size = self._get_obj_num(inference_state) + + # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and + # add them into "output_dict". + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + output_dict = inference_state["output_dict"] + # "consolidated_frame_inds" contains indices of those frames where consolidated + # temporary outputs have been added (either in this call or any previous calls + # to `propagate_in_video_preflight`). + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + for is_cond in [False, True]: + # Separately consolidate conditioning and non-conditioning temp outputs + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Find all the frames that contain temporary outputs for any objects + # (these should be the frames that have just received clicks for mask inputs + # via `add_new_points_or_box` or `add_new_mask`) + temp_frame_inds = set() + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) + consolidated_frame_inds[storage_key].update(temp_frame_inds) + # consolidate the temporary output across all objects on this frame + for frame_idx in temp_frame_inds: + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True + ) + # merge them into "output_dict" and also create per-object slices + output_dict[storage_key][frame_idx] = consolidated_out + self._add_output_per_object( + inference_state, frame_idx, consolidated_out, storage_key + ) + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + + # clear temporary outputs in `temp_output_dict_per_obj` + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + obj_temp_output_dict[storage_key].clear() + + # edge case: if an output is added to "cond_frame_outputs", we remove any prior + # output on the same frame in "non_cond_frame_outputs" + for frame_idx in output_dict["cond_frame_outputs"]: + output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + for frame_idx in obj_output_dict["cond_frame_outputs"]: + obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + assert frame_idx in output_dict["cond_frame_outputs"] + consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) + + # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames + # with either points or mask inputs (which should be true under a correct workflow). + all_consolidated_frame_inds = ( + consolidated_frame_inds["cond_frame_outputs"] + | consolidated_frame_inds["non_cond_frame_outputs"] + ) + input_frames_inds = set() + for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): + input_frames_inds.update(point_inputs_per_frame.keys()) + for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): + input_frames_inds.update(mask_inputs_per_frame.keys()) + assert all_consolidated_frame_inds == input_frames_inds + + @torch.inference_mode() + def propagate_in_video( + self, + inference_state, + start_frame_idx=None, + max_frame_num_to_track=None, + reverse=False, + ): + """Propagate the input points across frames to track in the entire video.""" + self.propagate_in_video_preflight(inference_state) + + output_dict = inference_state["output_dict"] + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + obj_ids = inference_state["obj_ids"] + num_frames = inference_state["num_frames"] + batch_size = self._get_obj_num(inference_state) + if len(output_dict["cond_frame_outputs"]) == 0: + raise RuntimeError("No points are provided; please add points first") + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + + # set start index, end index, and processing order + if start_frame_idx is None: + # default: start from the earliest frame with input points + start_frame_idx = min(output_dict["cond_frame_outputs"]) + if max_frame_num_to_track is None: + # default: track all the frames in the video + max_frame_num_to_track = num_frames + if reverse: + end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) + if start_frame_idx > 0: + processing_order = range(start_frame_idx, end_frame_idx - 1, -1) + else: + processing_order = [] # skip reverse tracking if starting from frame 0 + else: + end_frame_idx = min( + start_frame_idx + max_frame_num_to_track, num_frames - 1 + ) + processing_order = range(start_frame_idx, end_frame_idx + 1) + + for frame_idx in tqdm(processing_order, desc="propagate in video"): + # We skip those frames already in consolidated outputs (these are frames + # that received input clicks or mask). Note that we cannot directly run + # batched forward on them via `_run_single_frame_inference` because the + # number of clicks on each object might be different. + if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + storage_key = "cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: + storage_key = "non_cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + else: + storage_key = "non_cond_frame_outputs" + current_out, pred_masks = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=output_dict, + frame_idx=frame_idx, + batch_size=batch_size, + is_init_cond_frame=False, + point_inputs=None, + mask_inputs=None, + reverse=reverse, + run_mem_encoder=True, + ) + output_dict[storage_key][frame_idx] = current_out + # Create slices of per-object outputs for subsequent interaction with each + # individual object after tracking. + self._add_output_per_object( + inference_state, frame_idx, current_out, storage_key + ) + inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} + + # Resize the output mask to the original video resolution (we directly use + # the mask scores on GPU for output to avoid any CPU conversion in between) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, pred_masks + ) + yield frame_idx, obj_ids, video_res_masks + + def _add_output_per_object( + self, inference_state, frame_idx, current_out, storage_key + ): + """ + Split a multi-object output into per-object output slices and add them into + `output_dict_per_obj`. The resulting slices share the same tensor storage. + """ + maskmem_features = current_out["maskmem_features"] + assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) + + maskmem_pos_enc = current_out["maskmem_pos_enc"] + assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) + + output_dict_per_obj = inference_state["output_dict_per_obj"] + for obj_idx, obj_output_dict in output_dict_per_obj.items(): + obj_slice = slice(obj_idx, obj_idx + 1) + obj_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + "pred_masks": current_out["pred_masks"][obj_slice], + "obj_ptr": current_out["obj_ptr"][obj_slice], + "object_score_logits": current_out["object_score_logits"][obj_slice], + } + if maskmem_features is not None: + obj_out["maskmem_features"] = maskmem_features[obj_slice] + if maskmem_pos_enc is not None: + obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] + obj_output_dict[storage_key][frame_idx] = obj_out + + @torch.inference_mode() + def clear_all_prompts_in_frame( + self, inference_state, frame_idx, obj_id, need_output=True + ): + """Remove all input points or mask in a specific frame for a given object.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + + # Clear the conditioning information on the given frame + inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None) + inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None) + + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None) + temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None) + + # Check and see if there are still any inputs left on this frame + batch_size = self._get_obj_num(inference_state) + frame_has_input = False + for obj_idx2 in range(batch_size): + if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]: + frame_has_input = True + break + if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]: + frame_has_input = True + break + + # If this frame has no remaining inputs for any objects, we further clear its + # conditioning frame status + if not frame_has_input: + output_dict = inference_state["output_dict"] + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx) + consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) + # Remove the frame's conditioning output (possibly downgrading it to non-conditioning) + out = output_dict["cond_frame_outputs"].pop(frame_idx, None) + if out is not None: + # The frame is not a conditioning frame anymore since it's not receiving inputs, + # so we "downgrade" its output (if exists) to a non-conditioning frame output. + output_dict["non_cond_frame_outputs"][frame_idx] = out + inference_state["frames_already_tracked"].pop(frame_idx, None) + # Similarly, do it for the sliced output on each object. + for obj_idx2 in range(batch_size): + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2] + obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None) + if obj_out is not None: + obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out + + # If all the conditioning frames have been removed, we also clear the tracking outputs + if len(output_dict["cond_frame_outputs"]) == 0: + self._reset_tracking_results(inference_state) + + if not need_output: + return + # Finally, output updated masks per object (after removing the inputs above) + obj_ids = inference_state["obj_ids"] + is_cond = any( + frame_idx in obj_temp_output_dict["cond_frame_outputs"] + for obj_temp_output_dict in temp_output_dict_per_obj.values() + ) + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + @torch.inference_mode() + def reset_state(self, inference_state): + """Remove all input points or mask in all frames throughout the video.""" + self._reset_tracking_results(inference_state) + # Remove all object ids + inference_state["obj_id_to_idx"].clear() + inference_state["obj_idx_to_id"].clear() + inference_state["obj_ids"].clear() + inference_state["point_inputs_per_obj"].clear() + inference_state["mask_inputs_per_obj"].clear() + inference_state["output_dict_per_obj"].clear() + inference_state["temp_output_dict_per_obj"].clear() + + def _reset_tracking_results(self, inference_state): + """Reset all tracking inputs and results across the videos.""" + for v in inference_state["point_inputs_per_obj"].values(): + v.clear() + for v in inference_state["mask_inputs_per_obj"].values(): + v.clear() + for v in inference_state["output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + for v in inference_state["temp_output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + inference_state["output_dict"]["cond_frame_outputs"].clear() + inference_state["output_dict"]["non_cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"].clear() + + def _get_image_feature(self, inference_state, frame_idx, batch_size): + """Compute the image features on a given frame.""" + # Look up in the cache first + image, backbone_out = inference_state["cached_features"].get( + frame_idx, (None, None) + ) + if backbone_out is None: + # Cache miss -- we will run inference on a single image + device = inference_state["device"] + image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0) + backbone_out = self.forward_image(image) + # Cache the most recent frame's feature (for repeated interactions with + # a frame; we can use an LRU cache for more frames in the future). + inference_state["cached_features"] = {frame_idx: (image, backbone_out)} + + # expand the features to have the same dimension as the number of objects + expanded_image = image.expand(batch_size, -1, -1, -1) + expanded_backbone_out = { + "backbone_fpn": backbone_out["backbone_fpn"].copy(), + "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), + } + for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): + expanded_backbone_out["backbone_fpn"][i] = feat.expand( + batch_size, -1, -1, -1 + ) + for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): + pos = pos.expand(batch_size, -1, -1, -1) + expanded_backbone_out["vision_pos_enc"][i] = pos + + features = self._prepare_backbone_features(expanded_backbone_out) + features = (expanded_image,) + features + return features + + def _run_single_frame_inference( + self, + inference_state, + output_dict, + frame_idx, + batch_size, + is_init_cond_frame, + point_inputs, + mask_inputs, + reverse, + run_mem_encoder, + prev_sam_mask_logits=None, + ): + """Run tracking on a single frame based on current inputs and previous memory.""" + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # point and mask should not appear as input simultaneously on the same frame + assert point_inputs is None or mask_inputs is None + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + output_dict=output_dict, + num_frames=inference_state["num_frames"], + track_in_reverse=reverse, + run_mem_encoder=run_mem_encoder, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = current_out["maskmem_features"] + if maskmem_features is not None: + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + pred_masks_gpu = current_out["pred_masks"] + # potentially fill holes in the predicted masks + if self.fill_hole_area > 0: + pred_masks_gpu = fill_holes_in_mask_scores( + pred_masks_gpu, self.fill_hole_area + ) + pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) + # object pointer is a small tensor, so we always keep it on GPU memory for fast access + obj_ptr = current_out["obj_ptr"] + object_score_logits = current_out["object_score_logits"] + # make a compact version of this frame's output to reduce the state size + compact_current_out = { + "maskmem_features": maskmem_features, + "maskmem_pos_enc": maskmem_pos_enc, + "pred_masks": pred_masks, + "obj_ptr": obj_ptr, + "object_score_logits": object_score_logits, + } + return compact_current_out, pred_masks_gpu + + def _run_memory_encoder( + self, + inference_state, + frame_idx, + batch_size, + high_res_masks, + object_score_logits, + is_mask_from_pts, + ): + """ + Run the memory encoder on `high_res_masks`. This is usually after applying + non-overlapping constraints to object scores. Since their scores changed, their + memory also need to be computed again with the memory encoder. + """ + # Retrieve correct image features + _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( + inference_state, frame_idx, batch_size + ) + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks, + object_score_logits=object_score_logits, + is_mask_from_pts=is_mask_from_pts, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc( + inference_state, {"maskmem_pos_enc": maskmem_pos_enc} + ) + return maskmem_features, maskmem_pos_enc + + def _get_maskmem_pos_enc(self, inference_state, current_out): + """ + `maskmem_pos_enc` is the same across frames and objects, so we cache it as + a constant in the inference session to reduce session storage size. + """ + model_constants = inference_state["constants"] + # "out_maskmem_pos_enc" should be either a list of tensors or None + out_maskmem_pos_enc = current_out["maskmem_pos_enc"] + if out_maskmem_pos_enc is not None: + if "maskmem_pos_enc" not in model_constants: + assert isinstance(out_maskmem_pos_enc, list) + # only take the slice for one object, since it's same across objects + maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] + model_constants["maskmem_pos_enc"] = maskmem_pos_enc + else: + maskmem_pos_enc = model_constants["maskmem_pos_enc"] + # expand the cached maskmem_pos_enc to the actual batch size + batch_size = out_maskmem_pos_enc[0].size(0) + expanded_maskmem_pos_enc = [ + x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc + ] + else: + expanded_maskmem_pos_enc = None + return expanded_maskmem_pos_enc + + @torch.inference_mode() + def remove_object(self, inference_state, obj_id, strict=False, need_output=True): + """ + Remove an object id from the tracking state. If strict is True, we check whether + the object id actually exists and raise an error if it doesn't exist. + """ + old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None) + updated_frames = [] + # Check whether this object_id to remove actually exists and possibly raise an error. + if old_obj_idx_to_rm is None: + if not strict: + return inference_state["obj_ids"], updated_frames + raise RuntimeError( + f"Cannot remove object id {obj_id} as it doesn't exist. " + f"All existing object ids: {inference_state['obj_ids']}." + ) + + # If this is the only remaining object id, we simply reset the state. + if len(inference_state["obj_id_to_idx"]) == 1: + self.reset_state(inference_state) + return inference_state["obj_ids"], updated_frames + + # There are still remaining objects after removing this object id. In this case, + # we need to delete the object storage from inference state tensors. + # Step 0: clear the input on those frames where this object id has point or mask input + # (note that this step is required as it might downgrade conditioning frames to + # non-conditioning ones) + obj_input_frames_inds = set() + obj_input_frames_inds.update( + inference_state["point_inputs_per_obj"][old_obj_idx_to_rm] + ) + obj_input_frames_inds.update( + inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm] + ) + for frame_idx in obj_input_frames_inds: + self.clear_all_prompts_in_frame( + inference_state, frame_idx, obj_id, need_output=False + ) + + # Step 1: Update the object id mapping (note that it must be done after Step 0, + # since Step 0 still requires the old object id mappings in inference_state) + old_obj_ids = inference_state["obj_ids"] + old_obj_inds = list(range(len(old_obj_ids))) + remain_old_obj_inds = old_obj_inds.copy() + remain_old_obj_inds.remove(old_obj_idx_to_rm) + new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds] + new_obj_inds = list(range(len(new_obj_ids))) + # build new mappings + old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds)) + inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds)) + inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids)) + inference_state["obj_ids"] = new_obj_ids + + # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys. + # (note that "consolidated_frame_inds" doesn't need to be updated in this step as + # it's already handled in Step 0) + def _map_keys(container): + new_kvs = [] + for k in old_obj_inds: + v = container.pop(k) + if k in old_idx_to_new_idx: + new_kvs.append((old_idx_to_new_idx[k], v)) + container.update(new_kvs) + + _map_keys(inference_state["point_inputs_per_obj"]) + _map_keys(inference_state["mask_inputs_per_obj"]) + _map_keys(inference_state["output_dict_per_obj"]) + _map_keys(inference_state["temp_output_dict_per_obj"]) + + # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices. + def _slice_state(output_dict, storage_key): + for frame_idx, out in output_dict[storage_key].items(): + out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds] + out["maskmem_pos_enc"] = [ + x[remain_old_obj_inds] for x in out["maskmem_pos_enc"] + ] + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out) + out["pred_masks"] = out["pred_masks"][remain_old_obj_inds] + out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds] + out["object_score_logits"] = out["object_score_logits"][ + remain_old_obj_inds + ] + # also update the per-object slices + self._add_output_per_object( + inference_state, frame_idx, out, storage_key + ) + + _slice_state(inference_state["output_dict"], "cond_frame_outputs") + _slice_state(inference_state["output_dict"], "non_cond_frame_outputs") + + # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which + # could show an updated mask for objects previously occluded by the object being removed + if need_output: + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + for frame_idx in obj_input_frames_inds: + is_cond = any( + frame_idx in obj_temp_output_dict["cond_frame_outputs"] + for obj_temp_output_dict in temp_output_dict_per_obj.values() + ) + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + updated_frames.append((frame_idx, video_res_masks)) + + return inference_state["obj_ids"], updated_frames + + def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): + """ + Remove the non-conditioning memory around the input frame. When users provide + correction clicks, the surrounding frames' non-conditioning memories can still + contain outdated object appearance information and could confuse the model. + + This method clears those non-conditioning memories surrounding the interacted + frame to avoid giving the model both old and new information about the object. + """ + r = self.memory_temporal_stride_for_eval + frame_idx_begin = frame_idx - r * self.num_maskmem + frame_idx_end = frame_idx + r * self.num_maskmem + output_dict = inference_state["output_dict"] + non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] + for t in range(frame_idx_begin, frame_idx_end + 1): + non_cond_frame_outputs.pop(t, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + obj_output_dict["non_cond_frame_outputs"].pop(t, None) diff --git a/third_party/sam2/sam2/utils/__init__.py b/third_party/sam2/sam2/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/sam2/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/sam2/utils/amg.py b/third_party/sam2/sam2/utils/amg.py new file mode 100644 index 0000000000000000000000000000000000000000..986842960cf5deca00614b7b1cde1ab77dad7e6e --- /dev/null +++ b/third_party/sam2/sam2/utils/amg.py @@ -0,0 +1,348 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + +import numpy as np +import torch + +# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.float().detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/third_party/sam2/sam2/utils/misc.py b/third_party/sam2/sam2/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..136ebd648eb30c9d3f8352ea9f5d7e90c9ebd0d9 --- /dev/null +++ b/third_party/sam2/sam2/utils/misc.py @@ -0,0 +1,380 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import os +import warnings +from threading import Thread + +import numpy as np +import torch +from PIL import Image +from tqdm import tqdm + + +def get_sdpa_settings(): + if torch.cuda.is_available(): + old_gpu = torch.cuda.get_device_properties(0).major < 7 + # only use Flash Attention on Ampere (8.0) or newer GPUs + use_flash_attn = torch.cuda.get_device_properties(0).major >= 8 + if not use_flash_attn: + warnings.warn( + "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.", + category=UserWarning, + stacklevel=2, + ) + # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only + # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases) + pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2]) + if pytorch_version < (2, 2): + warnings.warn( + f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. " + "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).", + category=UserWarning, + stacklevel=2, + ) + math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn + else: + old_gpu = True + use_flash_attn = False + math_kernel_on = True + + return old_gpu, use_flash_attn, math_kernel_on + + +def get_connected_components(mask): + """ + Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). + + Inputs: + - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is + background. + + Outputs: + - labels: A tensor of shape (N, 1, H, W) containing the connected component labels + for foreground pixels and 0 for background pixels. + - counts: A tensor of shape (N, 1, H, W) containing the area of the connected + components for foreground pixels and 0 for background pixels. + """ + from sam2 import _C + + return _C.get_connected_componnets(mask.to(torch.uint8).contiguous()) + + +def mask_to_box(masks: torch.Tensor): + """ + compute bounding box given an input mask + + Inputs: + - masks: [B, 1, H, W] masks, dtype=torch.Tensor + + Returns: + - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor + """ + B, _, h, w = masks.shape + device = masks.device + xs = torch.arange(w, device=device, dtype=torch.int32) + ys = torch.arange(h, device=device, dtype=torch.int32) + grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") + grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) + grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) + min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) + max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) + min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) + max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) + bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) + + return bbox_coords + + +def _load_img_as_tensor(img_path, image_size): + img_pil = Image.open(img_path) + img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size))) + if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images + img_np = img_np / 255.0 + else: + raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}") + img = torch.from_numpy(img_np).permute(2, 0, 1) + video_width, video_height = img_pil.size # the original video size + return img, video_height, video_width + + +class AsyncVideoFrameLoader: + """ + A list of video frames to be load asynchronously without blocking session start. + """ + + def __init__( + self, + img_paths, + image_size, + offload_video_to_cpu, + img_mean, + img_std, + compute_device, + ): + self.img_paths = img_paths + self.image_size = image_size + self.offload_video_to_cpu = offload_video_to_cpu + self.img_mean = img_mean + self.img_std = img_std + # items in `self.images` will be loaded asynchronously + self.images = [None] * len(img_paths) + # catch and raise any exceptions in the async loading thread + self.exception = None + # video_height and video_width be filled when loading the first image + self.video_height = None + self.video_width = None + self.compute_device = compute_device + + # load the first frame to fill video_height and video_width and also + # to cache it (since it's most likely where the user will click) + self.__getitem__(0) + + # load the rest of frames asynchronously without blocking the session start + def _load_frames(): + try: + for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"): + self.__getitem__(n) + except Exception as e: + self.exception = e + + self.thread = Thread(target=_load_frames, daemon=True) + self.thread.start() + + def __getitem__(self, index): + if self.exception is not None: + raise RuntimeError("Failure in frame loading thread") from self.exception + + img = self.images[index] + if img is not None: + return img + + img, video_height, video_width = _load_img_as_tensor( + self.img_paths[index], self.image_size + ) + self.video_height = video_height + self.video_width = video_width + # normalize by mean and std + img -= self.img_mean + img /= self.img_std + if not self.offload_video_to_cpu: + img = img.to(self.compute_device, non_blocking=True) + self.images[index] = img + return img + + def __len__(self): + return len(self.images) + + +def load_video_frames( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, + compute_device=torch.device("cuda"), +): + """ + Load the video frames from video_path. The frames are resized to image_size as in + the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo. + """ + is_bytes = isinstance(video_path, bytes) + is_str = isinstance(video_path, str) + is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"] + if is_bytes or is_mp4_path: + return load_video_frames_from_video_file( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + compute_device=compute_device, + ) + elif is_str and os.path.isdir(video_path): + return load_video_frames_from_jpg_images( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + async_loading_frames=async_loading_frames, + compute_device=compute_device, + ) + # elif is a list + elif isinstance(video_path, list): + return load_video_frames_from_jpg_images( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + async_loading_frames=async_loading_frames, + compute_device=compute_device, + list_input=True, + ) + elif isinstance(video_path, torch.Tensor): + N, D, H, W = video_path.shape + # use bicubic interpolation to resize the video frames + video_frames = torch.nn.functional.interpolate( + video_path, size=(image_size, image_size), mode="bicubic", align_corners=False + ) + # normalize by mean and std + if not offload_video_to_cpu: + video_frames = video_frames.to(compute_device) + img_mean = torch.tensor(img_mean, dtype=torch.float32).to(compute_device)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32).to(compute_device)[:, None, None] + video_frames -= img_mean + video_frames /= img_std + return video_frames, H, W + else: + raise NotImplementedError( + "Only MP4 video and JPEG folder are supported at this moment" + ) + + +def load_video_frames_from_jpg_images( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, + compute_device=torch.device("cuda"), + list_input=False, +): + """ + Load the video frames from a directory of JPEG files (".jpg" format). + + The frames are resized to image_size x image_size and are loaded to GPU if + `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. + + You can load a frame asynchronously by setting `async_loading_frames` to `True`. + """ + if list_input: + img_paths = video_path + num_frames = len(img_paths) + else: + if isinstance(video_path, str) and os.path.isdir(video_path): + jpg_folder = video_path + else: + raise NotImplementedError( + "Only JPEG frames are supported at this moment. For video files, you may use " + "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n" + "```\n" + "ffmpeg -i .mp4 -q:v 2 -start_number 0 /'%05d.jpg'\n" + "```\n" + "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks " + "ffmpeg to start the JPEG file from 00000.jpg." + ) + + frame_names = [ + p + for p in os.listdir(jpg_folder) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + num_frames = len(frame_names) + if num_frames == 0: + raise RuntimeError(f"no images found in {jpg_folder}") + img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names] + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + + if async_loading_frames: + lazy_images = AsyncVideoFrameLoader( + img_paths, + image_size, + offload_video_to_cpu, + img_mean, + img_std, + compute_device, + ) + return lazy_images, lazy_images.video_height, lazy_images.video_width + + images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) + for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): + images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) + if not offload_video_to_cpu: + images = images.to(compute_device) + img_mean = img_mean.to(compute_device) + img_std = img_std.to(compute_device) + # normalize by mean and std + images -= img_mean + images /= img_std + return images, video_height, video_width + + +def load_video_frames_from_video_file( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + compute_device=torch.device("cuda"), +): + """Load the video frames from a video file.""" + import decord + + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + # Get the original video height and width + decord.bridge.set_bridge("torch") + video_height, video_width, _ = decord.VideoReader(video_path).next().shape + # Iterate over all frames in the video + images = [] + for frame in decord.VideoReader(video_path, width=image_size, height=image_size): + images.append(frame.permute(2, 0, 1)) + + images = torch.stack(images, dim=0).float() / 255.0 + if not offload_video_to_cpu: + images = images.to(compute_device) + img_mean = img_mean.to(compute_device) + img_std = img_std.to(compute_device) + # normalize by mean and std + images -= img_mean + images /= img_std + return images, video_height, video_width + + +def fill_holes_in_mask_scores(mask, max_area): + """ + A post processor to fill small holes in mask scores with area under `max_area`. + """ + # Holes are those connected components in background with area <= self.max_area + # (background regions are those with mask scores <= 0) + assert max_area > 0, "max_area must be positive" + + input_mask = mask + try: + labels, areas = get_connected_components(mask <= 0) + is_hole = (labels > 0) & (areas <= max_area) + # We fill holes with a small positive mask score (0.1) to change them to foreground. + mask = torch.where(is_hole, 0.1, mask) + except Exception as e: + # Skip the post-processing step on removing small holes if the CUDA kernel fails + warnings.warn( + f"{e}\n\nSkipping the post-processing step due to the error above. You can " + "still use SAM 2 and it's OK to ignore the error above, although some post-processing " + "functionality may be limited (which doesn't affect the results in most cases; see " + "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).", + category=UserWarning, + stacklevel=2, + ) + mask = input_mask + + return mask + + +def concat_points(old_point_inputs, new_points, new_labels): + """Add new points and labels to previous point inputs (add at the end).""" + if old_point_inputs is None: + points, labels = new_points, new_labels + else: + points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1) + labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1) + + return {"point_coords": points, "point_labels": labels} diff --git a/third_party/sam2/sam2/utils/transforms.py b/third_party/sam2/sam2/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..cc17bebfab104b659c5469e8434cf357ae7e24b6 --- /dev/null +++ b/third_party/sam2/sam2/utils/transforms.py @@ -0,0 +1,118 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.transforms import Normalize, Resize, ToTensor + + +class SAM2Transforms(nn.Module): + def __init__( + self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0 + ): + """ + Transforms for SAM2. + """ + super().__init__() + self.resolution = resolution + self.mask_threshold = mask_threshold + self.max_hole_area = max_hole_area + self.max_sprinkle_area = max_sprinkle_area + self.mean = [0.485, 0.456, 0.406] + self.std = [0.229, 0.224, 0.225] + self.to_tensor = ToTensor() + self.transforms = torch.jit.script( + nn.Sequential( + Resize((self.resolution, self.resolution)), + Normalize(self.mean, self.std), + ) + ) + + def __call__(self, x): + x = self.to_tensor(x) + return self.transforms(x) + + def forward_batch(self, img_list): + img_batch = [self.transforms(self.to_tensor(img)) for img in img_list] + img_batch = torch.stack(img_batch, dim=0) + return img_batch + + def transform_coords( + self, coords: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates, + If the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + + Returns + Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model. + """ + if normalize: + assert orig_hw is not None + h, w = orig_hw + coords = coords.clone() + coords[..., 0] = coords[..., 0] / w + coords[..., 1] = coords[..., 1] / h + + coords = coords * self.resolution # unnormalize coords + return coords + + def transform_boxes( + self, boxes: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates, + if the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + """ + boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw) + return boxes + + def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: + """ + Perform PostProcessing on output masks. + """ + from sam2.utils.misc import get_connected_components + + masks = masks.float() + input_masks = masks + mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image + try: + if self.max_hole_area > 0: + # Holes are those connected components in background with area <= self.fill_hole_area + # (background regions are those with mask scores <= self.mask_threshold) + labels, areas = get_connected_components( + mask_flat <= self.mask_threshold + ) + is_hole = (labels > 0) & (areas <= self.max_hole_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with a small positive mask score (10.0) to change them to foreground. + masks = torch.where(is_hole, self.mask_threshold + 10.0, masks) + + if self.max_sprinkle_area > 0: + labels, areas = get_connected_components( + mask_flat > self.mask_threshold + ) + is_hole = (labels > 0) & (areas <= self.max_sprinkle_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with negative mask score (-10.0) to change them to background. + masks = torch.where(is_hole, self.mask_threshold - 10.0, masks) + except Exception as e: + # Skip the post-processing step if the CUDA kernel fails + warnings.warn( + f"{e}\n\nSkipping the post-processing step due to the error above. You can " + "still use SAM 2 and it's OK to ignore the error above, although some post-processing " + "functionality may be limited (which doesn't affect the results in most cases; see " + "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).", + category=UserWarning, + stacklevel=2, + ) + masks = input_masks + + masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False) + return masks diff --git a/third_party/sam2/setup.py b/third_party/sam2/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..c67a949fce439db30f8c4fd2eef9a997fcc8b9da --- /dev/null +++ b/third_party/sam2/setup.py @@ -0,0 +1,174 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +import os + +from setuptools import find_packages, setup + +# Package metadata +NAME = "SAM-2" +VERSION = "1.0" +DESCRIPTION = "SAM 2: Segment Anything in Images and Videos" +URL = "https://github.com/facebookresearch/sam2" +AUTHOR = "Meta AI" +AUTHOR_EMAIL = "segment-anything@meta.com" +LICENSE = "Apache 2.0" + +# Read the contents of README file +with open("README.md", "r", encoding="utf-8") as f: + LONG_DESCRIPTION = f.read() + +# Required dependencies +REQUIRED_PACKAGES = [ + "torch>=2.3.1", + "torchvision>=0.18.1", + "numpy>=1.24.4", + "tqdm>=4.66.1", + "hydra-core>=1.3.2", + "iopath>=0.1.10", + "pillow>=9.4.0", +] + +EXTRA_PACKAGES = { + "notebooks": [ + "matplotlib>=3.9.1", + "jupyter>=1.0.0", + "opencv-python>=4.7.0", + "eva-decord>=0.6.1", + ], + "interactive-demo": [ + "Flask>=3.0.3", + "Flask-Cors>=5.0.0", + "av>=13.0.0", + "dataclasses-json>=0.6.7", + "eva-decord>=0.6.1", + "gunicorn>=23.0.0", + "imagesize>=1.4.1", + "pycocotools>=2.0.8", + "strawberry-graphql>=0.243.0", + ], + "dev": [ + "black==24.2.0", + "usort==1.0.2", + "ufmt==2.0.0b2", + "fvcore>=0.1.5.post20221221", + "pandas>=2.2.2", + "scikit-image>=0.24.0", + "tensorboard>=2.17.0", + "pycocotools>=2.0.8", + "tensordict>=0.5.0", + "opencv-python>=4.7.0", + "submitit>=1.5.1", + ], +} + +# By default, we also build the SAM 2 CUDA extension. +# You may turn off CUDA build with `export SAM2_BUILD_CUDA=0`. +BUILD_CUDA = os.getenv("SAM2_BUILD_CUDA", "1") == "1" +# By default, we allow SAM 2 installation to proceed even with build errors. +# You may force stopping on errors with `export SAM2_BUILD_ALLOW_ERRORS=0`. +BUILD_ALLOW_ERRORS = os.getenv("SAM2_BUILD_ALLOW_ERRORS", "1") == "1" + +# Catch and skip errors during extension building and print a warning message +# (note that this message only shows up under verbose build mode +# "pip install -v -e ." or "python setup.py build_ext -v") +CUDA_ERROR_MSG = ( + "{}\n\n" + "Failed to build the SAM 2 CUDA extension due to the error above. " + "You can still use SAM 2 and it's OK to ignore the error above, although some " + "post-processing functionality may be limited (which doesn't affect the results in most cases; " + "(see https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).\n" +) + + +def get_extensions(): + if not BUILD_CUDA: + return [] + + try: + from torch.utils.cpp_extension import CUDAExtension + + srcs = ["sam2/csrc/connected_components.cu"] + compile_args = { + "cxx": [], + "nvcc": [ + "-DCUDA_HAS_FP16=1", + "-D__CUDA_NO_HALF_OPERATORS__", + "-D__CUDA_NO_HALF_CONVERSIONS__", + "-D__CUDA_NO_HALF2_OPERATORS__", + ], + } + ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)] + except Exception as e: + if BUILD_ALLOW_ERRORS: + print(CUDA_ERROR_MSG.format(e)) + ext_modules = [] + else: + raise e + + return ext_modules + + +try: + from torch.utils.cpp_extension import BuildExtension + + class BuildExtensionIgnoreErrors(BuildExtension): + + def finalize_options(self): + try: + super().finalize_options() + except Exception as e: + print(CUDA_ERROR_MSG.format(e)) + self.extensions = [] + + def build_extensions(self): + try: + super().build_extensions() + except Exception as e: + print(CUDA_ERROR_MSG.format(e)) + self.extensions = [] + + def get_ext_filename(self, ext_name): + try: + return super().get_ext_filename(ext_name) + except Exception as e: + print(CUDA_ERROR_MSG.format(e)) + self.extensions = [] + return "_C.so" + + cmdclass = { + "build_ext": ( + BuildExtensionIgnoreErrors.with_options(no_python_abi_suffix=True) + if BUILD_ALLOW_ERRORS + else BuildExtension.with_options(no_python_abi_suffix=True) + ) + } +except Exception as e: + cmdclass = {} + if BUILD_ALLOW_ERRORS: + print(CUDA_ERROR_MSG.format(e)) + else: + raise e + + +# Setup configuration +setup( + name=NAME, + version=VERSION, + description=DESCRIPTION, + long_description=LONG_DESCRIPTION, + long_description_content_type="text/markdown", + url=URL, + author=AUTHOR, + author_email=AUTHOR_EMAIL, + license=LICENSE, + packages=find_packages(exclude="notebooks"), + include_package_data=True, + install_requires=REQUIRED_PACKAGES, + extras_require=EXTRA_PACKAGES, + python_requires=">=3.10.0", + ext_modules=get_extensions(), + cmdclass=cmdclass, +) diff --git a/third_party/sam2/tools/README.md b/third_party/sam2/tools/README.md new file mode 100644 index 0000000000000000000000000000000000000000..1dd0e8a754f4bf27ee321084076f3ebdb2285450 --- /dev/null +++ b/third_party/sam2/tools/README.md @@ -0,0 +1,36 @@ +## SAM 2 toolkits + +This directory provides toolkits for additional SAM 2 use cases. + +### Semi-supervised VOS inference + +The `vos_inference.py` script can be used to generate predictions for semi-supervised video object segmentation (VOS) evaluation on datasets such as [DAVIS](https://davischallenge.org/index.html), [MOSE](https://henghuiding.github.io/MOSE/) or the SA-V dataset. + +After installing SAM 2 and its dependencies, it can be used as follows ([DAVIS 2017 dataset](https://davischallenge.org/davis2017/code.html) as an example). This script saves the prediction PNG files to the `--output_mask_dir`. +```bash +python ./tools/vos_inference.py \ + --sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \ + --sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \ + --base_video_dir /path-to-davis-2017/JPEGImages/480p \ + --input_mask_dir /path-to-davis-2017/Annotations/480p \ + --video_list_file /path-to-davis-2017/ImageSets/2017/val.txt \ + --output_mask_dir ./outputs/davis_2017_pred_pngs +``` +(replace `/path-to-davis-2017` with the path to DAVIS 2017 dataset) + +To evaluate on the SA-V dataset with per-object PNG files for the object masks, we need to **add the `--per_obj_png_file` flag** as follows (using SA-V val as an example). This script will also save per-object PNG files for the output masks under the `--per_obj_png_file` flag. +```bash +python ./tools/vos_inference.py \ + --sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \ + --sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \ + --base_video_dir /path-to-sav-val/JPEGImages_24fps \ + --input_mask_dir /path-to-sav-val/Annotations_6fps \ + --video_list_file /path-to-sav-val/sav_val.txt \ + --per_obj_png_file \ + --output_mask_dir ./outputs/sav_val_pred_pngs +``` +(replace `/path-to-sav-val` with the path to SA-V val) + +Then, we can use the evaluation tools or servers for each dataset to get the performance of the prediction PNG files above. + +Note: by default, the `vos_inference.py` script above assumes that all objects to track already appear on frame 0 in each video (as is the case in DAVIS, MOSE or SA-V). **For VOS datasets that don't have all objects to track appearing in the first frame (such as LVOS or YouTube-VOS), please add the `--track_object_appearing_later_in_video` flag when using `vos_inference.py`**. diff --git a/third_party/sam2/tools/vos_inference.py b/third_party/sam2/tools/vos_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..5c40cda9e17d7eeaf083c6ef4f149f6b48d4a8a4 --- /dev/null +++ b/third_party/sam2/tools/vos_inference.py @@ -0,0 +1,501 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import argparse +import os +from collections import defaultdict + +import numpy as np +import torch +from PIL import Image +from sam2.build_sam import build_sam2_video_predictor + + +# the PNG palette for DAVIS 2017 dataset +DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0" + + +def load_ann_png(path): + """Load a PNG file as a mask and its palette.""" + mask = Image.open(path) + palette = mask.getpalette() + mask = np.array(mask).astype(np.uint8) + return mask, palette + + +def save_ann_png(path, mask, palette): + """Save a mask as a PNG file with the given palette.""" + assert mask.dtype == np.uint8 + assert mask.ndim == 2 + output_mask = Image.fromarray(mask) + output_mask.putpalette(palette) + output_mask.save(path) + + +def get_per_obj_mask(mask): + """Split a mask into per-object masks.""" + object_ids = np.unique(mask) + object_ids = object_ids[object_ids > 0].tolist() + per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids} + return per_obj_mask + + +def put_per_obj_mask(per_obj_mask, height, width): + """Combine per-object masks into a single mask.""" + mask = np.zeros((height, width), dtype=np.uint8) + object_ids = sorted(per_obj_mask)[::-1] + for object_id in object_ids: + object_mask = per_obj_mask[object_id] + object_mask = object_mask.reshape(height, width) + mask[object_mask] = object_id + return mask + + +def load_masks_from_dir( + input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False +): + """Load masks from a directory as a dict of per-object masks.""" + if not per_obj_png_file: + input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png") + if allow_missing and not os.path.exists(input_mask_path): + return {}, None + input_mask, input_palette = load_ann_png(input_mask_path) + per_obj_input_mask = get_per_obj_mask(input_mask) + else: + per_obj_input_mask = {} + input_palette = None + # each object is a directory in "{object_id:%03d}" format + for object_name in os.listdir(os.path.join(input_mask_dir, video_name)): + object_id = int(object_name) + input_mask_path = os.path.join( + input_mask_dir, video_name, object_name, f"{frame_name}.png" + ) + if allow_missing and not os.path.exists(input_mask_path): + continue + input_mask, input_palette = load_ann_png(input_mask_path) + per_obj_input_mask[object_id] = input_mask > 0 + + return per_obj_input_mask, input_palette + + +def save_masks_to_dir( + output_mask_dir, + video_name, + frame_name, + per_obj_output_mask, + height, + width, + per_obj_png_file, + output_palette, +): + """Save masks to a directory as PNG files.""" + os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) + if not per_obj_png_file: + output_mask = put_per_obj_mask(per_obj_output_mask, height, width) + output_mask_path = os.path.join( + output_mask_dir, video_name, f"{frame_name}.png" + ) + save_ann_png(output_mask_path, output_mask, output_palette) + else: + for object_id, object_mask in per_obj_output_mask.items(): + object_name = f"{object_id:03d}" + os.makedirs( + os.path.join(output_mask_dir, video_name, object_name), + exist_ok=True, + ) + output_mask = object_mask.reshape(height, width).astype(np.uint8) + output_mask_path = os.path.join( + output_mask_dir, video_name, object_name, f"{frame_name}.png" + ) + save_ann_png(output_mask_path, output_mask, output_palette) + + +@torch.inference_mode() +@torch.autocast(device_type="cuda", dtype=torch.bfloat16) +def vos_inference( + predictor, + base_video_dir, + input_mask_dir, + output_mask_dir, + video_name, + score_thresh=0.0, + use_all_masks=False, + per_obj_png_file=False, +): + """Run VOS inference on a single video with the given predictor.""" + # load the video frames and initialize the inference state on this video + video_dir = os.path.join(base_video_dir, video_name) + frame_names = [ + os.path.splitext(p)[0] + for p in os.listdir(video_dir) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + inference_state = predictor.init_state( + video_path=video_dir, async_loading_frames=False + ) + height = inference_state["video_height"] + width = inference_state["video_width"] + input_palette = None + + # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks) + if not use_all_masks: + # use only the first video's ground-truth mask as the input mask + input_frame_inds = [0] + else: + # use all mask files available in the input_mask_dir as the input masks + if not per_obj_png_file: + input_frame_inds = [ + idx + for idx, name in enumerate(frame_names) + if os.path.exists( + os.path.join(input_mask_dir, video_name, f"{name}.png") + ) + ] + else: + input_frame_inds = [ + idx + for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) + for idx, name in enumerate(frame_names) + if os.path.exists( + os.path.join(input_mask_dir, video_name, object_name, f"{name}.png") + ) + ] + # check and make sure we got at least one input frame + if len(input_frame_inds) == 0: + raise RuntimeError( + f"In {video_name=}, got no input masks in {input_mask_dir=}. " + "Please make sure the input masks are available in the correct format." + ) + input_frame_inds = sorted(set(input_frame_inds)) + + # add those input masks to SAM 2 inference state before propagation + object_ids_set = None + for input_frame_idx in input_frame_inds: + try: + per_obj_input_mask, input_palette = load_masks_from_dir( + input_mask_dir=input_mask_dir, + video_name=video_name, + frame_name=frame_names[input_frame_idx], + per_obj_png_file=per_obj_png_file, + ) + except FileNotFoundError as e: + raise RuntimeError( + f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. " + "Please add the `--track_object_appearing_later_in_video` flag " + "for VOS datasets that don't have all objects to track appearing " + "in the first frame (such as LVOS or YouTube-VOS)." + ) from e + # get the list of object ids to track from the first input frame + if object_ids_set is None: + object_ids_set = set(per_obj_input_mask) + for object_id, object_mask in per_obj_input_mask.items(): + # check and make sure no new object ids appear only in later frames + if object_id not in object_ids_set: + raise RuntimeError( + f"In {video_name=}, got a new {object_id=} appearing only in a " + f"later {input_frame_idx=} (but not appearing in the first frame). " + "Please add the `--track_object_appearing_later_in_video` flag " + "for VOS datasets that don't have all objects to track appearing " + "in the first frame (such as LVOS or YouTube-VOS)." + ) + predictor.add_new_mask( + inference_state=inference_state, + frame_idx=input_frame_idx, + obj_id=object_id, + mask=object_mask, + ) + + # check and make sure we have at least one object to track + if object_ids_set is None or len(object_ids_set) == 0: + raise RuntimeError( + f"In {video_name=}, got no object ids on {input_frame_inds=}. " + "Please add the `--track_object_appearing_later_in_video` flag " + "for VOS datasets that don't have all objects to track appearing " + "in the first frame (such as LVOS or YouTube-VOS)." + ) + # run propagation throughout the video and collect the results in a dict + os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) + output_palette = input_palette or DAVIS_PALETTE + video_segments = {} # video_segments contains the per-frame segmentation results + for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video( + inference_state + ): + per_obj_output_mask = { + out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() + for i, out_obj_id in enumerate(out_obj_ids) + } + video_segments[out_frame_idx] = per_obj_output_mask + + # write the output masks as palette PNG files to output_mask_dir + for out_frame_idx, per_obj_output_mask in video_segments.items(): + save_masks_to_dir( + output_mask_dir=output_mask_dir, + video_name=video_name, + frame_name=frame_names[out_frame_idx], + per_obj_output_mask=per_obj_output_mask, + height=height, + width=width, + per_obj_png_file=per_obj_png_file, + output_palette=output_palette, + ) + + +@torch.inference_mode() +@torch.autocast(device_type="cuda", dtype=torch.bfloat16) +def vos_separate_inference_per_object( + predictor, + base_video_dir, + input_mask_dir, + output_mask_dir, + video_name, + score_thresh=0.0, + use_all_masks=False, + per_obj_png_file=False, +): + """ + Run VOS inference on a single video with the given predictor. + + Unlike `vos_inference`, this function run inference separately for each object + in a video, which could be applied to datasets like LVOS or YouTube-VOS that + don't have all objects to track appearing in the first frame (i.e. some objects + might appear only later in the video). + """ + # load the video frames and initialize the inference state on this video + video_dir = os.path.join(base_video_dir, video_name) + frame_names = [ + os.path.splitext(p)[0] + for p in os.listdir(video_dir) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + inference_state = predictor.init_state( + video_path=video_dir, async_loading_frames=False + ) + height = inference_state["video_height"] + width = inference_state["video_width"] + input_palette = None + + # collect all the object ids and their input masks + inputs_per_object = defaultdict(dict) + for idx, name in enumerate(frame_names): + if per_obj_png_file or os.path.exists( + os.path.join(input_mask_dir, video_name, f"{name}.png") + ): + per_obj_input_mask, input_palette = load_masks_from_dir( + input_mask_dir=input_mask_dir, + video_name=video_name, + frame_name=frame_names[idx], + per_obj_png_file=per_obj_png_file, + allow_missing=True, + ) + for object_id, object_mask in per_obj_input_mask.items(): + # skip empty masks + if not np.any(object_mask): + continue + # if `use_all_masks=False`, we only use the first mask for each object + if len(inputs_per_object[object_id]) > 0 and not use_all_masks: + continue + print(f"adding mask from frame {idx} as input for {object_id=}") + inputs_per_object[object_id][idx] = object_mask + + # run inference separately for each object in the video + object_ids = sorted(inputs_per_object) + output_scores_per_object = defaultdict(dict) + for object_id in object_ids: + # add those input masks to SAM 2 inference state before propagation + input_frame_inds = sorted(inputs_per_object[object_id]) + predictor.reset_state(inference_state) + for input_frame_idx in input_frame_inds: + predictor.add_new_mask( + inference_state=inference_state, + frame_idx=input_frame_idx, + obj_id=object_id, + mask=inputs_per_object[object_id][input_frame_idx], + ) + + # run propagation throughout the video and collect the results in a dict + for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video( + inference_state, + start_frame_idx=min(input_frame_inds), + reverse=False, + ): + obj_scores = out_mask_logits.cpu().numpy() + output_scores_per_object[object_id][out_frame_idx] = obj_scores + + # post-processing: consolidate the per-object scores into per-frame masks + os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) + output_palette = input_palette or DAVIS_PALETTE + video_segments = {} # video_segments contains the per-frame segmentation results + for frame_idx in range(len(frame_names)): + scores = torch.full( + size=(len(object_ids), 1, height, width), + fill_value=-1024.0, + dtype=torch.float32, + ) + for i, object_id in enumerate(object_ids): + if frame_idx in output_scores_per_object[object_id]: + scores[i] = torch.from_numpy( + output_scores_per_object[object_id][frame_idx] + ) + + if not per_obj_png_file: + scores = predictor._apply_non_overlapping_constraints(scores) + per_obj_output_mask = { + object_id: (scores[i] > score_thresh).cpu().numpy() + for i, object_id in enumerate(object_ids) + } + video_segments[frame_idx] = per_obj_output_mask + + # write the output masks as palette PNG files to output_mask_dir + for frame_idx, per_obj_output_mask in video_segments.items(): + save_masks_to_dir( + output_mask_dir=output_mask_dir, + video_name=video_name, + frame_name=frame_names[frame_idx], + per_obj_output_mask=per_obj_output_mask, + height=height, + width=width, + per_obj_png_file=per_obj_png_file, + output_palette=output_palette, + ) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--sam2_cfg", + type=str, + default="configs/sam2.1/sam2.1_hiera_b+.yaml", + help="SAM 2 model configuration file", + ) + parser.add_argument( + "--sam2_checkpoint", + type=str, + default="./checkpoints/sam2.1_hiera_b+.pt", + help="path to the SAM 2 model checkpoint", + ) + parser.add_argument( + "--base_video_dir", + type=str, + required=True, + help="directory containing videos (as JPEG files) to run VOS prediction on", + ) + parser.add_argument( + "--input_mask_dir", + type=str, + required=True, + help="directory containing input masks (as PNG files) of each video", + ) + parser.add_argument( + "--video_list_file", + type=str, + default=None, + help="text file containing the list of video names to run VOS prediction on", + ) + parser.add_argument( + "--output_mask_dir", + type=str, + required=True, + help="directory to save the output masks (as PNG files)", + ) + parser.add_argument( + "--score_thresh", + type=float, + default=0.0, + help="threshold for the output mask logits (default: 0.0)", + ) + parser.add_argument( + "--use_all_masks", + action="store_true", + help="whether to use all available PNG files in input_mask_dir " + "(default without this flag: just the first PNG file as input to the SAM 2 model; " + "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)", + ) + parser.add_argument( + "--per_obj_png_file", + action="store_true", + help="whether use separate per-object PNG files for input and output masks " + "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; " + "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)", + ) + parser.add_argument( + "--apply_postprocessing", + action="store_true", + help="whether to apply postprocessing (e.g. hole-filling) to the output masks " + "(we don't apply such post-processing in the SAM 2 model evaluation)", + ) + parser.add_argument( + "--track_object_appearing_later_in_video", + action="store_true", + help="whether to track objects that appear later in the video (i.e. not on the first frame; " + "some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)", + ) + args = parser.parse_args() + + # if we use per-object PNG files, they could possibly overlap in inputs and outputs + hydra_overrides_extra = [ + "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true") + ] + predictor = build_sam2_video_predictor( + config_file=args.sam2_cfg, + ckpt_path=args.sam2_checkpoint, + apply_postprocessing=args.apply_postprocessing, + hydra_overrides_extra=hydra_overrides_extra, + ) + + if args.use_all_masks: + print("using all available masks in input_mask_dir as input to the SAM 2 model") + else: + print( + "using only the first frame's mask in input_mask_dir as input to the SAM 2 model" + ) + # if a video list file is provided, read the video names from the file + # (otherwise, we use all subdirectories in base_video_dir) + if args.video_list_file is not None: + with open(args.video_list_file, "r") as f: + video_names = [v.strip() for v in f.readlines()] + else: + video_names = [ + p + for p in os.listdir(args.base_video_dir) + if os.path.isdir(os.path.join(args.base_video_dir, p)) + ] + print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}") + + for n_video, video_name in enumerate(video_names): + print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}") + if not args.track_object_appearing_later_in_video: + vos_inference( + predictor=predictor, + base_video_dir=args.base_video_dir, + input_mask_dir=args.input_mask_dir, + output_mask_dir=args.output_mask_dir, + video_name=video_name, + score_thresh=args.score_thresh, + use_all_masks=args.use_all_masks, + per_obj_png_file=args.per_obj_png_file, + ) + else: + vos_separate_inference_per_object( + predictor=predictor, + base_video_dir=args.base_video_dir, + input_mask_dir=args.input_mask_dir, + output_mask_dir=args.output_mask_dir, + video_name=video_name, + score_thresh=args.score_thresh, + use_all_masks=args.use_all_masks, + per_obj_png_file=args.per_obj_png_file, + ) + + print( + f"completed VOS prediction on {len(video_names)} videos -- " + f"output masks saved to {args.output_mask_dir}" + ) + + +if __name__ == "__main__": + main() diff --git a/third_party/sam2/training/README.md b/third_party/sam2/training/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b0c829d49d051d8f72e7bef959e33e6f0329c94d --- /dev/null +++ b/third_party/sam2/training/README.md @@ -0,0 +1,116 @@ +# Training Code for SAM 2 + +This folder contains the training code for SAM 2, a foundation model for promptable visual segmentation in images and videos. +The code allows users to train and fine-tune SAM 2 on their own datasets (image, video, or both). + +## Structure + +The training code is organized into the following subfolders: + +* `dataset`: This folder contains image and video dataset and dataloader classes as well as their transforms. +* `model`: This folder contains the main model class (`SAM2Train`) for training/fine-tuning. `SAM2Train` inherits from `SAM2Base` model and provides functions to enable training or fine-tuning SAM 2. It also accepts all training-time parameters used for simulating user prompts (e.g. iterative point sampling). +* `utils`: This folder contains training utils such as loggers and distributed training utils. +* `scripts`: This folder contains the script to extract the frames of SA-V dataset to be used in training. +* `loss_fns.py`: This file has the main loss class (`MultiStepMultiMasksAndIous`) used for training. +* `optimizer.py`: This file contains all optimizer utils that support arbitrary schedulers. +* `trainer.py`: This file contains the `Trainer` class that accepts all the `Hydra` configurable modules (model, optimizer, datasets, etc..) and implements the main train/eval loop. +* `train.py`: This script is used to launch training jobs. It supports single and multi-node jobs. For usage, please check the [Getting Started](README.md#getting-started) section or run `python training/train.py -h` + +## Getting Started + +To get started with the training code, we provide a simple example to fine-tune our checkpoints on [MOSE](https://henghuiding.github.io/MOSE/) dataset, which can be extended to your custom datasets. + +#### Requirements: +- We assume training on A100 GPUs with **80 GB** of memory. +- Download the MOSE dataset using one of the provided links from [here](https://github.com/henghuiding/MOSE-api?tab=readme-ov-file#download). + +#### Steps to fine-tune on MOSE: +- Install the packages required for training by running `pip install -e ".[dev]"`. +- Set the paths for MOSE dataset in `configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml`. + ```yaml + dataset: + # PATHS to Dataset + img_folder: null # PATH to MOSE JPEGImages folder + gt_folder: null # PATH to MOSE Annotations folder + file_list_txt: null # Optional PATH to filelist containing a subset of videos to be used for training + ``` +- To fine-tune the base model on MOSE using 8 GPUs, run + + ```python + python training/train.py \ + -c configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml \ + --use-cluster 0 \ + --num-gpus 8 + ``` + + We also support multi-node training on a cluster using [SLURM](https://slurm.schedmd.com/documentation.html), for example, you can train on 2 nodes by running + + ```python + python training/train.py \ + -c configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml \ + --use-cluster 1 \ + --num-gpus 8 \ + --num-nodes 2 + --partition $PARTITION \ + --qos $QOS \ + --account $ACCOUNT + ``` + where partition, qos, and account are optional and depend on your SLURM configuration. + By default, the checkpoint and logs will be saved under `sam2_logs` directory in the root of the repo. Alternatively, you can set the experiment log directory in the config file as follows: + + ```yaml + experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name} + ``` + The training losses can be monitored using `tensorboard` logs stored under `tensorboard/` in the experiment log directory. We also provide a sample validation [split]( ../training/assets/MOSE_sample_val_list.txt) for evaluation purposes. To generate predictions, follow this [guide](../tools/README.md) on how to use our `vos_inference.py` script. After generating the predictions, you can run the `sav_evaluator.py` as detailed [here](../sav_dataset/README.md#sa-v-val-and-test-evaluation). The expected MOSE J&F after fine-tuning the Base plus model is 79.4. + + + After training/fine-tuning, you can then use the new checkpoint (saved in `checkpoints/` in the experiment log directory) similar to SAM 2 released checkpoints (as illustrated [here](../README.md#image-prediction)). +## Training on images and videos +The code supports training on images and videos (similar to how SAM 2 is trained). We provide classes for loading SA-1B as a sample image dataset, SA-V as a sample video dataset, as well as any DAVIS-style video dataset (e.g. MOSE). Note that to train on SA-V, you must first extract all videos to JPEG frames using the provided extraction [script](./scripts/sav_frame_extraction_submitit.py). Below is an example of how to setup the datasets in your config to train on a mix of image and video datasets: + +```yaml +data: + train: + _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset + phases_per_epoch: ${phases_per_epoch} # Chunks a single epoch into smaller phases + batch_sizes: # List of batch sizes corresponding to each dataset + - ${bs1} # Batch size of dataset 1 + - ${bs2} # Batch size of dataset 2 + datasets: + # SA1B as an example of an image dataset + - _target_: training.dataset.vos_dataset.VOSDataset + training: true + video_dataset: + _target_: training.dataset.vos_raw_dataset.SA1BRawDataset + img_folder: ${path_to_img_folder} + gt_folder: ${path_to_gt_folder} + file_list_txt: ${path_to_train_filelist} # Optional + sampler: + _target_: training.dataset.vos_sampler.RandomUniformSampler + num_frames: 1 + max_num_objects: ${max_num_objects_per_image} + transforms: ${image_transforms} + # SA-V as an example of a video dataset + - _target_: training.dataset.vos_dataset.VOSDataset + training: true + video_dataset: + _target_: training.dataset.vos_raw_dataset.JSONRawDataset + img_folder: ${path_to_img_folder} + gt_folder: ${path_to_gt_folder} + file_list_txt: ${path_to_train_filelist} # Optional + ann_every: 4 + sampler: + _target_: training.dataset.vos_sampler.RandomUniformSampler + num_frames: 8 # Number of frames per video + max_num_objects: ${max_num_objects_per_video} + reverse_time_prob: ${reverse_time_prob} # probability to reverse video + transforms: ${video_transforms} + shuffle: True + num_workers: ${num_train_workers} + pin_memory: True + drop_last: True + collate_fn: + _target_: training.utils.data_utils.collate_fn + _partial_: true + dict_key: all +``` diff --git a/third_party/sam2/training/__init__.py b/third_party/sam2/training/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/training/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/training/assets/MOSE_sample_train_list.txt b/third_party/sam2/training/assets/MOSE_sample_train_list.txt new file mode 100644 index 0000000000000000000000000000000000000000..28b22e3170f63de0fba3c77ef999f958cd6c48ff --- /dev/null +++ b/third_party/sam2/training/assets/MOSE_sample_train_list.txt @@ -0,0 +1,1246 @@ +28191f94 +662487fe +80906bf9 +7e704f2e +efa25913 +b6f03bd9 +6834d249 +5a723c30 +07779415 +4ce088c6 +199995b5 +54273925 +4fa342f5 +110da3cf +65856fa0 +46705bb3 +d869a3cf +555aa049 +8f01fb2c +37b07a28 +5e80b3dd +ba0e4dd4 +6f5144b6 +acec8407 +93723f88 +c7c7528c +97f58761 +e71f9faa +e64c13dc +8830d59d +0e4aeed9 +63437cf3 +95215aa1 +255f86ef +dc54aab2 +327cd258 +198021ad +c690220c +d25ff89d +7875b874 +4fa6d325 +9fc933f6 +4d8baafe +55ae6921 +6a3bc149 +89f8163f +2d65d2ac +dba172b1 +a14de179 +4017d1b3 +52ddf44c +3ba93641 +34a5f964 +da7dee28 +872b76de +1dc12eca +265a69f4 +86a2b59f +51e5ca25 +ddf80bcd +6786602e +4fa28c89 +f56942e9 +2184bb93 +d883e976 +bfe1469e +bc4e7b11 +1c80acb0 +2b0e34d3 +56b9ce41 +15f0b0cd +cc5d0dd1 +1b7eada8 +7286b176 +0ab42ab1 +adb82dc9 +c060b1e6 +3da63bd5 +5488796e +d7066e20 +aab5ed11 +17f66311 +24df9789 +208fa934 +7ce2c865 +debe4249 +4c56bbea +149dbae2 +beb693c9 +49eb0315 +e7ad4717 +4e016d5a +95e24093 +07b5d86c +80701b6c +337dfa1e +b624a46e +3f849de8 +5db21df2 +47891b4c +a966d7fd +013103f6 +da5e4bc5 +ba9ea03d +526195de +57f3a53e +b3aff7f8 +26048547 +bb7ee856 +aef0d049 +e35a8262 +57ad022e +f45d3823 +e5e9eb29 +39cc637e +a4fc4f17 +dd5a4739 +bbe97d18 +33602f6b +9061dac9 +23454d80 +a20baeec +794f01d4 +02de2f2a +055fca57 +a69df343 +e307510e +d07ad1be +1fc5e086 +db6533a5 +fe9706b7 +87e32230 +8ba58e4c +561f6380 +2ab9ba0f +86571569 +756cc6c9 +aa185af5 +c6d7f94b +7f54c579 +71f4b40e +4190c83a +fef0aba4 +2f7c71bb +e4b6f2ef +76adaeea +11cdeb64 +733f2a02 +e50dbddb +f643141f +d2e75e95 +84559bc3 +7ade3068 +e69db797 +0b787263 +57895315 +d7969c29 +62529cd4 +203733e7 +48fd97a6 +723fd024 +849f0efb +aafea009 +dd4eb8f1 +d18554ae +f3c0f0cf +90fe55b9 +b0ffaf3b +e79ecd47 +d670ce7b +56a5643a +90ff1d09 +1fb378d9 +57014c7d +994ed763 +5bc7ea74 +e99bd793 +cbb66185 +5f3fcff6 +05ed1023 +85efa9e3 +652929ce +905d8740 +a6fcde01 +0fdf67f7 +a5cf4c8d +e1c48bdd +782551f7 +6acd353f +c30641cf +81d12756 +51befc31 +9d5ab5ca +d262b7e4 +2cd705a9 +f7360199 +d3f3bf9d +028f6f64 +94767cb4 +3a739934 +72433603 +ec66879d +6149becc +5845c157 +c5082b3c +f89b54d0 +f3ada126 +409dcb8a +4411fdee +eb93ed20 +9cb1ba0e +b8e1ec26 +7edd8b4f +5e9412c0 +2744f35a +dafeb75e +f3f072f2 +6f1df574 +5a064706 +89c76ac4 +a6adef89 +76303516 +dbd67417 +a53ef3fa +10552818 +ac7deb19 +2d403c59 +55c157f1 +214aeac3 +a9f5e251 +d7807996 +d1dba33b +1367e367 +44476e77 +0644075b +eda37457 +f2de4198 +9a4ce701 +46e00caf +2ae75f99 +cd49fb99 +4e4483e7 +a0669957 +a6f0d882 +9ce1d54a +1fc2314b +21f363b3 +32ecef67 +70bcaf68 +115348f9 +60827ada +a218e951 +6d30d5ac +6da17988 +f22c39ce +5825f0e0 +f415f9ad +0d4feda2 +832fc243 +414ca58b +a92390a0 +ddd383cc +43dc67f7 +962ae0e2 +6dd74e7b +2bcd6c3b +b394847f +637fd121 +d46e771b +f6bfc699 +63f138de +932ad0a6 +2080824a +52fa9174 +843d3bf7 +f3431885 +5c20c48a +134a2ab0 +2ea465de +f6786ab5 +2bf49664 +a49ce97b +6a50e93a +a7c21e95 +616ad8ec +0a8d7b41 +b0c90527 +2d893fb7 +19310598 +7744dc51 +4539b907 +9d299f60 +e495537a +0b02886a +f4c4a2ca +e957b2b5 +e6f3bf07 +258944c8 +54364322 +ebb77f95 +0af03282 +cbdbc6c3 +494ecef0 +ee91f783 +9698f06e +11e16068 +b942ce0a +423a50e6 +fb16e746 +9c88ae45 +8620c024 +d3af3c85 +780a25de +e569a15f +c4f9f19e +1106f3a7 +d37e29a7 +e53611da +fdb2e432 +18ad3117 +6fcd426d +3bfa8379 +3b19c5c3 +ff1142df +cd182615 +b60ea255 +b3f5d019 +6dc5e55d +103166c7 +37af9ac1 +ad1881d1 +731149b3 +90e3338a +6aa0b6f2 +a25316a3 +dc8679e0 +571fb490 +80afed16 +983a551b +a58578e5 +2bc0bba4 +1143b3fe +fdd8dd49 +7fe2bf77 +890ef032 +8466eeb2 +c791ddbb +631b82bd +78bf9b51 +a99df45f +2bdb692f +e89b1501 +4e6aa1e8 +e5665030 +fe21fd5c +635577d5 +4414cd3a +03c99e83 +ff041cd1 +c33adbc2 +a988ec74 +576031e0 +03c21af7 +79b25f4b +bbc485d6 +d36d5a0d +efdab888 +b20e6781 +81fdc526 +e1c26a53 +7c6d3504 +52a04667 +f22e34d4 +bb936ead +13f0606c +d2abc61e +af509e8f +bea1c144 +e15e4de8 +e727099f +b30744df +ffb6a2e4 +0d31d3a6 +a23048fe +7d452630 +6c736334 +046ed4f4 +94f4c2aa +c290cfd3 +f7203226 +2fdae3c5 +7c78e351 +02b72b8d +2d22d3be +ba28d02e +197f6587 +43199a98 +b563b04f +9293b755 +9cef7489 +d156b96f +15e9161e +6d094cd5 +0d876a65 +c818d30a +8094b12b +a4a8e24b +14655f54 +11c14893 +8a48f62a +7f3d9c22 +d952481c +03e0f9b8 +28980657 +6a0b5563 +5879983c +37549a79 +4a7162bd +7a6aa1ef +0dc1b78c +f6dba17b +1dba51af +b2f4d608 +e2e6f421 +464066da +5d24e4ea +1e75004d +a02ed92c +673adbcc +c2a0c0fd +85addee5 +54b8f502 +f5d2d8d3 +a19507e1 +803e1756 +0d1fe009 +5968c2d8 +b926e1ad +a9162e14 +ae470d2b +bd731802 +68c879f2 +21fe05d9 +c1ed21d0 +831498e4 +cc45a7f2 +cb170015 +59750be4 +30d1cb6b +03e5f069 +106d33db +3f003746 +3e5ad020 +8bc5a91c +64b89eb5 +bfd28682 +f8687b9a +7bbf38ee +d6d92b30 +ceaa6c65 +677c8ed7 +dc33acf8 +cfd1de31 +e5be4781 +85585220 +5d2316f6 +dd3f4a07 +34535f5f +3ae0bc5d +f521e3c5 +74c2284f +12a42fd9 +61403519 +88cd32f3 +662a1846 +825a1944 +cf376cf1 +8465d99c +61a2e246 +62d44645 +103b3ca8 +c7e745ed +4ed71139 +230c2edf +529c6889 +9e509c0d +54b9dea2 +a8934c0d +29cffe2f +48017512 +c9f7f69d +ce691ee6 +21c89360 +3b97c07b +ebd82d35 +2895bb8b +7043c5c1 +85d694d7 +88fd7507 +18d8931e +aa718745 +89b671bb +0d8d30ae +26163977 +a6121689 +1589579d +159789c4 +f5ca8271 +fcc16740 +3158be0b +860fc1f7 +3f54a330 +82f24ce7 +069f6a2a +2fa9c523 +c9f1d87f +efe9cbca +8f969ea5 +4f5db794 +62c501f8 +2d3b0320 +c99637f0 +0f3b1fcb +6e4ee861 +e0d9aff0 +230ddb91 +e14d1f96 +c83aa6a1 +eabdf66a +6783a303 +81659eb2 +ce954bd7 +9a48c0c9 +0ab807b4 +f0617f71 +fe86f2f8 +61d80e22 +e4b6d2a0 +ac093040 +0e05fabe +d0b507c3 +3d828137 +c4fa0bab +f7783321 +ec27366a +404e4c58 +073baf48 +0f685e01 +b0e98fdd +b4891f7f +a46b7b77 +ee059f99 +3c87888e +8d23ddcc +2d8d7d35 +5680be79 +fc79c03e +20660b72 +53f67585 +90956534 +7e709e2d +dae93f5c +54b9dbba +cc41ba05 +1e207fe0 +a9c6abf2 +35e0ca09 +e3dcd186 +1b8bb699 +92162474 +cdad6812 +50b91533 +570215ac +6042d64a +b6e2c041 +08746283 +7a056996 +b8651773 +adf443e1 +6a6e0e3b +886ed981 +c1d57fea +43030c4c +7ebfbf57 +0770ad03 +e85301d5 +31ac3d98 +acaef45e +8f415dd1 +fe2dc281 +2c0b9d99 +8e24501e +911ec4ad +8036b58e +c3b350b9 +b6cadd11 +a3a80cf7 +88ab50cd +59c755a8 +1339321a +91b2f707 +97b0811e +1da33959 +31b09833 +c1a40349 +708098a9 +1f220f98 +999e07cb +0b5e5d29 +94c63453 +b826d642 +a598602d +4c83eab8 +2efd5e50 +6ec5da3a +9fcd95eb +9a2c6b5b +c205a718 +e638e950 +cb43141c +494dd91d +c4957274 +4975a81d +a1f4c54d +51e6fafa +514490e5 +b0d09e6a +c6726eb8 +06772c9a +5a65ffd7 +3657c62b +03012cfd +529df209 +f1c38e66 +ab417352 +118a067e +8957514f +22e8b380 +3b1a4616 +a4457543 +57c9f6e0 +e362c16b +0f809e41 +857e375e +9cff25e3 +d754fb65 +6ad44b86 +051052d8 +a4564b94 +f68507d0 +80a7cf7b +ad8cd1e0 +60b19cd3 +274fe944 +f06632aa +628a337b +92c96c05 +87fc565c +6f6e6c37 +228a0234 +6487110a +aa911a8e +40c47fa3 +9606508b +6ba9e61f +c8c1d5a9 +cf01df5b +9421b9ad +006e6b64 +1c28e081 +06273084 +8925e11b +b46c822b +00501424 +cfd946b2 +2e92a7dc +1c5f5bb6 +1d29944c +8248698e +19247506 +1eac1aff +ee9caa47 +4a41cbf8 +d97c9309 +4ca87c14 +9707f1e3 +8bb9a221 +6605e67d +95cf72d7 +1c6fb814 +033130b2 +4344808d +5f14e5d2 +a810399b +e325a6d4 +7014ddf4 +725d4bfb +790285e8 +1a6a731f +fbfb6e30 +0d4d88f6 +80ce18a4 +572495b7 +4b44dc50 +95dce33c +4a6fb202 +3142014e +a3c56751 +96b2a414 +c4aa176c +fd1e394f +93f0f509 +f494e9fa +bfa42a75 +db5319c7 +aa92e070 +81220a93 +e4a72496 +fc467bf1 +5397b01d +1dc0c9a0 +f6f8b4a6 +53dc7db4 +8ef303eb +62ca45c9 +e9d3465e +3784e3f6 +8c934e67 +5ba84e3f +30e41f1e +61cf0ec8 +e93e8f01 +fc6086dd +a95f0aea +33a04ef2 +6f295adb +d2aa8c66 +724cc810 +d8623d26 +8d0d641a +4bda7a76 +38030c69 +56199c41 +d2f4b9e2 +a7b8ac96 +64044df1 +fd1078cc +0165667b +16e1cca7 +915f0d9a +eeaaa67e +378430d5 +a84c60e6 +b4ae36cc +2a3a0571 +13e6df75 +aa348c45 +59d7a11d +68954daf +d6f883c6 +f28b429a +32dc49d4 +ccf14ee0 +7d512591 +9bdabdb2 +ed878d94 +54eda06d +132561ee +3c4b6736 +0367af42 +531c1c36 +843d8f25 +333bdbdc +c3c21268 +07b00746 +c7fe0584 +49fc9f2e +9ed4317a +d29991b4 +98b0033d +f0b922bf +89fe6899 +58264713 +2f49220a +6ff85ca5 +4b96b2c8 +a42f54f5 +aa425600 +22fdee40 +dde85a9d +3722f6fe +e7529cbc +5ae23f9f +cc32235b +730bc486 +b12701b7 +a96b3010 +16130bd3 +2c713560 +f7935d24 +a7eb6616 +0d6e7177 +100edaef +0442a954 +60f4fa43 +37bf7edf +76b18413 +ab0646a9 +c575434d +1e356390 +5416fbb7 +df7cf932 +269872de +9033b607 +c2e88575 +932542cd +23e046fb +3d08dadd +7999adc5 +ed81c485 +3bd7facd +1feae28e +8d72533b +6a8d35d6 +65308bdc +7f0b7662 +98290486 +fee3371f +c463c7e5 +faf7d852 +75c34dc5 +96a6722e +e5605136 +851bc5d9 +15c41c4b +6a39e104 +5fbff256 +0e7001dd +5411113f +3ea2f7f2 +242b74b1 +87727003 +ec6dd0e9 +980baf58 +9d0b7bf1 +9113c9d4 +5ebef6bd +a5f70ce7 +b0240233 +06ad78e0 +8745edd0 +d8e8d984 +ac32a655 +38568758 +d48c552d +0b27d5f7 +c65d0736 +800e3c14 +d37a5857 +bcebc660 +d3ab52cc +405e3ee7 +e33cddc9 +b0197182 +89fd5681 +9e192417 +8554c402 +aae923b8 +31af515d +75b26f88 +60471744 +460945aa +c0fe8e1a +1731babb +2e85e35d +f9c20062 +115da184 +ddfa88c7 +359003f8 +dfa99126 +bf04814f +f407a414 +e18723c4 +0a7a3629 +c07ab37e +1251a1c9 +4d09d22a +5984ed74 +34504f63 +ced51047 +08ff419c +d942e98c +2697f864 +3b671a61 +72a2f7e2 +48e7cafe +6adad2f7 +18840617 +1e44f47e +36cc4055 +8c494902 +2982de7a +6a428397 +c4a0ecfb +231d6945 +fe470104 +f93e1bd0 +bd18bc5a +7bd70d93 +8f81a0ee +db78e7a1 +7593caea +86d5b29b +5457b298 +0d967fd1 +62372d4c +68259db3 +f0944ea2 +7b017dbf +bcb6e338 +03692b14 +f7d36a47 +1ca2531a +6728528d +1fc0e6a8 +0ba9c5ad +a386eaa2 +b0c5459f +1d64aff3 +b97d4f1a +b3745d91 +c461003e +910bf878 +ae42601c +8d2ddeff +aaecaa39 +250b5034 +edb11192 +7bfe9b57 +6d533759 +51586b36 +a38d648a +8fdb48e5 +6075d6b0 +3588ea03 +bc844942 +398d41f5 +660e3b70 +0b99f522 +f169fd1b +7bfa2ab5 +ab461319 +25153e58 +002b4dce +a2df1bee +550a7357 +b604f2dd +2f477d05 +bdf9eb5a +857ddc6e +c8f0fd41 +6df96f15 +e147ab26 +788da8e8 +02221fb0 +d1d95c61 +a3f0cb28 +3a6e6ace +67c2909a +220382ab +eaed776d +aff08a61 +b99d1bd6 +9d9ae988 +34ccea00 +41dae436 +18513251 +ad57acd1 +67f110fc +3f09f5c9 +25ef7d43 +12a5d0d7 +3ff48b8b +26ed56e6 +c047a092 +bb8639e1 +8788747f +584838d4 +f8e5f837 +657242e8 +cb8eedf4 +74a917f1 +578f71da +c9b27125 +22e1f53c +f40145c2 +4795259b +3f313a2f +c9012bf6 +22167a50 +6e7f9437 +ef51a724 +356e0fcb +d3ea999d +08a5c662 +85aa3b0e +579fadec +7bc95dc2 +c097af8e +f01d8b9f +80fb79c6 +ea65e6b7 +29ff29f6 +9e1f739d +b7fb59c9 +e2160f17 +0be33bc1 +e96b9b04 +b1affe79 +c4f4b2e2 +f4c8ffb1 +6a009e50 +a8828854 +2786f841 +a64e724c +5f54d077 +7040385d +6e0f0ecc +f33d3c15 +8108b358 +46a502de +1e0fb02a +ddbdfa32 +e7b34ab6 +c9080ed1 +395224b3 +33f9ab47 +c245ecda +c28d81a9 +37303a3b +6380dd6f +2fb5a55b +83b7c53c +41c8d0d2 +3aab2d13 +dc7d21fb +86a88668 +37bb38fe +ab6413a8 +bbe585b2 +a0ca072a +9d5940d2 +ddb1d0b1 +a946317a +988b29a4 +89dc0432 +5df8490d +5e167efa +50a86faa +fe6a535a +a9f8b8b4 +6e2dce1b +d0696759 +c09da3b2 +f07dd347 +67408899 +406165ff +a4a9d03d +9b5f0f47 +5f3e8022 +1d7a23e0 +25af2eeb +82a3db34 +c9351029 +6c93d44c +f088ad1c +9ee59f51 +b5276b3f +ca74a924 +781af187 +fa3e0b85 +b898c99e +1ca51f06 +5a92a0c1 +138c81fe +d0722d0f +05a7d84d +e18f1dea +799a2d61 +8276e558 +f0ba8748 +ce733e8a +2f9d0911 +58f24fa4 +66a25278 +3135d31d +4b9223ee +bdd5e6b3 +ddbebec1 +8dbebbd9 +3020b38f +e607450d +724a5d1c +91b754c5 +2e85e790 +3a407bd9 +fd137178 +a304029b +4023fc77 +440d5072 +2eb73c7c +164a7305 +b33ade7c +277ad883 +b0f7e75c +74107936 +83924bdb +b72beb78 +86c01d64 +f6f441eb +23b9a3ea +80b73f1a +93c6411d +1e95ef5e +800b5eac +9519832a +ae043406 +b06a902e +1dbca5cc +571f88a1 +b1faf52b +45572497 +8d016cdb +f92cdae8 +316931f8 +f9884439 +e1b7f212 +e23c6392 +ccfae073 +5aa1efda +74f0687c +eaff3301 +b6520a94 +c5398714 +15e7e4d1 +0fc00006 +8cf49218 +3a8ddc0a +e7e2a0b9 +eec4c008 +8d73085e +77e246da +00e92ab4 +f76f6cf9 +19801183 +233406ef +b80e028c +342c0b2a +a2768c47 +99350a74 +adbd400b +f3978ade +b87a4f6c +fa95a6a2 +6dff20c9 +935b5ad8 +dbbbb401 +1b6472c1 +9c0e6331 +04ae7a6b +4c94e4f3 +90cb46cb +2831ecf5 +ff77a145 +79af6097 +ba61a719 +abcb7665 +7e87750e +c4c7bc5d +3a670b81 +3d9a7023 +82667d52 +a4587f62 +ca619b7f +7c5462f5 +bda5c60d +e6e48ac8 +405c6000 +7981f344 +f7375ab3 +bb467ff9 +cfc68a82 +e417a6d8 +1a6177c1 +7b75dace +b1af350d +484d48a3 +1f805416 +7416ab4e +1291276c +9e85179b +5a74660c +7e6d00df +01e3cec8 +ee2c0688 +f6de8226 +a217538c +b432c3ef +49e5ff4e +035359e5 +8ae8e7ed +2da12766 +cac39070 +115adda4 +1a2872dc +fac3378e +294e7bf8 +a1a4991f +c062f4d7 +72b2b77d +158062aa +9ae447a7 +a7b05677 +fdfd5d56 +eac1a9e6 +a5905593 +59992293 +84298fae +f708e55f +093d3d93 +75d26197 +924f5d88 +3184a7ec +b454fdbc +2d9101b8 +ae70fb7c +4385b2c4 +63b37343 +0b4b662c +2883ae72 +ffcab778 +0f96e2d7 +897066e3 +f23e98ad +797a7b7e +2fc476f9 diff --git a/third_party/sam2/training/assets/MOSE_sample_val_list.txt b/third_party/sam2/training/assets/MOSE_sample_val_list.txt new file mode 100644 index 0000000000000000000000000000000000000000..9721028718245ff5297fdae59d35a7c89cb5f56a --- /dev/null +++ b/third_party/sam2/training/assets/MOSE_sample_val_list.txt @@ -0,0 +1,200 @@ +32e5d721 +5bad0bab +267bfd6c +0a43a414 +56c56ca9 +9a1146b3 +c6ad7aaf +78a1f4b1 +fc455e73 +072e7b3f +77ccb57d +a76ee415 +8cdcfc17 +5d518b42 +376dd830 +0e843fc8 +2af0e766 +2bd4e845 +de2f2a6a +ade9ee91 +001ca3cb +fc4c1c67 +8ef55579 +b84ce852 +4cc8528a +767ffaaa +112a2ef0 +a338c8aa +cbd144f5 +5ff72128 +86a949e2 +9f2323ac +1fab1d1c +75924351 +ef55817b +02deca50 +4d979d99 +4d65f873 +28470fa0 +0d1575fe +06ea172e +29a6ddc2 +797f1bec +780e7a99 +b9ed5b44 +02a236b4 +607d8ff5 +af5666b2 +0558d0ed +a938c6b2 +103df575 +77110e80 +739e5a07 +6763a576 +06ebc138 +ba4b3b09 +b35cc2f3 +4e0597a0 +5949ee84 +5348d547 +323c4236 +b3b51117 +55727ddd +ab2714f3 +d2878895 +c0734cb3 +94f7c53e +2a2745e5 +442ffb54 +3592425a +50ae03b0 +5f150435 +3067f9fa +9ffb2818 +adeaf5aa +31caacec +1cd99b86 +aa22f9d0 +8fa50320 +e6348d2c +42ff84a5 +8c8b7913 +c96adcbc +495be321 +db735509 +ee113fc4 +a678cdab +c409ca4d +68d2b259 +592b4dee +4e2b4dc7 +eb4d26e1 +2009a00f +bec5c89d +67191f24 +a3e85b4b +da7080cd +80d978e9 +36dcb93f +a41e8c44 +12fdc864 +46d140ea +657c9dd9 +a86f84ee +90c1c43d +33015509 +afc7664d +23df06e1 +291d4799 +0ab75563 +251bf059 +bcefdcc4 +ce9a2796 +94d3403a +8f2e04bc +f9cda066 +9dfa2cc5 +66924c91 +e765a09e +15654ee1 +48e0bd39 +ee095221 +2463609b +544d0d1f +51b8c2e1 +d321dde4 +4cb11a5f +d7058a0d +37af282a +fabae187 +7be91184 +181ec185 +2d16ceeb +b56be4b1 +6699eff0 +79acac96 +d61c4665 +0c13e1e7 +100f6ecf +71217dfc +82df0888 +4c42c747 +c9fdf703 +d2efeb4b +69ed9d14 +64914fb6 +255bedbc +4ea934d8 +a034feb2 +e4f4ddae +e36a3026 +c1489591 +111bb373 +e1d9fb32 +93e22d48 +c1ec4b26 +d9638e69 +60ab04c5 +cfe7773a +62132822 +2f5fb2a3 +7bdd197d +033333fd +130fcdbe +12e509c2 +67138c33 +6f90cc5f +4e3020fe +bbdd8bb7 +b399ccdb +fecd10d2 +2e0967f7 +f509054f +792c6ff7 +48e2afc5 +d904c048 +111e0a5c +b83024e2 +e6a7b79c +bdc5ccf7 +b8146d00 +9d394f1a +645b84f9 +95ab2d0f +e6f8a31d +b4f876fb +dc2c570d +3afd02d7 +5c80c82c +b1b32ddd +9f25fc61 +ba538072 +f8916fef +43c04ad2 +a658e949 +2861dd53 +f6e40aba +09d305d1 +aac33bff +8d9d4c08 diff --git a/third_party/sam2/training/dataset/__init__.py b/third_party/sam2/training/dataset/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/training/dataset/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/training/dataset/sam2_datasets.py b/third_party/sam2/training/dataset/sam2_datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..6deda056bea555fc07ace455ccc62c606a7b81c9 --- /dev/null +++ b/third_party/sam2/training/dataset/sam2_datasets.py @@ -0,0 +1,180 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import math +from typing import Callable, Iterable, List, Optional, Sequence + +import torch + +from torch.utils.data import BatchSampler, DataLoader, Dataset, IterableDataset, Subset + +from torch.utils.data.distributed import DistributedSampler + + +class MixedDataLoader: + def __init__(self, dataloaders: List[DataLoader], mixing_prob: torch.FloatTensor): + """ + Args: + dataloaders (List[DataLoader]): List of DataLoaders to be mixed. + mixing_prob (torch.FloatTensor): Probability of each dataloader to be sampled from + + """ + assert len(dataloaders) == mixing_prob.shape[0] + self.dataloaders = dataloaders + self.mixing_prob = mixing_prob + # Iterator state + self._iter_dls = None + self._iter_mixing_prob = None + self.random_generator = torch.Generator() + + def __len__(self): + return sum([len(d) for d in self.dataloaders]) + + def __iter__(self): + # Synchronize dataloader seeds + self.random_generator.manual_seed(42) + self._iter_dls = [iter(loader) for loader in self.dataloaders] + self._iter_mixing_prob = self.mixing_prob.clone() + return self + + def __next__(self): + """ + Sample a dataloader to sample from based on mixing probabilities. If one of the dataloaders is exhausted, we continue sampling from the other loaders until all are exhausted. + """ + if self._iter_dls is None: + raise TypeError(f"{type(self).__name__} object is not an iterator") + + while self._iter_mixing_prob.any(): # at least one D-Loader with non-zero prob. + dataset_idx = self._iter_mixing_prob.multinomial( + 1, generator=self.random_generator + ).item() + try: + item = next(self._iter_dls[dataset_idx]) + return item + except StopIteration: + # No more iterations for this dataset, set it's mixing probability to zero and try again. + self._iter_mixing_prob[dataset_idx] = 0 + except Exception as e: + # log and raise any other unexpected error. + logging.error(e) + raise e + + # Exhausted all iterators + raise StopIteration + + +class TorchTrainMixedDataset: + def __init__( + self, + datasets: List[Dataset], + batch_sizes: List[int], + num_workers: int, + shuffle: bool, + pin_memory: bool, + drop_last: bool, + collate_fn: Optional[Callable] = None, + worker_init_fn: Optional[Callable] = None, + phases_per_epoch: int = 1, + dataset_prob: Optional[List[float]] = None, + ) -> None: + """ + Args: + datasets (List[Dataset]): List of Datasets to be mixed. + batch_sizes (List[int]): Batch sizes for each dataset in the list. + num_workers (int): Number of workers per dataloader. + shuffle (bool): Whether or not to shuffle data. + pin_memory (bool): If True, use pinned memory when loading tensors from disk. + drop_last (bool): Whether or not to drop the last batch of data. + collate_fn (Callable): Function to merge a list of samples into a mini-batch. + worker_init_fn (Callable): Function to init each dataloader worker. + phases_per_epoch (int): Number of phases per epoch. + dataset_prob (List[float]): Probability of choosing the dataloader to sample from. Should sum to 1.0 + """ + + self.datasets = datasets + self.batch_sizes = batch_sizes + self.num_workers = num_workers + self.shuffle = shuffle + self.pin_memory = pin_memory + self.drop_last = drop_last + self.collate_fn = collate_fn + self.worker_init_fn = worker_init_fn + assert len(self.datasets) > 0 + for dataset in self.datasets: + assert not isinstance(dataset, IterableDataset), "Not supported" + # `RepeatFactorWrapper` requires calling set_epoch first to get its length + self._set_dataset_epoch(dataset, 0) + self.phases_per_epoch = phases_per_epoch + self.chunks = [None] * len(datasets) + if dataset_prob is None: + # If not provided, assign each dataset a probability proportional to its length. + dataset_lens = [ + (math.floor(len(d) / bs) if drop_last else math.ceil(len(d) / bs)) + for d, bs in zip(datasets, batch_sizes) + ] + total_len = sum(dataset_lens) + dataset_prob = torch.tensor([d_len / total_len for d_len in dataset_lens]) + else: + assert len(dataset_prob) == len(datasets) + dataset_prob = torch.tensor(dataset_prob) + + logging.info(f"Dataset mixing probabilities: {dataset_prob.tolist()}") + assert dataset_prob.sum().item() == 1.0, "Probabilities should sum to 1.0" + self.dataset_prob = dataset_prob + + def _set_dataset_epoch(self, dataset, epoch: int) -> None: + if hasattr(dataset, "epoch"): + dataset.epoch = epoch + if hasattr(dataset, "set_epoch"): + dataset.set_epoch(epoch) + + def get_loader(self, epoch) -> Iterable: + dataloaders = [] + for d_idx, (dataset, batch_size) in enumerate( + zip(self.datasets, self.batch_sizes) + ): + if self.phases_per_epoch > 1: + # Major epoch that looops over entire dataset + # len(main_epoch) == phases_per_epoch * len(epoch) + main_epoch = epoch // self.phases_per_epoch + + # Phase with in the main epoch + local_phase = epoch % self.phases_per_epoch + + # Start of new data-epoch or job is resumed after preemtion. + if local_phase == 0 or self.chunks[d_idx] is None: + # set seed for dataset epoch + # If using RepeatFactorWrapper, this step currectly re-samples indices before chunking. + self._set_dataset_epoch(dataset, main_epoch) + + # Separate random generator for subset sampling + g = torch.Generator() + g.manual_seed(main_epoch) + self.chunks[d_idx] = torch.chunk( + torch.randperm(len(dataset), generator=g), + self.phases_per_epoch, + ) + + dataset = Subset(dataset, self.chunks[d_idx][local_phase]) + else: + self._set_dataset_epoch(dataset, epoch) + + sampler = DistributedSampler(dataset, shuffle=self.shuffle) + sampler.set_epoch(epoch) + + batch_sampler = BatchSampler(sampler, batch_size, drop_last=self.drop_last) + dataloaders.append( + DataLoader( + dataset, + num_workers=self.num_workers, + pin_memory=self.pin_memory, + batch_sampler=batch_sampler, + collate_fn=self.collate_fn, + worker_init_fn=self.worker_init_fn, + ) + ) + return MixedDataLoader(dataloaders, self.dataset_prob) diff --git a/third_party/sam2/training/dataset/transforms.py b/third_party/sam2/training/dataset/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..8e5c6512ac7fd9548273fb152a3b57ef75e4fc18 --- /dev/null +++ b/third_party/sam2/training/dataset/transforms.py @@ -0,0 +1,528 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +""" +Transforms and data augmentation for both image + bbox. +""" + +import logging + +import random +from typing import Iterable + +import torch +import torchvision.transforms as T +import torchvision.transforms.functional as F +import torchvision.transforms.v2.functional as Fv2 +from PIL import Image as PILImage + +from torchvision.transforms import InterpolationMode + +from training.utils.data_utils import VideoDatapoint + + +def hflip(datapoint, index): + + datapoint.frames[index].data = F.hflip(datapoint.frames[index].data) + for obj in datapoint.frames[index].objects: + if obj.segment is not None: + obj.segment = F.hflip(obj.segment) + + return datapoint + + +def get_size_with_aspect_ratio(image_size, size, max_size=None): + w, h = image_size + if max_size is not None: + min_original_size = float(min((w, h))) + max_original_size = float(max((w, h))) + if max_original_size / min_original_size * size > max_size: + size = max_size * min_original_size / max_original_size + + if (w <= h and w == size) or (h <= w and h == size): + return (h, w) + + if w < h: + ow = int(round(size)) + oh = int(round(size * h / w)) + else: + oh = int(round(size)) + ow = int(round(size * w / h)) + + return (oh, ow) + + +def resize(datapoint, index, size, max_size=None, square=False, v2=False): + # size can be min_size (scalar) or (w, h) tuple + + def get_size(image_size, size, max_size=None): + if isinstance(size, (list, tuple)): + return size[::-1] + else: + return get_size_with_aspect_ratio(image_size, size, max_size) + + if square: + size = size, size + else: + cur_size = ( + datapoint.frames[index].data.size()[-2:][::-1] + if v2 + else datapoint.frames[index].data.size + ) + size = get_size(cur_size, size, max_size) + + old_size = ( + datapoint.frames[index].data.size()[-2:][::-1] + if v2 + else datapoint.frames[index].data.size + ) + if v2: + datapoint.frames[index].data = Fv2.resize( + datapoint.frames[index].data, size, antialias=True + ) + else: + datapoint.frames[index].data = F.resize(datapoint.frames[index].data, size) + + new_size = ( + datapoint.frames[index].data.size()[-2:][::-1] + if v2 + else datapoint.frames[index].data.size + ) + + for obj in datapoint.frames[index].objects: + if obj.segment is not None: + obj.segment = F.resize(obj.segment[None, None], size).squeeze() + + h, w = size + datapoint.frames[index].size = (h, w) + return datapoint + + +def pad(datapoint, index, padding, v2=False): + old_h, old_w = datapoint.frames[index].size + h, w = old_h, old_w + if len(padding) == 2: + # assumes that we only pad on the bottom right corners + datapoint.frames[index].data = F.pad( + datapoint.frames[index].data, (0, 0, padding[0], padding[1]) + ) + h += padding[1] + w += padding[0] + else: + # left, top, right, bottom + datapoint.frames[index].data = F.pad( + datapoint.frames[index].data, + (padding[0], padding[1], padding[2], padding[3]), + ) + h += padding[1] + padding[3] + w += padding[0] + padding[2] + + datapoint.frames[index].size = (h, w) + + for obj in datapoint.frames[index].objects: + if obj.segment is not None: + if v2: + if len(padding) == 2: + obj.segment = Fv2.pad(obj.segment, (0, 0, padding[0], padding[1])) + else: + obj.segment = Fv2.pad(obj.segment, tuple(padding)) + else: + if len(padding) == 2: + obj.segment = F.pad(obj.segment, (0, 0, padding[0], padding[1])) + else: + obj.segment = F.pad(obj.segment, tuple(padding)) + return datapoint + + +class RandomHorizontalFlip: + def __init__(self, consistent_transform, p=0.5): + self.p = p + self.consistent_transform = consistent_transform + + def __call__(self, datapoint, **kwargs): + if self.consistent_transform: + if random.random() < self.p: + for i in range(len(datapoint.frames)): + datapoint = hflip(datapoint, i) + return datapoint + for i in range(len(datapoint.frames)): + if random.random() < self.p: + datapoint = hflip(datapoint, i) + return datapoint + + +class RandomResizeAPI: + def __init__( + self, sizes, consistent_transform, max_size=None, square=False, v2=False + ): + if isinstance(sizes, int): + sizes = (sizes,) + assert isinstance(sizes, Iterable) + self.sizes = list(sizes) + self.max_size = max_size + self.square = square + self.consistent_transform = consistent_transform + self.v2 = v2 + + def __call__(self, datapoint, **kwargs): + if self.consistent_transform: + size = random.choice(self.sizes) + for i in range(len(datapoint.frames)): + datapoint = resize( + datapoint, i, size, self.max_size, square=self.square, v2=self.v2 + ) + return datapoint + for i in range(len(datapoint.frames)): + size = random.choice(self.sizes) + datapoint = resize( + datapoint, i, size, self.max_size, square=self.square, v2=self.v2 + ) + return datapoint + + +class ToTensorAPI: + def __init__(self, v2=False): + self.v2 = v2 + + def __call__(self, datapoint: VideoDatapoint, **kwargs): + for img in datapoint.frames: + if self.v2: + img.data = Fv2.to_image_tensor(img.data) + else: + img.data = F.to_tensor(img.data) + return datapoint + + +class NormalizeAPI: + def __init__(self, mean, std, v2=False): + self.mean = mean + self.std = std + self.v2 = v2 + + def __call__(self, datapoint: VideoDatapoint, **kwargs): + for img in datapoint.frames: + if self.v2: + img.data = Fv2.convert_image_dtype(img.data, torch.float32) + img.data = Fv2.normalize(img.data, mean=self.mean, std=self.std) + else: + img.data = F.normalize(img.data, mean=self.mean, std=self.std) + + return datapoint + + +class ComposeAPI: + def __init__(self, transforms): + self.transforms = transforms + + def __call__(self, datapoint, **kwargs): + for t in self.transforms: + datapoint = t(datapoint, **kwargs) + return datapoint + + def __repr__(self): + format_string = self.__class__.__name__ + "(" + for t in self.transforms: + format_string += "\n" + format_string += " {0}".format(t) + format_string += "\n)" + return format_string + + +class RandomGrayscale: + def __init__(self, consistent_transform, p=0.5): + self.p = p + self.consistent_transform = consistent_transform + self.Grayscale = T.Grayscale(num_output_channels=3) + + def __call__(self, datapoint: VideoDatapoint, **kwargs): + if self.consistent_transform: + if random.random() < self.p: + for img in datapoint.frames: + img.data = self.Grayscale(img.data) + return datapoint + for img in datapoint.frames: + if random.random() < self.p: + img.data = self.Grayscale(img.data) + return datapoint + + +class ColorJitter: + def __init__(self, consistent_transform, brightness, contrast, saturation, hue): + self.consistent_transform = consistent_transform + self.brightness = ( + brightness + if isinstance(brightness, list) + else [max(0, 1 - brightness), 1 + brightness] + ) + self.contrast = ( + contrast + if isinstance(contrast, list) + else [max(0, 1 - contrast), 1 + contrast] + ) + self.saturation = ( + saturation + if isinstance(saturation, list) + else [max(0, 1 - saturation), 1 + saturation] + ) + self.hue = hue if isinstance(hue, list) or hue is None else ([-hue, hue]) + + def __call__(self, datapoint: VideoDatapoint, **kwargs): + if self.consistent_transform: + # Create a color jitter transformation params + ( + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) = T.ColorJitter.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + for img in datapoint.frames: + if not self.consistent_transform: + ( + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) = T.ColorJitter.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + for fn_id in fn_idx: + if fn_id == 0 and brightness_factor is not None: + img.data = F.adjust_brightness(img.data, brightness_factor) + elif fn_id == 1 and contrast_factor is not None: + img.data = F.adjust_contrast(img.data, contrast_factor) + elif fn_id == 2 and saturation_factor is not None: + img.data = F.adjust_saturation(img.data, saturation_factor) + elif fn_id == 3 and hue_factor is not None: + img.data = F.adjust_hue(img.data, hue_factor) + return datapoint + + +class RandomAffine: + def __init__( + self, + degrees, + consistent_transform, + scale=None, + translate=None, + shear=None, + image_mean=(123, 116, 103), + log_warning=True, + num_tentatives=1, + image_interpolation="bicubic", + ): + """ + The mask is required for this transform. + if consistent_transform if True, then the same random affine is applied to all frames and masks. + """ + self.degrees = degrees if isinstance(degrees, list) else ([-degrees, degrees]) + self.scale = scale + self.shear = ( + shear if isinstance(shear, list) else ([-shear, shear] if shear else None) + ) + self.translate = translate + self.fill_img = image_mean + self.consistent_transform = consistent_transform + self.log_warning = log_warning + self.num_tentatives = num_tentatives + + if image_interpolation == "bicubic": + self.image_interpolation = InterpolationMode.BICUBIC + elif image_interpolation == "bilinear": + self.image_interpolation = InterpolationMode.BILINEAR + else: + raise NotImplementedError + + def __call__(self, datapoint: VideoDatapoint, **kwargs): + for _tentative in range(self.num_tentatives): + res = self.transform_datapoint(datapoint) + if res is not None: + return res + + if self.log_warning: + logging.warning( + f"Skip RandomAffine for zero-area mask in first frame after {self.num_tentatives} tentatives" + ) + return datapoint + + def transform_datapoint(self, datapoint: VideoDatapoint): + _, height, width = F.get_dimensions(datapoint.frames[0].data) + img_size = [width, height] + + if self.consistent_transform: + # Create a random affine transformation + affine_params = T.RandomAffine.get_params( + degrees=self.degrees, + translate=self.translate, + scale_ranges=self.scale, + shears=self.shear, + img_size=img_size, + ) + + for img_idx, img in enumerate(datapoint.frames): + this_masks = [ + obj.segment.unsqueeze(0) if obj.segment is not None else None + for obj in img.objects + ] + if not self.consistent_transform: + # if not consistent we create a new affine params for every frame&mask pair Create a random affine transformation + affine_params = T.RandomAffine.get_params( + degrees=self.degrees, + translate=self.translate, + scale_ranges=self.scale, + shears=self.shear, + img_size=img_size, + ) + + transformed_bboxes, transformed_masks = [], [] + for i in range(len(img.objects)): + if this_masks[i] is None: + transformed_masks.append(None) + # Dummy bbox for a dummy target + transformed_bboxes.append(torch.tensor([[0, 0, 1, 1]])) + else: + transformed_mask = F.affine( + this_masks[i], + *affine_params, + interpolation=InterpolationMode.NEAREST, + fill=0.0, + ) + if img_idx == 0 and transformed_mask.max() == 0: + # We are dealing with a video and the object is not visible in the first frame + # Return the datapoint without transformation + return None + transformed_masks.append(transformed_mask.squeeze()) + + for i in range(len(img.objects)): + img.objects[i].segment = transformed_masks[i] + + img.data = F.affine( + img.data, + *affine_params, + interpolation=self.image_interpolation, + fill=self.fill_img, + ) + return datapoint + + +def random_mosaic_frame( + datapoint, + index, + grid_h, + grid_w, + target_grid_y, + target_grid_x, + should_hflip, +): + # Step 1: downsize the images and paste them into a mosaic + image_data = datapoint.frames[index].data + is_pil = isinstance(image_data, PILImage.Image) + if is_pil: + H_im = image_data.height + W_im = image_data.width + image_data_output = PILImage.new("RGB", (W_im, H_im)) + else: + H_im = image_data.size(-2) + W_im = image_data.size(-1) + image_data_output = torch.zeros_like(image_data) + + downsize_cache = {} + for grid_y in range(grid_h): + for grid_x in range(grid_w): + y_offset_b = grid_y * H_im // grid_h + x_offset_b = grid_x * W_im // grid_w + y_offset_e = (grid_y + 1) * H_im // grid_h + x_offset_e = (grid_x + 1) * W_im // grid_w + H_im_downsize = y_offset_e - y_offset_b + W_im_downsize = x_offset_e - x_offset_b + + if (H_im_downsize, W_im_downsize) in downsize_cache: + image_data_downsize = downsize_cache[(H_im_downsize, W_im_downsize)] + else: + image_data_downsize = F.resize( + image_data, + size=(H_im_downsize, W_im_downsize), + interpolation=InterpolationMode.BILINEAR, + antialias=True, # antialiasing for downsizing + ) + downsize_cache[(H_im_downsize, W_im_downsize)] = image_data_downsize + if should_hflip[grid_y, grid_x].item(): + image_data_downsize = F.hflip(image_data_downsize) + + if is_pil: + image_data_output.paste(image_data_downsize, (x_offset_b, y_offset_b)) + else: + image_data_output[:, y_offset_b:y_offset_e, x_offset_b:x_offset_e] = ( + image_data_downsize + ) + + datapoint.frames[index].data = image_data_output + + # Step 2: downsize the masks and paste them into the target grid of the mosaic + for obj in datapoint.frames[index].objects: + if obj.segment is None: + continue + assert obj.segment.shape == (H_im, W_im) and obj.segment.dtype == torch.uint8 + segment_output = torch.zeros_like(obj.segment) + + target_y_offset_b = target_grid_y * H_im // grid_h + target_x_offset_b = target_grid_x * W_im // grid_w + target_y_offset_e = (target_grid_y + 1) * H_im // grid_h + target_x_offset_e = (target_grid_x + 1) * W_im // grid_w + target_H_im_downsize = target_y_offset_e - target_y_offset_b + target_W_im_downsize = target_x_offset_e - target_x_offset_b + + segment_downsize = F.resize( + obj.segment[None, None], + size=(target_H_im_downsize, target_W_im_downsize), + interpolation=InterpolationMode.BILINEAR, + antialias=True, # antialiasing for downsizing + )[0, 0] + if should_hflip[target_grid_y, target_grid_x].item(): + segment_downsize = F.hflip(segment_downsize[None, None])[0, 0] + + segment_output[ + target_y_offset_b:target_y_offset_e, target_x_offset_b:target_x_offset_e + ] = segment_downsize + obj.segment = segment_output + + return datapoint + + +class RandomMosaicVideoAPI: + def __init__(self, prob=0.15, grid_h=2, grid_w=2, use_random_hflip=False): + self.prob = prob + self.grid_h = grid_h + self.grid_w = grid_w + self.use_random_hflip = use_random_hflip + + def __call__(self, datapoint, **kwargs): + if random.random() > self.prob: + return datapoint + + # select a random location to place the target mask in the mosaic + target_grid_y = random.randint(0, self.grid_h - 1) + target_grid_x = random.randint(0, self.grid_w - 1) + # whether to flip each grid in the mosaic horizontally + if self.use_random_hflip: + should_hflip = torch.rand(self.grid_h, self.grid_w) < 0.5 + else: + should_hflip = torch.zeros(self.grid_h, self.grid_w, dtype=torch.bool) + for i in range(len(datapoint.frames)): + datapoint = random_mosaic_frame( + datapoint, + i, + grid_h=self.grid_h, + grid_w=self.grid_w, + target_grid_y=target_grid_y, + target_grid_x=target_grid_x, + should_hflip=should_hflip, + ) + + return datapoint diff --git a/third_party/sam2/training/dataset/utils.py b/third_party/sam2/training/dataset/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a658df234c3dcf74404f844b5be793b0545485ed --- /dev/null +++ b/third_party/sam2/training/dataset/utils.py @@ -0,0 +1,104 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +"""Some wrapping utilities extended from pytorch's to support repeat factor sampling in particular""" + +from typing import Iterable + +import torch +from torch.utils.data import ( + ConcatDataset as TorchConcatDataset, + Dataset, + Subset as TorchSubset, +) + + +class ConcatDataset(TorchConcatDataset): + def __init__(self, datasets: Iterable[Dataset]) -> None: + super(ConcatDataset, self).__init__(datasets) + + self.repeat_factors = torch.cat([d.repeat_factors for d in datasets]) + + def set_epoch(self, epoch: int): + for dataset in self.datasets: + if hasattr(dataset, "epoch"): + dataset.epoch = epoch + if hasattr(dataset, "set_epoch"): + dataset.set_epoch(epoch) + + +class Subset(TorchSubset): + def __init__(self, dataset, indices) -> None: + super(Subset, self).__init__(dataset, indices) + + self.repeat_factors = dataset.repeat_factors[indices] + assert len(indices) == len(self.repeat_factors) + + +# Adapted from Detectron2 +class RepeatFactorWrapper(Dataset): + """ + Thin wrapper around a dataset to implement repeat factor sampling. + The underlying dataset must have a repeat_factors member to indicate the per-image factor. + Set it to uniformly ones to disable repeat factor sampling + """ + + def __init__(self, dataset, seed: int = 0): + self.dataset = dataset + self.epoch_ids = None + self._seed = seed + + # Split into whole number (_int_part) and fractional (_frac_part) parts. + self._int_part = torch.trunc(dataset.repeat_factors) + self._frac_part = dataset.repeat_factors - self._int_part + + def _get_epoch_indices(self, generator): + """ + Create a list of dataset indices (with repeats) to use for one epoch. + + Args: + generator (torch.Generator): pseudo random number generator used for + stochastic rounding. + + Returns: + torch.Tensor: list of dataset indices to use in one epoch. Each index + is repeated based on its calculated repeat factor. + """ + # Since repeat factors are fractional, we use stochastic rounding so + # that the target repeat factor is achieved in expectation over the + # course of training + rands = torch.rand(len(self._frac_part), generator=generator) + rep_factors = self._int_part + (rands < self._frac_part).float() + # Construct a list of indices in which we repeat images as specified + indices = [] + for dataset_index, rep_factor in enumerate(rep_factors): + indices.extend([dataset_index] * int(rep_factor.item())) + return torch.tensor(indices, dtype=torch.int64) + + def __len__(self): + if self.epoch_ids is None: + # Here we raise an error instead of returning original len(self.dataset) avoid + # accidentally using unwrapped length. Otherwise it's error-prone since the + # length changes to `len(self.epoch_ids)`changes after set_epoch is called. + raise RuntimeError("please call set_epoch first to get wrapped length") + # return len(self.dataset) + + return len(self.epoch_ids) + + def set_epoch(self, epoch: int): + g = torch.Generator() + g.manual_seed(self._seed + epoch) + self.epoch_ids = self._get_epoch_indices(g) + if hasattr(self.dataset, "set_epoch"): + self.dataset.set_epoch(epoch) + + def __getitem__(self, idx): + if self.epoch_ids is None: + raise RuntimeError( + "Repeat ids haven't been computed. Did you forget to call set_epoch?" + ) + + return self.dataset[self.epoch_ids[idx]] diff --git a/third_party/sam2/training/dataset/vos_dataset.py b/third_party/sam2/training/dataset/vos_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..d1e9d39fe184cf0d86fbf22b5385dc05988cab83 --- /dev/null +++ b/third_party/sam2/training/dataset/vos_dataset.py @@ -0,0 +1,162 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import random +from copy import deepcopy + +import numpy as np + +import torch +from iopath.common.file_io import g_pathmgr +from PIL import Image as PILImage +from torchvision.datasets.vision import VisionDataset + +from training.dataset.vos_raw_dataset import VOSRawDataset +from training.dataset.vos_sampler import VOSSampler +from training.dataset.vos_segment_loader import JSONSegmentLoader + +from training.utils.data_utils import Frame, Object, VideoDatapoint + +MAX_RETRIES = 100 + + +class VOSDataset(VisionDataset): + def __init__( + self, + transforms, + training: bool, + video_dataset: VOSRawDataset, + sampler: VOSSampler, + multiplier: int, + always_target=True, + target_segments_available=True, + ): + self._transforms = transforms + self.training = training + self.video_dataset = video_dataset + self.sampler = sampler + + self.repeat_factors = torch.ones(len(self.video_dataset), dtype=torch.float32) + self.repeat_factors *= multiplier + print(f"Raw dataset length = {len(self.video_dataset)}") + + self.curr_epoch = 0 # Used in case data loader behavior changes across epochs + self.always_target = always_target + self.target_segments_available = target_segments_available + + def _get_datapoint(self, idx): + + for retry in range(MAX_RETRIES): + try: + if isinstance(idx, torch.Tensor): + idx = idx.item() + # sample a video + video, segment_loader = self.video_dataset.get_video(idx) + # sample frames and object indices to be used in a datapoint + sampled_frms_and_objs = self.sampler.sample( + video, segment_loader, epoch=self.curr_epoch + ) + break # Succesfully loaded video + except Exception as e: + if self.training: + logging.warning( + f"Loading failed (id={idx}); Retry {retry} with exception: {e}" + ) + idx = random.randrange(0, len(self.video_dataset)) + else: + # Shouldn't fail to load a val video + raise e + + datapoint = self.construct(video, sampled_frms_and_objs, segment_loader) + for transform in self._transforms: + datapoint = transform(datapoint, epoch=self.curr_epoch) + return datapoint + + def construct(self, video, sampled_frms_and_objs, segment_loader): + """ + Constructs a VideoDatapoint sample to pass to transforms + """ + sampled_frames = sampled_frms_and_objs.frames + sampled_object_ids = sampled_frms_and_objs.object_ids + + images = [] + rgb_images = load_images(sampled_frames) + # Iterate over the sampled frames and store their rgb data and object data (bbox, segment) + for frame_idx, frame in enumerate(sampled_frames): + w, h = rgb_images[frame_idx].size + images.append( + Frame( + data=rgb_images[frame_idx], + objects=[], + ) + ) + # We load the gt segments associated with the current frame + if isinstance(segment_loader, JSONSegmentLoader): + segments = segment_loader.load( + frame.frame_idx, obj_ids=sampled_object_ids + ) + else: + segments = segment_loader.load(frame.frame_idx) + for obj_id in sampled_object_ids: + # Extract the segment + if obj_id in segments: + assert ( + segments[obj_id] is not None + ), "None targets are not supported" + # segment is uint8 and remains uint8 throughout the transforms + segment = segments[obj_id].to(torch.uint8) + else: + # There is no target, we either use a zero mask target or drop this object + if not self.always_target: + continue + segment = torch.zeros(h, w, dtype=torch.uint8) + + images[frame_idx].objects.append( + Object( + object_id=obj_id, + frame_index=frame.frame_idx, + segment=segment, + ) + ) + return VideoDatapoint( + frames=images, + video_id=video.video_id, + size=(h, w), + ) + + def __getitem__(self, idx): + return self._get_datapoint(idx) + + def __len__(self): + return len(self.video_dataset) + + +def load_images(frames): + all_images = [] + cache = {} + for frame in frames: + if frame.data is None: + # Load the frame rgb data from file + path = frame.image_path + if path in cache: + all_images.append(deepcopy(all_images[cache[path]])) + continue + with g_pathmgr.open(path, "rb") as fopen: + all_images.append(PILImage.open(fopen).convert("RGB")) + cache[path] = len(all_images) - 1 + else: + # The frame rgb data has already been loaded + # Convert it to a PILImage + all_images.append(tensor_2_PIL(frame.data)) + + return all_images + + +def tensor_2_PIL(data: torch.Tensor) -> PILImage.Image: + data = data.cpu().numpy().transpose((1, 2, 0)) * 255.0 + data = data.astype(np.uint8) + return PILImage.fromarray(data) diff --git a/third_party/sam2/training/dataset/vos_raw_dataset.py b/third_party/sam2/training/dataset/vos_raw_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..44fe893717a3e3bd85b043baa33d349b52b4b34e --- /dev/null +++ b/third_party/sam2/training/dataset/vos_raw_dataset.py @@ -0,0 +1,308 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import glob +import logging +import os +from dataclasses import dataclass + +from typing import List, Optional + +import pandas as pd + +import torch + +from iopath.common.file_io import g_pathmgr + +from omegaconf.listconfig import ListConfig + +from training.dataset.vos_segment_loader import ( + JSONSegmentLoader, + MultiplePNGSegmentLoader, + PalettisedPNGSegmentLoader, + SA1BSegmentLoader, +) + + +@dataclass +class VOSFrame: + frame_idx: int + image_path: str + data: Optional[torch.Tensor] = None + is_conditioning_only: Optional[bool] = False + + +@dataclass +class VOSVideo: + video_name: str + video_id: int + frames: List[VOSFrame] + + def __len__(self): + return len(self.frames) + + +class VOSRawDataset: + def __init__(self): + pass + + def get_video(self, idx): + raise NotImplementedError() + + +class PNGRawDataset(VOSRawDataset): + def __init__( + self, + img_folder, + gt_folder, + file_list_txt=None, + excluded_videos_list_txt=None, + sample_rate=1, + is_palette=True, + single_object_mode=False, + truncate_video=-1, + frames_sampling_mult=False, + ): + self.img_folder = img_folder + self.gt_folder = gt_folder + self.sample_rate = sample_rate + self.is_palette = is_palette + self.single_object_mode = single_object_mode + self.truncate_video = truncate_video + + # Read the subset defined in file_list_txt + if file_list_txt is not None: + with g_pathmgr.open(file_list_txt, "r") as f: + subset = [os.path.splitext(line.strip())[0] for line in f] + else: + subset = os.listdir(self.img_folder) + + # Read and process excluded files if provided + if excluded_videos_list_txt is not None: + with g_pathmgr.open(excluded_videos_list_txt, "r") as f: + excluded_files = [os.path.splitext(line.strip())[0] for line in f] + else: + excluded_files = [] + + # Check if it's not in excluded_files + self.video_names = sorted( + [video_name for video_name in subset if video_name not in excluded_files] + ) + + if self.single_object_mode: + # single object mode + self.video_names = sorted( + [ + os.path.join(video_name, obj) + for video_name in self.video_names + for obj in os.listdir(os.path.join(self.gt_folder, video_name)) + ] + ) + + if frames_sampling_mult: + video_names_mult = [] + for video_name in self.video_names: + num_frames = len(os.listdir(os.path.join(self.img_folder, video_name))) + video_names_mult.extend([video_name] * num_frames) + self.video_names = video_names_mult + + def get_video(self, idx): + """ + Given a VOSVideo object, return the mask tensors. + """ + video_name = self.video_names[idx] + + if self.single_object_mode: + video_frame_root = os.path.join( + self.img_folder, os.path.dirname(video_name) + ) + else: + video_frame_root = os.path.join(self.img_folder, video_name) + + video_mask_root = os.path.join(self.gt_folder, video_name) + + if self.is_palette: + segment_loader = PalettisedPNGSegmentLoader(video_mask_root) + else: + segment_loader = MultiplePNGSegmentLoader( + video_mask_root, self.single_object_mode + ) + + all_frames = sorted(glob.glob(os.path.join(video_frame_root, "*.jpg"))) + if self.truncate_video > 0: + all_frames = all_frames[: self.truncate_video] + frames = [] + for _, fpath in enumerate(all_frames[:: self.sample_rate]): + fid = int(os.path.basename(fpath).split(".")[0]) + frames.append(VOSFrame(fid, image_path=fpath)) + video = VOSVideo(video_name, idx, frames) + return video, segment_loader + + def __len__(self): + return len(self.video_names) + + +class SA1BRawDataset(VOSRawDataset): + def __init__( + self, + img_folder, + gt_folder, + file_list_txt=None, + excluded_videos_list_txt=None, + num_frames=1, + mask_area_frac_thresh=1.1, # no filtering by default + uncertain_iou=-1, # no filtering by default + ): + self.img_folder = img_folder + self.gt_folder = gt_folder + self.num_frames = num_frames + self.mask_area_frac_thresh = mask_area_frac_thresh + self.uncertain_iou = uncertain_iou # stability score + + # Read the subset defined in file_list_txt + if file_list_txt is not None: + with g_pathmgr.open(file_list_txt, "r") as f: + subset = [os.path.splitext(line.strip())[0] for line in f] + else: + subset = os.listdir(self.img_folder) + subset = [ + path.split(".")[0] for path in subset if path.endswith(".jpg") + ] # remove extension + + # Read and process excluded files if provided + if excluded_videos_list_txt is not None: + with g_pathmgr.open(excluded_videos_list_txt, "r") as f: + excluded_files = [os.path.splitext(line.strip())[0] for line in f] + else: + excluded_files = [] + + # Check if it's not in excluded_files and it exists + self.video_names = [ + video_name for video_name in subset if video_name not in excluded_files + ] + + def get_video(self, idx): + """ + Given a VOSVideo object, return the mask tensors. + """ + video_name = self.video_names[idx] + + video_frame_path = os.path.join(self.img_folder, video_name + ".jpg") + video_mask_path = os.path.join(self.gt_folder, video_name + ".json") + + segment_loader = SA1BSegmentLoader( + video_mask_path, + mask_area_frac_thresh=self.mask_area_frac_thresh, + video_frame_path=video_frame_path, + uncertain_iou=self.uncertain_iou, + ) + + frames = [] + for frame_idx in range(self.num_frames): + frames.append(VOSFrame(frame_idx, image_path=video_frame_path)) + video_name = video_name.split("_")[-1] # filename is sa_{int} + # video id needs to be image_id to be able to load correct annotation file during eval + video = VOSVideo(video_name, int(video_name), frames) + return video, segment_loader + + def __len__(self): + return len(self.video_names) + + +class JSONRawDataset(VOSRawDataset): + """ + Dataset where the annotation in the format of SA-V json files + """ + + def __init__( + self, + img_folder, + gt_folder, + file_list_txt=None, + excluded_videos_list_txt=None, + sample_rate=1, + rm_unannotated=True, + ann_every=1, + frames_fps=24, + ): + self.gt_folder = gt_folder + self.img_folder = img_folder + self.sample_rate = sample_rate + self.rm_unannotated = rm_unannotated + self.ann_every = ann_every + self.frames_fps = frames_fps + + # Read and process excluded files if provided + excluded_files = [] + if excluded_videos_list_txt is not None: + if isinstance(excluded_videos_list_txt, str): + excluded_videos_lists = [excluded_videos_list_txt] + elif isinstance(excluded_videos_list_txt, ListConfig): + excluded_videos_lists = list(excluded_videos_list_txt) + else: + raise NotImplementedError + + for excluded_videos_list_txt in excluded_videos_lists: + with open(excluded_videos_list_txt, "r") as f: + excluded_files.extend( + [os.path.splitext(line.strip())[0] for line in f] + ) + excluded_files = set(excluded_files) + + # Read the subset defined in file_list_txt + if file_list_txt is not None: + with g_pathmgr.open(file_list_txt, "r") as f: + subset = [os.path.splitext(line.strip())[0] for line in f] + else: + subset = os.listdir(self.img_folder) + + self.video_names = sorted( + [video_name for video_name in subset if video_name not in excluded_files] + ) + + def get_video(self, video_idx): + """ + Given a VOSVideo object, return the mask tensors. + """ + video_name = self.video_names[video_idx] + video_json_path = os.path.join(self.gt_folder, video_name + "_manual.json") + segment_loader = JSONSegmentLoader( + video_json_path=video_json_path, + ann_every=self.ann_every, + frames_fps=self.frames_fps, + ) + + frame_ids = [ + int(os.path.splitext(frame_name)[0]) + for frame_name in sorted( + os.listdir(os.path.join(self.img_folder, video_name)) + ) + ] + + frames = [ + VOSFrame( + frame_id, + image_path=os.path.join( + self.img_folder, f"{video_name}/%05d.jpg" % (frame_id) + ), + ) + for frame_id in frame_ids[:: self.sample_rate] + ] + + if self.rm_unannotated: + # Eliminate the frames that have not been annotated + valid_frame_ids = [ + i * segment_loader.ann_every + for i, annot in enumerate(segment_loader.frame_annots) + if annot is not None and None not in annot + ] + frames = [f for f in frames if f.frame_idx in valid_frame_ids] + + video = VOSVideo(video_name, video_idx, frames) + return video, segment_loader + + def __len__(self): + return len(self.video_names) diff --git a/third_party/sam2/training/dataset/vos_sampler.py b/third_party/sam2/training/dataset/vos_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..1ad84b759d0f66191a84017d17140d128b634ca0 --- /dev/null +++ b/third_party/sam2/training/dataset/vos_sampler.py @@ -0,0 +1,105 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import random +from dataclasses import dataclass +from typing import List + +from training.dataset.vos_segment_loader import LazySegments + +MAX_RETRIES = 1000 + + +@dataclass +class SampledFramesAndObjects: + frames: List[int] + object_ids: List[int] + + +class VOSSampler: + def __init__(self, sort_frames=True): + # frames are ordered by frame id when sort_frames is True + self.sort_frames = sort_frames + + def sample(self, video): + raise NotImplementedError() + + +class RandomUniformSampler(VOSSampler): + def __init__( + self, + num_frames, + max_num_objects, + reverse_time_prob=0.0, + ): + self.num_frames = num_frames + self.max_num_objects = max_num_objects + self.reverse_time_prob = reverse_time_prob + + def sample(self, video, segment_loader, epoch=None): + + for retry in range(MAX_RETRIES): + if len(video.frames) < self.num_frames: + raise Exception( + f"Cannot sample {self.num_frames} frames from video {video.video_name} as it only has {len(video.frames)} annotated frames." + ) + start = random.randrange(0, len(video.frames) - self.num_frames + 1) + frames = [video.frames[start + step] for step in range(self.num_frames)] + if random.uniform(0, 1) < self.reverse_time_prob: + # Reverse time + frames = frames[::-1] + + # Get first frame object ids + visible_object_ids = [] + loaded_segms = segment_loader.load(frames[0].frame_idx) + if isinstance(loaded_segms, LazySegments): + # LazySegments for SA1BRawDataset + visible_object_ids = list(loaded_segms.keys()) + else: + for object_id, segment in segment_loader.load( + frames[0].frame_idx + ).items(): + if segment.sum(): + visible_object_ids.append(object_id) + + # First frame needs to have at least a target to track + if len(visible_object_ids) > 0: + break + if retry >= MAX_RETRIES - 1: + raise Exception("No visible objects") + + object_ids = random.sample( + visible_object_ids, + min(len(visible_object_ids), self.max_num_objects), + ) + return SampledFramesAndObjects(frames=frames, object_ids=object_ids) + + +class EvalSampler(VOSSampler): + """ + VOS Sampler for evaluation: sampling all the frames and all the objects in a video + """ + + def __init__( + self, + ): + super().__init__() + + def sample(self, video, segment_loader, epoch=None): + """ + Sampling all the frames and all the objects + """ + if self.sort_frames: + # ordered by frame id + frames = sorted(video.frames, key=lambda x: x.frame_idx) + else: + # use the original order + frames = video.frames + object_ids = segment_loader.load(frames[0].frame_idx).keys() + if len(object_ids) == 0: + raise Exception("First frame of the video has no objects") + + return SampledFramesAndObjects(frames=frames, object_ids=object_ids) diff --git a/third_party/sam2/training/dataset/vos_segment_loader.py b/third_party/sam2/training/dataset/vos_segment_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..27e17010cc8b010e103c3ac399689d80da7cfde9 --- /dev/null +++ b/third_party/sam2/training/dataset/vos_segment_loader.py @@ -0,0 +1,300 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import glob +import json +import os + +import numpy as np +import pandas as pd +import torch + +from PIL import Image as PILImage + +try: + from pycocotools import mask as mask_utils +except: + pass + + +class JSONSegmentLoader: + def __init__(self, video_json_path, ann_every=1, frames_fps=24, valid_obj_ids=None): + # Annotations in the json are provided every ann_every th frame + self.ann_every = ann_every + # Ids of the objects to consider when sampling this video + self.valid_obj_ids = valid_obj_ids + with open(video_json_path, "r") as f: + data = json.load(f) + if isinstance(data, list): + self.frame_annots = data + elif isinstance(data, dict): + masklet_field_name = "masklet" if "masklet" in data else "masks" + self.frame_annots = data[masklet_field_name] + if "fps" in data: + if isinstance(data["fps"], list): + annotations_fps = int(data["fps"][0]) + else: + annotations_fps = int(data["fps"]) + assert frames_fps % annotations_fps == 0 + self.ann_every = frames_fps // annotations_fps + else: + raise NotImplementedError + + def load(self, frame_id, obj_ids=None): + assert frame_id % self.ann_every == 0 + rle_mask = self.frame_annots[frame_id // self.ann_every] + + valid_objs_ids = set(range(len(rle_mask))) + if self.valid_obj_ids is not None: + # Remove the masklets that have been filtered out for this video + valid_objs_ids &= set(self.valid_obj_ids) + if obj_ids is not None: + # Only keep the objects that have been sampled + valid_objs_ids &= set(obj_ids) + valid_objs_ids = sorted(list(valid_objs_ids)) + + # Construct rle_masks_filtered that only contains the rle masks we are interested in + id_2_idx = {} + rle_mask_filtered = [] + for obj_id in valid_objs_ids: + if rle_mask[obj_id] is not None: + id_2_idx[obj_id] = len(rle_mask_filtered) + rle_mask_filtered.append(rle_mask[obj_id]) + else: + id_2_idx[obj_id] = None + + # Decode the masks + raw_segments = torch.from_numpy(mask_utils.decode(rle_mask_filtered)).permute( + 2, 0, 1 + ) # (num_obj, h, w) + segments = {} + for obj_id in valid_objs_ids: + if id_2_idx[obj_id] is None: + segments[obj_id] = None + else: + idx = id_2_idx[obj_id] + segments[obj_id] = raw_segments[idx] + return segments + + def get_valid_obj_frames_ids(self, num_frames_min=None): + # For each object, find all the frames with a valid (not None) mask + num_objects = len(self.frame_annots[0]) + + # The result dict associates each obj_id with the id of its valid frames + res = {obj_id: [] for obj_id in range(num_objects)} + + for annot_idx, annot in enumerate(self.frame_annots): + for obj_id in range(num_objects): + if annot[obj_id] is not None: + res[obj_id].append(int(annot_idx * self.ann_every)) + + if num_frames_min is not None: + # Remove masklets that have less than num_frames_min valid masks + for obj_id, valid_frames in list(res.items()): + if len(valid_frames) < num_frames_min: + res.pop(obj_id) + + return res + + +class PalettisedPNGSegmentLoader: + def __init__(self, video_png_root): + """ + SegmentLoader for datasets with masks stored as palettised PNGs. + video_png_root: the folder contains all the masks stored in png + """ + self.video_png_root = video_png_root + # build a mapping from frame id to their PNG mask path + # note that in some datasets, the PNG paths could have more + # than 5 digits, e.g. "00000000.png" instead of "00000.png" + png_filenames = os.listdir(self.video_png_root) + self.frame_id_to_png_filename = {} + for filename in png_filenames: + frame_id, _ = os.path.splitext(filename) + self.frame_id_to_png_filename[int(frame_id)] = filename + + def load(self, frame_id): + """ + load the single palettised mask from the disk (path: f'{self.video_png_root}/{frame_id:05d}.png') + Args: + frame_id: int, define the mask path + Return: + binary_segments: dict + """ + # check the path + mask_path = os.path.join( + self.video_png_root, self.frame_id_to_png_filename[frame_id] + ) + + # load the mask + masks = PILImage.open(mask_path).convert("P") + masks = np.array(masks) + + object_id = pd.unique(masks.flatten()) + object_id = object_id[object_id != 0] # remove background (0) + + # convert into N binary segmentation masks + binary_segments = {} + for i in object_id: + bs = masks == i + binary_segments[i] = torch.from_numpy(bs) + + return binary_segments + + def __len__(self): + return + + +class MultiplePNGSegmentLoader: + def __init__(self, video_png_root, single_object_mode=False): + """ + video_png_root: the folder contains all the masks stored in png + single_object_mode: whether to load only a single object at a time + """ + self.video_png_root = video_png_root + self.single_object_mode = single_object_mode + # read a mask to know the resolution of the video + if self.single_object_mode: + tmp_mask_path = glob.glob(os.path.join(video_png_root, "*.png"))[0] + else: + tmp_mask_path = glob.glob(os.path.join(video_png_root, "*", "*.png"))[0] + tmp_mask = np.array(PILImage.open(tmp_mask_path)) + self.H = tmp_mask.shape[0] + self.W = tmp_mask.shape[1] + if self.single_object_mode: + self.obj_id = ( + int(video_png_root.split("/")[-1]) + 1 + ) # offset by 1 as bg is 0 + else: + self.obj_id = None + + def load(self, frame_id): + if self.single_object_mode: + return self._load_single_png(frame_id) + else: + return self._load_multiple_pngs(frame_id) + + def _load_single_png(self, frame_id): + """ + load single png from the disk (path: f'{self.obj_id}/{frame_id:05d}.png') + Args: + frame_id: int, define the mask path + Return: + binary_segments: dict + """ + mask_path = os.path.join(self.video_png_root, f"{frame_id:05d}.png") + binary_segments = {} + + if os.path.exists(mask_path): + mask = np.array(PILImage.open(mask_path)) + else: + # if png doesn't exist, empty mask + mask = np.zeros((self.H, self.W), dtype=bool) + binary_segments[self.obj_id] = torch.from_numpy(mask > 0) + return binary_segments + + def _load_multiple_pngs(self, frame_id): + """ + load multiple png masks from the disk (path: f'{obj_id}/{frame_id:05d}.png') + Args: + frame_id: int, define the mask path + Return: + binary_segments: dict + """ + # get the path + all_objects = sorted(glob.glob(os.path.join(self.video_png_root, "*"))) + num_objects = len(all_objects) + assert num_objects > 0 + + # load the masks + binary_segments = {} + for obj_folder in all_objects: + # obj_folder is {video_name}/{obj_id}, obj_id is specified by the name of the folder + obj_id = int(obj_folder.split("/")[-1]) + obj_id = obj_id + 1 # offset 1 as bg is 0 + mask_path = os.path.join(obj_folder, f"{frame_id:05d}.png") + if os.path.exists(mask_path): + mask = np.array(PILImage.open(mask_path)) + else: + mask = np.zeros((self.H, self.W), dtype=bool) + binary_segments[obj_id] = torch.from_numpy(mask > 0) + + return binary_segments + + def __len__(self): + return + + +class LazySegments: + """ + Only decodes segments that are actually used. + """ + + def __init__(self): + self.segments = {} + self.cache = {} + + def __setitem__(self, key, item): + self.segments[key] = item + + def __getitem__(self, key): + if key in self.cache: + return self.cache[key] + rle = self.segments[key] + mask = torch.from_numpy(mask_utils.decode([rle])).permute(2, 0, 1)[0] + self.cache[key] = mask + return mask + + def __contains__(self, key): + return key in self.segments + + def __len__(self): + return len(self.segments) + + def keys(self): + return self.segments.keys() + + +class SA1BSegmentLoader: + def __init__( + self, + video_mask_path, + mask_area_frac_thresh=1.1, + video_frame_path=None, + uncertain_iou=-1, + ): + with open(video_mask_path, "r") as f: + self.frame_annots = json.load(f) + + if mask_area_frac_thresh <= 1.0: + # Lazily read frame + orig_w, orig_h = PILImage.open(video_frame_path).size + area = orig_w * orig_h + + self.frame_annots = self.frame_annots["annotations"] + + rle_masks = [] + for frame_annot in self.frame_annots: + if not frame_annot["area"] > 0: + continue + if ("uncertain_iou" in frame_annot) and ( + frame_annot["uncertain_iou"] < uncertain_iou + ): + # uncertain_iou is stability score + continue + if ( + mask_area_frac_thresh <= 1.0 + and (frame_annot["area"] / area) >= mask_area_frac_thresh + ): + continue + rle_masks.append(frame_annot["segmentation"]) + + self.segments = LazySegments() + for i, rle in enumerate(rle_masks): + self.segments[i] = rle + + def load(self, frame_idx): + return self.segments diff --git a/third_party/sam2/training/loss_fns.py b/third_party/sam2/training/loss_fns.py new file mode 100644 index 0000000000000000000000000000000000000000..d281b1a9c059771ee0ae3a4d4426f1e445178110 --- /dev/null +++ b/third_party/sam2/training/loss_fns.py @@ -0,0 +1,307 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from collections import defaultdict +from typing import Dict, List + +import torch +import torch.distributed +import torch.nn as nn +import torch.nn.functional as F + +from training.trainer import CORE_LOSS_KEY + +from training.utils.distributed import get_world_size, is_dist_avail_and_initialized + + +def dice_loss(inputs, targets, num_objects, loss_on_multimask=False): + """ + Compute the DICE loss, similar to generalized IOU for masks + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + num_objects: Number of objects in the batch + loss_on_multimask: True if multimask prediction is enabled + Returns: + Dice loss tensor + """ + inputs = inputs.sigmoid() + if loss_on_multimask: + # inputs and targets are [N, M, H, W] where M corresponds to multiple predicted masks + assert inputs.dim() == 4 and targets.dim() == 4 + # flatten spatial dimension while keeping multimask channel dimension + inputs = inputs.flatten(2) + targets = targets.flatten(2) + numerator = 2 * (inputs * targets).sum(-1) + else: + inputs = inputs.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + if loss_on_multimask: + return loss / num_objects + return loss.sum() / num_objects + + +def sigmoid_focal_loss( + inputs, + targets, + num_objects, + alpha: float = 0.25, + gamma: float = 2, + loss_on_multimask=False, +): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + num_objects: Number of objects in the batch + alpha: (optional) Weighting factor in range (0,1) to balance + positive vs negative examples. Default = -1 (no weighting). + gamma: Exponent of the modulating factor (1 - p_t) to + balance easy vs hard examples. + loss_on_multimask: True if multimask prediction is enabled + Returns: + focal loss tensor + """ + prob = inputs.sigmoid() + ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + if loss_on_multimask: + # loss is [N, M, H, W] where M corresponds to multiple predicted masks + assert loss.dim() == 4 + return loss.flatten(2).mean(-1) / num_objects # average over spatial dims + return loss.mean(1).sum() / num_objects + + +def iou_loss( + inputs, targets, pred_ious, num_objects, loss_on_multimask=False, use_l1_loss=False +): + """ + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + pred_ious: A float tensor containing the predicted IoUs scores per mask + num_objects: Number of objects in the batch + loss_on_multimask: True if multimask prediction is enabled + use_l1_loss: Whether to use L1 loss is used instead of MSE loss + Returns: + IoU loss tensor + """ + assert inputs.dim() == 4 and targets.dim() == 4 + pred_mask = inputs.flatten(2) > 0 + gt_mask = targets.flatten(2) > 0 + area_i = torch.sum(pred_mask & gt_mask, dim=-1).float() + area_u = torch.sum(pred_mask | gt_mask, dim=-1).float() + actual_ious = area_i / torch.clamp(area_u, min=1.0) + + if use_l1_loss: + loss = F.l1_loss(pred_ious, actual_ious, reduction="none") + else: + loss = F.mse_loss(pred_ious, actual_ious, reduction="none") + if loss_on_multimask: + return loss / num_objects + return loss.sum() / num_objects + + +class MultiStepMultiMasksAndIous(nn.Module): + def __init__( + self, + weight_dict, + focal_alpha=0.25, + focal_gamma=2, + supervise_all_iou=False, + iou_use_l1_loss=False, + pred_obj_scores=False, + focal_gamma_obj_score=0.0, + focal_alpha_obj_score=-1, + ): + """ + This class computes the multi-step multi-mask and IoU losses. + Args: + weight_dict: dict containing weights for focal, dice, iou losses + focal_alpha: alpha for sigmoid focal loss + focal_gamma: gamma for sigmoid focal loss + supervise_all_iou: if True, back-prop iou losses for all predicted masks + iou_use_l1_loss: use L1 loss instead of MSE loss for iou + pred_obj_scores: if True, compute loss for object scores + focal_gamma_obj_score: gamma for sigmoid focal loss on object scores + focal_alpha_obj_score: alpha for sigmoid focal loss on object scores + """ + + super().__init__() + self.weight_dict = weight_dict + self.focal_alpha = focal_alpha + self.focal_gamma = focal_gamma + assert "loss_mask" in self.weight_dict + assert "loss_dice" in self.weight_dict + assert "loss_iou" in self.weight_dict + if "loss_class" not in self.weight_dict: + self.weight_dict["loss_class"] = 0.0 + + self.focal_alpha_obj_score = focal_alpha_obj_score + self.focal_gamma_obj_score = focal_gamma_obj_score + self.supervise_all_iou = supervise_all_iou + self.iou_use_l1_loss = iou_use_l1_loss + self.pred_obj_scores = pred_obj_scores + + def forward(self, outs_batch: List[Dict], targets_batch: torch.Tensor): + assert len(outs_batch) == len(targets_batch) + num_objects = torch.tensor( + (targets_batch.shape[1]), device=targets_batch.device, dtype=torch.float + ) # Number of objects is fixed within a batch + if is_dist_avail_and_initialized(): + torch.distributed.all_reduce(num_objects) + num_objects = torch.clamp(num_objects / get_world_size(), min=1).item() + + losses = defaultdict(int) + for outs, targets in zip(outs_batch, targets_batch): + cur_losses = self._forward(outs, targets, num_objects) + for k, v in cur_losses.items(): + losses[k] += v + + return losses + + def _forward(self, outputs: Dict, targets: torch.Tensor, num_objects): + """ + Compute the losses related to the masks: the focal loss and the dice loss. + and also the MAE or MSE loss between predicted IoUs and actual IoUs. + + Here "multistep_pred_multimasks_high_res" is a list of multimasks (tensors + of shape [N, M, H, W], where M could be 1 or larger, corresponding to + one or multiple predicted masks from a click. + + We back-propagate focal, dice losses only on the prediction channel + with the lowest focal+dice loss between predicted mask and ground-truth. + If `supervise_all_iou` is True, we backpropagate ious losses for all predicted masks. + """ + + target_masks = targets.unsqueeze(1).float() + assert target_masks.dim() == 4 # [N, 1, H, W] + src_masks_list = outputs["multistep_pred_multimasks_high_res"] + ious_list = outputs["multistep_pred_ious"] + object_score_logits_list = outputs["multistep_object_score_logits"] + + assert len(src_masks_list) == len(ious_list) + assert len(object_score_logits_list) == len(ious_list) + + # accumulate the loss over prediction steps + losses = {"loss_mask": 0, "loss_dice": 0, "loss_iou": 0, "loss_class": 0} + for src_masks, ious, object_score_logits in zip( + src_masks_list, ious_list, object_score_logits_list + ): + self._update_losses( + losses, src_masks, target_masks, ious, num_objects, object_score_logits + ) + losses[CORE_LOSS_KEY] = self.reduce_loss(losses) + return losses + + def _update_losses( + self, losses, src_masks, target_masks, ious, num_objects, object_score_logits + ): + target_masks = target_masks.expand_as(src_masks) + # get focal, dice and iou loss on all output masks in a prediction step + loss_multimask = sigmoid_focal_loss( + src_masks, + target_masks, + num_objects, + alpha=self.focal_alpha, + gamma=self.focal_gamma, + loss_on_multimask=True, + ) + loss_multidice = dice_loss( + src_masks, target_masks, num_objects, loss_on_multimask=True + ) + if not self.pred_obj_scores: + loss_class = torch.tensor( + 0.0, dtype=loss_multimask.dtype, device=loss_multimask.device + ) + target_obj = torch.ones( + loss_multimask.shape[0], + 1, + dtype=loss_multimask.dtype, + device=loss_multimask.device, + ) + else: + target_obj = torch.any((target_masks[:, 0] > 0).flatten(1), dim=-1)[ + ..., None + ].float() + loss_class = sigmoid_focal_loss( + object_score_logits, + target_obj, + num_objects, + alpha=self.focal_alpha_obj_score, + gamma=self.focal_gamma_obj_score, + ) + + loss_multiiou = iou_loss( + src_masks, + target_masks, + ious, + num_objects, + loss_on_multimask=True, + use_l1_loss=self.iou_use_l1_loss, + ) + assert loss_multimask.dim() == 2 + assert loss_multidice.dim() == 2 + assert loss_multiiou.dim() == 2 + if loss_multimask.size(1) > 1: + # take the mask indices with the smallest focal + dice loss for back propagation + loss_combo = ( + loss_multimask * self.weight_dict["loss_mask"] + + loss_multidice * self.weight_dict["loss_dice"] + ) + best_loss_inds = torch.argmin(loss_combo, dim=-1) + batch_inds = torch.arange(loss_combo.size(0), device=loss_combo.device) + loss_mask = loss_multimask[batch_inds, best_loss_inds].unsqueeze(1) + loss_dice = loss_multidice[batch_inds, best_loss_inds].unsqueeze(1) + # calculate the iou prediction and slot losses only in the index + # with the minimum loss for each mask (to be consistent w/ SAM) + if self.supervise_all_iou: + loss_iou = loss_multiiou.mean(dim=-1).unsqueeze(1) + else: + loss_iou = loss_multiiou[batch_inds, best_loss_inds].unsqueeze(1) + else: + loss_mask = loss_multimask + loss_dice = loss_multidice + loss_iou = loss_multiiou + + # backprop focal, dice and iou loss only if obj present + loss_mask = loss_mask * target_obj + loss_dice = loss_dice * target_obj + loss_iou = loss_iou * target_obj + + # sum over batch dimension (note that the losses are already divided by num_objects) + losses["loss_mask"] += loss_mask.sum() + losses["loss_dice"] += loss_dice.sum() + losses["loss_iou"] += loss_iou.sum() + losses["loss_class"] += loss_class + + def reduce_loss(self, losses): + reduced_loss = 0.0 + for loss_key, weight in self.weight_dict.items(): + if loss_key not in losses: + raise ValueError(f"{type(self)} doesn't compute {loss_key}") + if weight != 0: + reduced_loss += losses[loss_key] * weight + + return reduced_loss diff --git a/third_party/sam2/training/model/__init__.py b/third_party/sam2/training/model/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/training/model/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/training/model/sam2.py b/third_party/sam2/training/model/sam2.py new file mode 100644 index 0000000000000000000000000000000000000000..ef7567c4dc99942d48e5890529ba9e3ca265e02d --- /dev/null +++ b/third_party/sam2/training/model/sam2.py @@ -0,0 +1,541 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging + +import numpy as np +import torch +import torch.distributed +from sam2.modeling.sam2_base import SAM2Base +from sam2.modeling.sam2_utils import ( + get_1d_sine_pe, + get_next_point, + sample_box_points, + select_closest_cond_frames, +) + +from sam2.utils.misc import concat_points + +from training.utils.data_utils import BatchedVideoDatapoint + + +class SAM2Train(SAM2Base): + def __init__( + self, + image_encoder, + memory_attention=None, + memory_encoder=None, + prob_to_use_pt_input_for_train=0.0, + prob_to_use_pt_input_for_eval=0.0, + prob_to_use_box_input_for_train=0.0, + prob_to_use_box_input_for_eval=0.0, + # if it is greater than 1, we interactive point sampling in the 1st frame and other randomly selected frames + num_frames_to_correct_for_train=1, # default: only iteratively sample on first frame + num_frames_to_correct_for_eval=1, # default: only iteratively sample on first frame + rand_frames_to_correct_for_train=False, + rand_frames_to_correct_for_eval=False, + # how many frames to use as initial conditioning frames (for both point input and mask input; the first frame is always used as an initial conditioning frame) + # - if `rand_init_cond_frames` below is True, we randomly sample 1~num_init_cond_frames initial conditioning frames + # - otherwise we sample a fixed number of num_init_cond_frames initial conditioning frames + # note: for point input, we sample correction points on all such initial conditioning frames, and we require that `num_frames_to_correct` >= `num_init_cond_frames`; + # these are initial conditioning frames because as we track the video, more conditioning frames might be added + # when a frame receives correction clicks under point input if `add_all_frames_to_correct_as_cond=True` + num_init_cond_frames_for_train=1, # default: only use the first frame as initial conditioning frame + num_init_cond_frames_for_eval=1, # default: only use the first frame as initial conditioning frame + rand_init_cond_frames_for_train=True, # default: random 1~num_init_cond_frames_for_train cond frames (to be constent w/ previous TA data loader) + rand_init_cond_frames_for_eval=False, + # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click + # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames + add_all_frames_to_correct_as_cond=False, + # how many additional correction points to sample (on each frame selected to be corrected) + # note that the first frame receives an initial input click (in addition to any correction clicks) + num_correction_pt_per_frame=7, + # method for point sampling during evaluation + # "uniform" (sample uniformly from error region) or "center" (use the point with the largest distance to error region boundary) + # default to "center" to be consistent with evaluation in the SAM paper + pt_sampling_for_eval="center", + # During training, we optionally allow sampling the correction points from GT regions + # instead of the prediction error regions with a small probability. This might allow the + # model to overfit less to the error regions in training datasets + prob_to_sample_from_gt_for_train=0.0, + use_act_ckpt_iterative_pt_sampling=False, + # whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features + # of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower. + forward_backbone_per_frame_for_eval=False, + freeze_image_encoder=False, + **kwargs, + ): + super().__init__(image_encoder, memory_attention, memory_encoder, **kwargs) + self.use_act_ckpt_iterative_pt_sampling = use_act_ckpt_iterative_pt_sampling + self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval + + # Point sampler and conditioning frames + self.prob_to_use_pt_input_for_train = prob_to_use_pt_input_for_train + self.prob_to_use_box_input_for_train = prob_to_use_box_input_for_train + self.prob_to_use_pt_input_for_eval = prob_to_use_pt_input_for_eval + self.prob_to_use_box_input_for_eval = prob_to_use_box_input_for_eval + if prob_to_use_pt_input_for_train > 0 or prob_to_use_pt_input_for_eval > 0: + logging.info( + f"Training with points (sampled from masks) as inputs with p={prob_to_use_pt_input_for_train}" + ) + assert num_frames_to_correct_for_train >= num_init_cond_frames_for_train + assert num_frames_to_correct_for_eval >= num_init_cond_frames_for_eval + + self.num_frames_to_correct_for_train = num_frames_to_correct_for_train + self.num_frames_to_correct_for_eval = num_frames_to_correct_for_eval + self.rand_frames_to_correct_for_train = rand_frames_to_correct_for_train + self.rand_frames_to_correct_for_eval = rand_frames_to_correct_for_eval + # Initial multi-conditioning frames + self.num_init_cond_frames_for_train = num_init_cond_frames_for_train + self.num_init_cond_frames_for_eval = num_init_cond_frames_for_eval + self.rand_init_cond_frames_for_train = rand_init_cond_frames_for_train + self.rand_init_cond_frames_for_eval = rand_init_cond_frames_for_eval + self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond + self.num_correction_pt_per_frame = num_correction_pt_per_frame + self.pt_sampling_for_eval = pt_sampling_for_eval + self.prob_to_sample_from_gt_for_train = prob_to_sample_from_gt_for_train + # A random number generator with a fixed initial seed across GPUs + self.rng = np.random.default_rng(seed=42) + + if freeze_image_encoder: + for p in self.image_encoder.parameters(): + p.requires_grad = False + + def forward(self, input: BatchedVideoDatapoint): + if self.training or not self.forward_backbone_per_frame_for_eval: + # precompute image features on all frames before tracking + backbone_out = self.forward_image(input.flat_img_batch) + else: + # defer image feature computation on a frame until it's being tracked + backbone_out = {"backbone_fpn": None, "vision_pos_enc": None} + backbone_out = self.prepare_prompt_inputs(backbone_out, input) + previous_stages_out = self.forward_tracking(backbone_out, input) + + return previous_stages_out + + def _prepare_backbone_features_per_frame(self, img_batch, img_ids): + """Compute the image backbone features on the fly for the given img_ids.""" + # Only forward backbone on unique image ids to avoid repetitive computation + # (if `img_ids` has only one element, it's already unique so we skip this step). + if img_ids.numel() > 1: + unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True) + else: + unique_img_ids, inv_ids = img_ids, None + + # Compute the image features on those unique image ids + image = img_batch[unique_img_ids] + backbone_out = self.forward_image(image) + ( + _, + vision_feats, + vision_pos_embeds, + feat_sizes, + ) = self._prepare_backbone_features(backbone_out) + # Inverse-map image features for `unique_img_ids` to the final image features + # for the original input `img_ids`. + if inv_ids is not None: + image = image[inv_ids] + vision_feats = [x[:, inv_ids] for x in vision_feats] + vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds] + + return image, vision_feats, vision_pos_embeds, feat_sizes + + def prepare_prompt_inputs(self, backbone_out, input, start_frame_idx=0): + """ + Prepare input mask, point or box prompts. Optionally, we allow tracking from + a custom `start_frame_idx` to the end of the video (for evaluation purposes). + """ + # Load the ground-truth masks on all frames (so that we can later + # sample correction points from them) + # gt_masks_per_frame = { + # stage_id: targets.segments.unsqueeze(1) # [B, 1, H_im, W_im] + # for stage_id, targets in enumerate(input.find_targets) + # } + gt_masks_per_frame = { + stage_id: masks.unsqueeze(1) # [B, 1, H_im, W_im] + for stage_id, masks in enumerate(input.masks) + } + # gt_masks_per_frame = input.masks.unsqueeze(2) # [T,B,1,H_im,W_im] keep everything in tensor form + backbone_out["gt_masks_per_frame"] = gt_masks_per_frame + num_frames = input.num_frames + backbone_out["num_frames"] = num_frames + + # Randomly decide whether to use point inputs or mask inputs + if self.training: + prob_to_use_pt_input = self.prob_to_use_pt_input_for_train + prob_to_use_box_input = self.prob_to_use_box_input_for_train + num_frames_to_correct = self.num_frames_to_correct_for_train + rand_frames_to_correct = self.rand_frames_to_correct_for_train + num_init_cond_frames = self.num_init_cond_frames_for_train + rand_init_cond_frames = self.rand_init_cond_frames_for_train + else: + prob_to_use_pt_input = self.prob_to_use_pt_input_for_eval + prob_to_use_box_input = self.prob_to_use_box_input_for_eval + num_frames_to_correct = self.num_frames_to_correct_for_eval + rand_frames_to_correct = self.rand_frames_to_correct_for_eval + num_init_cond_frames = self.num_init_cond_frames_for_eval + rand_init_cond_frames = self.rand_init_cond_frames_for_eval + if num_frames == 1: + # here we handle a special case for mixing video + SAM on image training, + # where we force using point input for the SAM task on static images + prob_to_use_pt_input = 1.0 + num_frames_to_correct = 1 + num_init_cond_frames = 1 + assert num_init_cond_frames >= 1 + # (here `self.rng.random()` returns value in range 0.0 <= X < 1.0) + use_pt_input = self.rng.random() < prob_to_use_pt_input + if rand_init_cond_frames and num_init_cond_frames > 1: + # randomly select 1 to `num_init_cond_frames` frames as initial conditioning frames + num_init_cond_frames = self.rng.integers( + 1, num_init_cond_frames, endpoint=True + ) + if ( + use_pt_input + and rand_frames_to_correct + and num_frames_to_correct > num_init_cond_frames + ): + # randomly select `num_init_cond_frames` to `num_frames_to_correct` frames to sample + # correction clicks (only for the case of point input) + num_frames_to_correct = self.rng.integers( + num_init_cond_frames, num_frames_to_correct, endpoint=True + ) + backbone_out["use_pt_input"] = use_pt_input + + # Sample initial conditioning frames + if num_init_cond_frames == 1: + init_cond_frames = [start_frame_idx] # starting frame + else: + # starting frame + randomly selected remaining frames (without replacement) + init_cond_frames = [start_frame_idx] + self.rng.choice( + range(start_frame_idx + 1, num_frames), + num_init_cond_frames - 1, + replace=False, + ).tolist() + backbone_out["init_cond_frames"] = init_cond_frames + backbone_out["frames_not_in_init_cond"] = [ + t for t in range(start_frame_idx, num_frames) if t not in init_cond_frames + ] + # Prepare mask or point inputs on initial conditioning frames + backbone_out["mask_inputs_per_frame"] = {} # {frame_idx: } + backbone_out["point_inputs_per_frame"] = {} # {frame_idx: } + for t in init_cond_frames: + if not use_pt_input: + backbone_out["mask_inputs_per_frame"][t] = gt_masks_per_frame[t] + else: + # During training # P(box) = prob_to_use_pt_input * prob_to_use_box_input + use_box_input = self.rng.random() < prob_to_use_box_input + if use_box_input: + points, labels = sample_box_points( + gt_masks_per_frame[t], + ) + else: + # (here we only sample **one initial point** on initial conditioning frames from the + # ground-truth mask; we may sample more correction points on the fly) + points, labels = get_next_point( + gt_masks=gt_masks_per_frame[t], + pred_masks=None, + method=( + "uniform" if self.training else self.pt_sampling_for_eval + ), + ) + + point_inputs = {"point_coords": points, "point_labels": labels} + backbone_out["point_inputs_per_frame"][t] = point_inputs + + # Sample frames where we will add correction clicks on the fly + # based on the error between prediction and ground-truth masks + if not use_pt_input: + # no correction points will be sampled when using mask inputs + frames_to_add_correction_pt = [] + elif num_frames_to_correct == num_init_cond_frames: + frames_to_add_correction_pt = init_cond_frames + else: + assert num_frames_to_correct > num_init_cond_frames + # initial cond frame + randomly selected remaining frames (without replacement) + extra_num = num_frames_to_correct - num_init_cond_frames + frames_to_add_correction_pt = ( + init_cond_frames + + self.rng.choice( + backbone_out["frames_not_in_init_cond"], extra_num, replace=False + ).tolist() + ) + backbone_out["frames_to_add_correction_pt"] = frames_to_add_correction_pt + + return backbone_out + + def forward_tracking( + self, backbone_out, input: BatchedVideoDatapoint, return_dict=False + ): + """Forward video tracking on each frame (and sample correction clicks).""" + img_feats_already_computed = backbone_out["backbone_fpn"] is not None + if img_feats_already_computed: + # Prepare the backbone features + # - vision_feats and vision_pos_embeds are in (HW)BC format + ( + _, + vision_feats, + vision_pos_embeds, + feat_sizes, + ) = self._prepare_backbone_features(backbone_out) + + # Starting the stage loop + num_frames = backbone_out["num_frames"] + init_cond_frames = backbone_out["init_cond_frames"] + frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"] + # first process all the initial conditioning frames to encode them as memory, + # and then conditioning on them to track the remaining frames + processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"] + output_dict = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + for stage_id in processing_order: + # Get the image features for the current frames + # img_ids = input.find_inputs[stage_id].img_ids + img_ids = input.flat_obj_to_img_idx[stage_id] + if img_feats_already_computed: + # Retrieve image features according to img_ids (if they are already computed). + current_vision_feats = [x[:, img_ids] for x in vision_feats] + current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds] + else: + # Otherwise, compute the image features on the fly for the given img_ids + # (this might be used for evaluation on long videos to avoid backbone OOM). + ( + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._prepare_backbone_features_per_frame( + input.flat_img_batch, img_ids + ) + + # Get output masks based on this frame's prompts and previous memory + current_out = self.track_step( + frame_idx=stage_id, + is_init_cond_frame=stage_id in init_cond_frames, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None), + mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None), + gt_masks=backbone_out["gt_masks_per_frame"].get(stage_id, None), + frames_to_add_correction_pt=frames_to_add_correction_pt, + output_dict=output_dict, + num_frames=num_frames, + ) + # Append the output, depending on whether it's a conditioning frame + add_output_as_cond_frame = stage_id in init_cond_frames or ( + self.add_all_frames_to_correct_as_cond + and stage_id in frames_to_add_correction_pt + ) + if add_output_as_cond_frame: + output_dict["cond_frame_outputs"][stage_id] = current_out + else: + output_dict["non_cond_frame_outputs"][stage_id] = current_out + + if return_dict: + return output_dict + # turn `output_dict` into a list for loss function + all_frame_outputs = {} + all_frame_outputs.update(output_dict["cond_frame_outputs"]) + all_frame_outputs.update(output_dict["non_cond_frame_outputs"]) + all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)] + # Make DDP happy with activation checkpointing by removing unused keys + all_frame_outputs = [ + {k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs + ] + + return all_frame_outputs + + def track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + run_mem_encoder=True, # Whether to run the memory encoder on the predicted masks. + prev_sam_mask_logits=None, # The previously predicted SAM mask logits. + frames_to_add_correction_pt=None, + gt_masks=None, + ): + if frames_to_add_correction_pt is None: + frames_to_add_correction_pt = [] + current_out, sam_outputs, high_res_features, pix_feat = self._track_step( + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse, + prev_sam_mask_logits, + ) + + ( + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) = sam_outputs + + current_out["multistep_pred_masks"] = low_res_masks + current_out["multistep_pred_masks_high_res"] = high_res_masks + current_out["multistep_pred_multimasks"] = [low_res_multimasks] + current_out["multistep_pred_multimasks_high_res"] = [high_res_multimasks] + current_out["multistep_pred_ious"] = [ious] + current_out["multistep_point_inputs"] = [point_inputs] + current_out["multistep_object_score_logits"] = [object_score_logits] + + # Optionally, sample correction points iteratively to correct the mask + if frame_idx in frames_to_add_correction_pt: + point_inputs, final_sam_outputs = self._iter_correct_pt_sampling( + is_init_cond_frame, + point_inputs, + gt_masks, + high_res_features, + pix_feat, + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + object_score_logits, + current_out, + ) + ( + _, + _, + _, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) = final_sam_outputs + + # Use the final prediction (after all correction steps for output and eval) + current_out["pred_masks"] = low_res_masks + current_out["pred_masks_high_res"] = high_res_masks + current_out["obj_ptr"] = obj_ptr + + # Finally run the memory encoder on the predicted mask to encode + # it into a new memory feature (that can be used in future frames) + self._encode_memory_in_output( + current_vision_feats, + feat_sizes, + point_inputs, + run_mem_encoder, + high_res_masks, + object_score_logits, + current_out, + ) + return current_out + + def _iter_correct_pt_sampling( + self, + is_init_cond_frame, + point_inputs, + gt_masks, + high_res_features, + pix_feat_with_mem, + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + object_score_logits, + current_out, + ): + + assert gt_masks is not None + all_pred_masks = [low_res_masks] + all_pred_high_res_masks = [high_res_masks] + all_pred_multimasks = [low_res_multimasks] + all_pred_high_res_multimasks = [high_res_multimasks] + all_pred_ious = [ious] + all_point_inputs = [point_inputs] + all_object_score_logits = [object_score_logits] + for _ in range(self.num_correction_pt_per_frame): + # sample a new point from the error between prediction and ground-truth + # (with a small probability, directly sample from GT masks instead of errors) + if self.training and self.prob_to_sample_from_gt_for_train > 0: + sample_from_gt = ( + self.rng.random() < self.prob_to_sample_from_gt_for_train + ) + else: + sample_from_gt = False + # if `pred_for_new_pt` is None, only GT masks will be used for point sampling + pred_for_new_pt = None if sample_from_gt else (high_res_masks > 0) + new_points, new_labels = get_next_point( + gt_masks=gt_masks, + pred_masks=pred_for_new_pt, + method="uniform" if self.training else self.pt_sampling_for_eval, + ) + point_inputs = concat_points(point_inputs, new_points, new_labels) + # Feed the mask logits of the previous SAM outputs in the next SAM decoder step. + # For tracking, this means that when the user adds a correction click, we also feed + # the tracking output mask logits along with the click as input to the SAM decoder. + mask_inputs = low_res_masks + multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) + if self.use_act_ckpt_iterative_pt_sampling and not multimask_output: + sam_outputs = torch.utils.checkpoint.checkpoint( + self._forward_sam_heads, + backbone_features=pix_feat_with_mem, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + high_res_features=high_res_features, + multimask_output=multimask_output, + use_reentrant=False, + ) + else: + sam_outputs = self._forward_sam_heads( + backbone_features=pix_feat_with_mem, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + high_res_features=high_res_features, + multimask_output=multimask_output, + ) + ( + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + _, + object_score_logits, + ) = sam_outputs + all_pred_masks.append(low_res_masks) + all_pred_high_res_masks.append(high_res_masks) + all_pred_multimasks.append(low_res_multimasks) + all_pred_high_res_multimasks.append(high_res_multimasks) + all_pred_ious.append(ious) + all_point_inputs.append(point_inputs) + all_object_score_logits.append(object_score_logits) + + # Concatenate the masks along channel (to compute losses on all of them, + # using `MultiStepIteractiveMasks`) + current_out["multistep_pred_masks"] = torch.cat(all_pred_masks, dim=1) + current_out["multistep_pred_masks_high_res"] = torch.cat( + all_pred_high_res_masks, dim=1 + ) + current_out["multistep_pred_multimasks"] = all_pred_multimasks + current_out["multistep_pred_multimasks_high_res"] = all_pred_high_res_multimasks + current_out["multistep_pred_ious"] = all_pred_ious + current_out["multistep_point_inputs"] = all_point_inputs + current_out["multistep_object_score_logits"] = all_object_score_logits + + return point_inputs, sam_outputs diff --git a/third_party/sam2/training/optimizer.py b/third_party/sam2/training/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..ae159663f6efc2dac4f5ffa3b1c91b97a78dec76 --- /dev/null +++ b/third_party/sam2/training/optimizer.py @@ -0,0 +1,502 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import fnmatch +import inspect +import itertools +import logging +import types +from typing import ( + Any, + Callable, + Dict, + Iterable, + List, + Mapping, + Optional, + Set, + Tuple, + Type, + Union, +) + +import hydra + +import torch +import torch.nn as nn +from omegaconf import DictConfig +from torch import Tensor + + +class Optimizer: + def __init__(self, optimizer, schedulers=None) -> None: + self.optimizer = optimizer + self.schedulers = schedulers + self._validate_optimizer_schedulers() + self.step_schedulers(0.0, 0) + + def _validate_optimizer_schedulers(self): + if self.schedulers is None: + return + for _, set_of_schedulers in enumerate(self.schedulers): + for option, _ in set_of_schedulers.items(): + assert option in self.optimizer.defaults, ( + "Optimizer option " + f"{option} not found in {self.optimizer}. Valid options are " + f"{self.optimizer.defaults.keys()}" + ) + + def step_schedulers(self, where: float, step: int) -> None: + if self.schedulers is None: + return + for i, param_group in enumerate(self.optimizer.param_groups): + for option, scheduler in self.schedulers[i].items(): + if "step" in inspect.signature(scheduler.__call__).parameters: + new_value = scheduler(step=step, where=where) + elif ( + hasattr(scheduler, "scheduler") + and "step" + in inspect.signature(scheduler.scheduler.__call__).parameters + ): + # To handle ValueScaler wrappers + new_value = scheduler(step=step, where=where) + else: + new_value = scheduler(where) + param_group[option] = new_value + + def step(self, where, step, closure=None): + self.step_schedulers(where, step) + return self.optimizer.step(closure) + + def zero_grad(self, *args, **kwargs): + return self.optimizer.zero_grad(*args, **kwargs) + + +def set_default_parameters( + scheduler_cfgs: List[DictConfig], all_parameter_names: Set[str] +) -> None: + """Set up the "default" scheduler with the right parameters. + + Args: + scheduler_cgfs: A list of scheduler configs, where each scheduler also + specifies which parameters it applies to, based on the names of parameters + or the class of the modules. At most one scheduler is allowed to skip this + specification, which is used as a "default" specification for any remaining + parameters. + all_parameter_names: Names of all the parameters to consider. + """ + constraints = [ + scheduler_cfg.parameter_names + for scheduler_cfg in scheduler_cfgs + if scheduler_cfg.parameter_names is not None + ] + if len(constraints) == 0: + default_params = set(all_parameter_names) + else: + default_params = all_parameter_names - set.union(*constraints) + default_count = 0 + for scheduler_cfg in scheduler_cfgs: + if scheduler_cfg.parameter_names is None: + scheduler_cfg.parameter_names = default_params + default_count += 1 + assert default_count <= 1, "Only one scheduler per option can be default" + if default_count == 0: + # No default scheduler specified, add a default, but without any scheduler + # for that option + scheduler_cfgs.append({"parameter_names": default_params}) + + +def name_constraints_to_parameters( + param_constraints: List[Set[str]], named_parameters: Dict[str, Tensor] +) -> List[torch.nn.Parameter]: + """Return parameters which match the intersection of parameter constraints. + + Note that this returns the parameters themselves, not their names. + + Args: + param_constraints: A list, with each element being a set of allowed parameters. + named_parameters: Mapping from a parameter name to the parameter itself. + + Returns: + A list containing the parameters which overlap with _each_ constraint set from + param_constraints. + """ + matching_names = set.intersection(*param_constraints) + return [value for name, value in named_parameters.items() if name in matching_names] + + +def map_scheduler_cfgs_to_param_groups( + all_scheduler_cfgs: Iterable[List[Dict]], + named_parameters: Dict[str, Tensor], +) -> Tuple[List[Dict[Any, Any]], List[Dict[str, List[torch.nn.Parameter]]]]: + """Produce parameter groups corresponding to all the scheduler configs. + + Takes all the scheduler configs, each of which applies to a specific optimizer + option (like "lr" or "weight_decay") and has a set of parameter names which it + applies to, and produces a final set of param groups where each param group + covers all the options which apply to a particular set of parameters. + + Args: + all_scheduler_cfgs: All the scheduler configs covering every option. + named_parameters: Mapping from a parameter name to the parameter itself. + Returns: + Tuple of lists of schedulers and param_groups, where schedulers[i] + applies to param_groups[i]. + """ + + scheduler_cfgs_per_param_group = itertools.product(*all_scheduler_cfgs) + schedulers = [] + param_groups = [] + for scheduler_cfgs in scheduler_cfgs_per_param_group: + param_constraints = [ + scheduler_cfg["parameter_names"] for scheduler_cfg in scheduler_cfgs + ] + matching_parameters = name_constraints_to_parameters( + param_constraints, named_parameters + ) + if len(matching_parameters) == 0: # If no overlap of parameters, skip + continue + schedulers_for_group = { + scheduler_cfg["option"]: scheduler_cfg["scheduler"] + for scheduler_cfg in scheduler_cfgs + if "option" in scheduler_cfg + } + schedulers.append(schedulers_for_group) + param_groups.append({"params": matching_parameters}) + return schedulers, param_groups + + +def validate_param_group_params(param_groups: List[Dict], model: nn.Module): + """Check that the param groups are non-overlapping and cover all the parameters. + + Args: + param_groups: List of all param groups + model: Model to validate against. The check ensures that all the model + parameters are part of param_groups + """ + for pg in param_groups: + # no param should be repeated within a group + assert len(pg["params"]) == len(set(pg["params"])) + parameters = [set(param_group["params"]) for param_group in param_groups] + model_parameters = {parameter for _, parameter in model.named_parameters()} + for p1, p2 in itertools.permutations(parameters, 2): + assert p1.isdisjoint(p2), "Scheduler generated param_groups should be disjoint" + assert set.union(*parameters) == model_parameters, ( + "Scheduler generated param_groups must include all parameters of the model." + f" Found {len(set.union(*parameters))} params whereas model has" + f" {len(model_parameters)} params" + ) + + +def unix_module_cls_pattern_to_parameter_names( + filter_module_cls_names: List[str], + module_cls_to_param_names: Dict[Type, str], +) -> Union[None, Set[str]]: + """Returns param names which pass the filters specified in filter_module_cls_names. + + Args: + filter_module_cls_names: A list of filter strings containing class names, like + ["torch.nn.LayerNorm", "torch.nn.BatchNorm2d"] + module_cls_to_param_names: Mapping from module classes to the parameter names + they contain. See `get_module_cls_to_param_names`. + """ + if filter_module_cls_names is None: + return set() + allowed_parameter_names = [] + for module_cls_name in filter_module_cls_names: + module_cls = hydra.utils.get_class(module_cls_name) + if module_cls not in module_cls_to_param_names: + raise AssertionError( + f"module_cls_name {module_cls_name} does not " + "match any classes in the model" + ) + matching_parameters = module_cls_to_param_names[module_cls] + assert ( + len(matching_parameters) > 0 + ), f"module_cls_name {module_cls_name} does not contain any parameters in the model" + logging.info( + f"Matches for module_cls_name [{module_cls_name}]: {matching_parameters} " + ) + allowed_parameter_names.append(matching_parameters) + return set.union(*allowed_parameter_names) + + +def unix_param_pattern_to_parameter_names( + filter_param_names: Optional[List[str]], + parameter_names: Dict[str, torch.Tensor], +) -> Union[None, Set[str]]: + """Returns param names which pass the filters specified in filter_param_names. + + Args: + filter_param_names: A list of unix-style filter strings with optional + wildcards, like ["block.2.*", "block.2.linear.weight"] + module_cls_to_param_names: Mapping from module classes to the parameter names + they contain. See `get_module_cls_to_param_names`. + """ + + if filter_param_names is None: + return set() + allowed_parameter_names = [] + for param_name in filter_param_names: + matching_parameters = set(fnmatch.filter(parameter_names, param_name)) + assert ( + len(matching_parameters) >= 1 + ), f"param_name {param_name} does not match any parameters in the model" + logging.info(f"Matches for param_name [{param_name}]: {matching_parameters}") + allowed_parameter_names.append(matching_parameters) + return set.union(*allowed_parameter_names) + + +def _unix_pattern_to_parameter_names( + scheduler_cfg: DictConfig, + parameter_names: Set[str], + module_cls_to_param_names: Dict[Type, str], +) -> Union[None, Set[str]]: + """Returns param names which pass the filters specified in scheduler_cfg. + + Args: + scheduler_cfg: The config for the scheduler + parameter_names: The set of all parameter names which will be filtered + """ + if "param_names" not in scheduler_cfg and "module_cls_names" not in scheduler_cfg: + return None + return unix_param_pattern_to_parameter_names( + scheduler_cfg.get("param_names"), parameter_names + ).union( + unix_module_cls_pattern_to_parameter_names( + scheduler_cfg.get("module_cls_names"), module_cls_to_param_names + ) + ) + + +def get_module_cls_to_param_names( + model: nn.Module, param_allowlist: Set[str] = None +) -> Dict[Type, str]: + """Produce a mapping from all the modules classes to the names of parames they own. + + Only counts a parameter as part of the immediate parent module, i.e. recursive + parents do not count. + + Args: + model: Model to iterate over + param_allowlist: If specified, only these param names will be processed + """ + + module_cls_to_params = {} + for module_name, module in model.named_modules(): + module_cls = type(module) + module_cls_to_params.setdefault(module_cls, set()) + for param_name, _ in module.named_parameters(recurse=False): + full_param_name = get_full_parameter_name(module_name, param_name) + if param_allowlist is None or full_param_name in param_allowlist: + module_cls_to_params[module_cls].add(full_param_name) + return module_cls_to_params + + +def construct_optimizer( + model: torch.nn.Module, + optimizer_conf: Any, + options_conf: Mapping[str, List] = None, + param_group_modifiers_conf: List[Callable] = None, + param_allowlist: Optional[Set[str]] = None, + validate_param_groups=True, +) -> Optimizer: + """ + Constructs a stochastic gradient descent or ADAM (or ADAMw) optimizer + with momentum. i.e, constructs a torch.optim.Optimizer with zero-weight decay + Batchnorm and/or no-update 1-D parameters support, based on the config. + + Supports wrapping the optimizer with Layer-wise Adaptive Rate Scaling + (LARS): https://arxiv.org/abs/1708.03888 + + Args: + model: model to perform stochastic gradient descent + optimization or ADAM optimization. + optimizer_conf: Hydra config consisting a partial torch optimizer like SGD or + ADAM, still missing the params argument which this function provides to + produce the final optimizer + param_group_modifiers_conf: Optional user specified functions which can modify + the final scheduler configs before the optimizer's param groups are built + param_allowlist: The parameters to optimize. Parameters which are not part of + this allowlist will be skipped. + validate_param_groups: If enabled, valides that the produced param_groups don't + overlap and cover all the model parameters. + """ + if param_allowlist is None: + param_allowlist = {name for name, _ in model.named_parameters()} + + named_parameters = { + name: param + for name, param in model.named_parameters() + if name in param_allowlist + } + + if not options_conf: + optimizer = hydra.utils.instantiate(optimizer_conf, named_parameters.values()) + return Optimizer(optimizer) + + all_parameter_names = { + name for name, _ in model.named_parameters() if name in param_allowlist + } + module_cls_to_all_param_names = get_module_cls_to_param_names( + model, param_allowlist + ) + + scheduler_cfgs_per_option = hydra.utils.instantiate(options_conf) + all_scheduler_cfgs = [] + for option, scheduler_cfgs in scheduler_cfgs_per_option.items(): + for config in scheduler_cfgs: + config.option = option + config.parameter_names = _unix_pattern_to_parameter_names( + config, all_parameter_names, module_cls_to_all_param_names + ) + set_default_parameters(scheduler_cfgs, all_parameter_names) + all_scheduler_cfgs.append(scheduler_cfgs) + + if param_group_modifiers_conf: + for custom_param_modifier in param_group_modifiers_conf: + custom_param_modifier = hydra.utils.instantiate(custom_param_modifier) + all_scheduler_cfgs = custom_param_modifier( + scheduler_cfgs=all_scheduler_cfgs, model=model + ) + schedulers, param_groups = map_scheduler_cfgs_to_param_groups( + all_scheduler_cfgs, named_parameters + ) + if validate_param_groups: + validate_param_group_params(param_groups, model) + optimizer = hydra.utils.instantiate(optimizer_conf, param_groups) + return Optimizer(optimizer, schedulers) + + +def get_full_parameter_name(module_name, param_name): + if module_name == "": + return param_name + return f"{module_name}.{param_name}" + + +class GradientClipper: + """ + Gradient clipping utils that works for DDP + """ + + def __init__(self, max_norm: float = 1.0, norm_type: int = 2): + assert isinstance(max_norm, (int, float)) or max_norm is None + self.max_norm = max_norm if max_norm is None else float(max_norm) + self.norm_type = norm_type + + def __call__(self, model: nn.Module): + if self.max_norm is None: + return # no-op + + nn.utils.clip_grad_norm_( + model.parameters(), max_norm=self.max_norm, norm_type=self.norm_type + ) + + +class ValueScaler: + def __init__(self, scheduler, mult_val: float): + self.scheduler = scheduler + self.mult_val = mult_val + + def __call__(self, *args, **kwargs): + val = self.scheduler(*args, **kwargs) + return val * self.mult_val + + +def rgetattr(obj, rattrs: str = None): + """ + Like getattr(), but supports dotted notation for nested objects. + rattrs is a str of form 'attr1.attr2', returns obj.attr1.attr2 + """ + if rattrs is None: + return obj + attrs = rattrs.split(".") + for attr in attrs: + obj = getattr(obj, attr) + return obj + + +def layer_decay_param_modifier( + scheduler_cfgs: List[List[Dict]], + model, + layer_decay_value: float, + layer_decay_min: Optional[float] = None, + apply_to: Optional[str] = None, + overrides: List[Dict] = (), +) -> List[List[Dict]]: + """ + Args + - scheduler_cfgs: a list of omegaconf.ListConfigs. + Each element in the list is a omegaconfg.DictConfig with the following structure + { + "scheduler": + "option": possible options are "lr", "weight_decay" etc. + "parameter_names": Set of str indicating param names that this scheduler applies to + } + - model: a model that implements a method `get_layer_id` that maps layer_name to an integer and + and a method get_num_layers. + Alternatively, use apply_to argument to select a specific component of the model. + - layer_decay_value: float + - layer_decay_min: min val for layer decay + - apply_to: optional arg to select which component of the model to apply the the layer decay modifier to + - overrides: to manually override lr for specific patterns. Is a list of dicts. Each dict, has keys "pattern", "value". + Returns + - scheduler_configs: same structure as the input, elements can be modified + """ + model = rgetattr(model, apply_to) + num_layers = model.get_num_layers() + 1 + layer_decays = [ + layer_decay_value ** (num_layers - i) for i in range(num_layers + 1) + ] + if layer_decay_min is not None: + layer_decays = [max(val, layer_decay_min) for val in layer_decays] + final_scheduler_cfgs = [] + # scheduler_cfgs is a list of lists + for scheduler_cfg_group in scheduler_cfgs: + curr_cfg_group = [] + # scheduler_cfg_group is a list of dictionaries + for scheduler_cfg in scheduler_cfg_group: + if scheduler_cfg["option"] != "lr": + curr_cfg_group.append(scheduler_cfg) + continue + # Need sorted so that the list of parameter names is deterministic and consistent + # across re-runs of this job. Else it was causing issues with loading the optimizer + # state during a job restart (D38591759) + parameter_names = sorted(scheduler_cfg["parameter_names"]) + + # Only want one cfg group per layer + layer_cfg_groups = {} + for param_name in parameter_names: + layer_id = num_layers + this_scale = layer_decays[layer_id] + if param_name.startswith(apply_to): + layer_id = model.get_layer_id(param_name) + this_scale = layer_decays[layer_id] + # Overrides + for override in overrides: + if fnmatch.fnmatchcase(param_name, override["pattern"]): + this_scale = float(override["value"]) + layer_id = override["pattern"] + break + + if layer_id not in layer_cfg_groups: + curr_param = { + "option": scheduler_cfg["option"], + "scheduler": ValueScaler( + scheduler_cfg["scheduler"], this_scale + ), + "parameter_names": {param_name}, + } + else: + curr_param = layer_cfg_groups[layer_id] + curr_param["parameter_names"].add(param_name) + layer_cfg_groups[layer_id] = curr_param + + for layer_cfg in layer_cfg_groups.values(): + curr_cfg_group.append(layer_cfg) + + final_scheduler_cfgs.append(curr_cfg_group) + return final_scheduler_cfgs diff --git a/third_party/sam2/training/scripts/sav_frame_extraction_submitit.py b/third_party/sam2/training/scripts/sav_frame_extraction_submitit.py new file mode 100644 index 0000000000000000000000000000000000000000..9d5ed2fc77deecf87c8d823bb3fdcf3cb856fc94 --- /dev/null +++ b/third_party/sam2/training/scripts/sav_frame_extraction_submitit.py @@ -0,0 +1,163 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +import argparse +import os +from pathlib import Path + +import cv2 + +import numpy as np +import submitit +import tqdm + + +def get_args_parser(): + parser = argparse.ArgumentParser( + description="[SA-V Preprocessing] Extracting JPEG frames", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + + # ------------ + # DATA + # ------------ + data_parser = parser.add_argument_group( + title="SA-V dataset data root", + description="What data to load and how to process it.", + ) + data_parser.add_argument( + "--sav-vid-dir", + type=str, + required=True, + help=("Where to find the SAV videos"), + ) + data_parser.add_argument( + "--sav-frame-sample-rate", + type=int, + default=4, + help="Rate at which to sub-sample frames", + ) + + # ------------ + # LAUNCH + # ------------ + launch_parser = parser.add_argument_group( + title="Cluster launch settings", + description="Number of jobs and retry settings.", + ) + launch_parser.add_argument( + "--n-jobs", + type=int, + required=True, + help="Shard the run over this many jobs.", + ) + launch_parser.add_argument( + "--timeout", type=int, required=True, help="SLURM timeout parameter in minutes." + ) + launch_parser.add_argument( + "--partition", type=str, required=True, help="Partition to launch on." + ) + launch_parser.add_argument( + "--account", type=str, required=True, help="Partition to launch on." + ) + launch_parser.add_argument("--qos", type=str, required=True, help="QOS.") + + # ------------ + # OUTPUT + # ------------ + output_parser = parser.add_argument_group( + title="Setting for results output", description="Where and how to save results." + ) + output_parser.add_argument( + "--output-dir", + type=str, + required=True, + help=("Where to dump the extracted jpeg frames"), + ) + output_parser.add_argument( + "--slurm-output-root-dir", + type=str, + required=True, + help=("Where to save slurm outputs"), + ) + return parser + + +def decode_video(video_path: str): + assert os.path.exists(video_path) + video = cv2.VideoCapture(video_path) + video_frames = [] + while video.isOpened(): + ret, frame = video.read() + if ret: + video_frames.append(frame) + else: + break + return video_frames + + +def extract_frames(video_path, sample_rate): + frames = decode_video(video_path) + return frames[::sample_rate] + + +def submitit_launch(video_paths, sample_rate, save_root): + for path in tqdm.tqdm(video_paths): + frames = extract_frames(path, sample_rate) + output_folder = os.path.join(save_root, Path(path).stem) + if not os.path.exists(output_folder): + os.makedirs(output_folder) + for fid, frame in enumerate(frames): + frame_path = os.path.join(output_folder, f"{fid*sample_rate:05d}.jpg") + cv2.imwrite(frame_path, frame) + print(f"Saved output to {save_root}") + + +if __name__ == "__main__": + parser = get_args_parser() + args = parser.parse_args() + + sav_vid_dir = args.sav_vid_dir + save_root = args.output_dir + sample_rate = args.sav_frame_sample_rate + + # List all SA-V videos + mp4_files = sorted([str(p) for p in Path(sav_vid_dir).glob("*/*.mp4")]) + mp4_files = np.array(mp4_files) + chunked_mp4_files = [x.tolist() for x in np.array_split(mp4_files, args.n_jobs)] + + print(f"Processing videos in: {sav_vid_dir}") + print(f"Processing {len(mp4_files)} files") + print(f"Beginning processing in {args.n_jobs} processes") + + # Submitit params + jobs_dir = os.path.join(args.slurm_output_root_dir, "%j") + cpus_per_task = 4 + executor = submitit.AutoExecutor(folder=jobs_dir) + executor.update_parameters( + timeout_min=args.timeout, + gpus_per_node=0, + tasks_per_node=1, + slurm_array_parallelism=args.n_jobs, + cpus_per_task=cpus_per_task, + slurm_partition=args.partition, + slurm_account=args.account, + slurm_qos=args.qos, + ) + executor.update_parameters(slurm_srun_args=["-vv", "--cpu-bind", "none"]) + + # Launch + jobs = [] + with executor.batch(): + for _, mp4_chunk in tqdm.tqdm(enumerate(chunked_mp4_files)): + job = executor.submit( + submitit_launch, + video_paths=mp4_chunk, + sample_rate=sample_rate, + save_root=save_root, + ) + jobs.append(job) + + for j in jobs: + print(f"Slurm JobID: {j.job_id}") + print(f"Saving outputs to {save_root}") + print(f"Slurm outputs at {args.slurm_output_root_dir}") diff --git a/third_party/sam2/training/train.py b/third_party/sam2/training/train.py new file mode 100644 index 0000000000000000000000000000000000000000..db06123fcb1b2ba8ff5f462dbb7411d42a57c9a0 --- /dev/null +++ b/third_party/sam2/training/train.py @@ -0,0 +1,270 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import os +import random +import sys +import traceback +from argparse import ArgumentParser + +import submitit +import torch + +from hydra import compose, initialize_config_module +from hydra.utils import instantiate + +from iopath.common.file_io import g_pathmgr +from omegaconf import OmegaConf + +from training.utils.train_utils import makedir, register_omegaconf_resolvers + +os.environ["HYDRA_FULL_ERROR"] = "1" + + +def single_proc_run(local_rank, main_port, cfg, world_size): + """Single GPU process""" + os.environ["MASTER_ADDR"] = "localhost" + os.environ["MASTER_PORT"] = str(main_port) + os.environ["RANK"] = str(local_rank) + os.environ["LOCAL_RANK"] = str(local_rank) + os.environ["WORLD_SIZE"] = str(world_size) + try: + register_omegaconf_resolvers() + except Exception as e: + logging.info(e) + + trainer = instantiate(cfg.trainer, _recursive_=False) + trainer.run() + + +def single_node_runner(cfg, main_port: int): + assert cfg.launcher.num_nodes == 1 + num_proc = cfg.launcher.gpus_per_node + torch.multiprocessing.set_start_method( + "spawn" + ) # CUDA runtime does not support `fork` + if num_proc == 1: + # directly call single_proc so we can easily set breakpoints + # mp.spawn does not let us set breakpoints + single_proc_run(local_rank=0, main_port=main_port, cfg=cfg, world_size=num_proc) + else: + mp_runner = torch.multiprocessing.start_processes + args = (main_port, cfg, num_proc) + # Note: using "fork" below, "spawn" causes time and error regressions. Using + # spawn changes the default multiprocessing context to spawn, which doesn't + # interact well with the dataloaders (likely due to the use of OpenCV). + mp_runner(single_proc_run, args=args, nprocs=num_proc, start_method="spawn") + + +def format_exception(e: Exception, limit=20): + traceback_str = "".join(traceback.format_tb(e.__traceback__, limit=limit)) + return f"{type(e).__name__}: {e}\nTraceback:\n{traceback_str}" + + +class SubmititRunner(submitit.helpers.Checkpointable): + """A callable which is passed to submitit to launch the jobs.""" + + def __init__(self, port, cfg): + self.cfg = cfg + self.port = port + self.has_setup = False + + def run_trainer(self): + job_env = submitit.JobEnvironment() + # Need to add this again so the hydra.job.set_env PYTHONPATH + # is also set when launching jobs. + add_pythonpath_to_sys_path() + os.environ["MASTER_ADDR"] = job_env.hostnames[0] + os.environ["MASTER_PORT"] = str(self.port) + os.environ["RANK"] = str(job_env.global_rank) + os.environ["LOCAL_RANK"] = str(job_env.local_rank) + os.environ["WORLD_SIZE"] = str(job_env.num_tasks) + + register_omegaconf_resolvers() + cfg_resolved = OmegaConf.to_container(self.cfg, resolve=False) + cfg_resolved = OmegaConf.create(cfg_resolved) + + trainer = instantiate(cfg_resolved.trainer, _recursive_=False) + trainer.run() + + def __call__(self): + job_env = submitit.JobEnvironment() + self.setup_job_info(job_env.job_id, job_env.global_rank) + try: + self.run_trainer() + except Exception as e: + # Log the exception. Then raise it again (as what SubmititRunner currently does). + message = format_exception(e) + logging.error(message) + raise e + + def setup_job_info(self, job_id, rank): + """Set up slurm job info""" + self.job_info = { + "job_id": job_id, + "rank": rank, + "cluster": self.cfg.get("cluster", None), + "experiment_log_dir": self.cfg.launcher.experiment_log_dir, + } + + self.has_setup = True + + +def add_pythonpath_to_sys_path(): + if "PYTHONPATH" not in os.environ or not os.environ["PYTHONPATH"]: + return + sys.path = os.environ["PYTHONPATH"].split(":") + sys.path + + +def main(args) -> None: + cfg = compose(config_name=args.config) + if cfg.launcher.experiment_log_dir is None: + cfg.launcher.experiment_log_dir = os.path.join( + os.getcwd(), "sam2_logs", args.config + ) + print("###################### Train App Config ####################") + print(OmegaConf.to_yaml(cfg)) + print("############################################################") + + add_pythonpath_to_sys_path() + makedir(cfg.launcher.experiment_log_dir) + with g_pathmgr.open( + os.path.join(cfg.launcher.experiment_log_dir, "config.yaml"), "w" + ) as f: + f.write(OmegaConf.to_yaml(cfg)) + + cfg_resolved = OmegaConf.to_container(cfg, resolve=False) + cfg_resolved = OmegaConf.create(cfg_resolved) + + with g_pathmgr.open( + os.path.join(cfg.launcher.experiment_log_dir, "config_resolved.yaml"), "w" + ) as f: + f.write(OmegaConf.to_yaml(cfg_resolved, resolve=True)) + + submitit_conf = cfg.get("submitit", None) + assert submitit_conf is not None, "Missing submitit config" + + submitit_dir = cfg.launcher.experiment_log_dir + submitit_dir = os.path.join(submitit_dir, "submitit_logs") + # Priotrize cmd line args + cfg.launcher.gpus_per_node = ( + args.num_gpus if args.num_gpus is not None else cfg.launcher.gpus_per_node + ) + cfg.launcher.num_nodes = ( + args.num_nodes if args.num_nodes is not None else cfg.launcher.num_nodes + ) + submitit_conf.use_cluster = ( + args.use_cluster if args.use_cluster is not None else submitit_conf.use_cluster + ) + if submitit_conf.use_cluster: + executor = submitit.AutoExecutor(folder=submitit_dir) + submitit_conf.partition = ( + args.partition + if args.partition is not None + else submitit_conf.get("partition", None) + ) + submitit_conf.account = ( + args.account + if args.account is not None + else submitit_conf.get("account", None) + ) + submitit_conf.qos = ( + args.qos if args.qos is not None else submitit_conf.get("qos", None) + ) + job_kwargs = { + "timeout_min": 60 * submitit_conf.timeout_hour, + "name": ( + submitit_conf.name if hasattr(submitit_conf, "name") else args.config + ), + "slurm_partition": submitit_conf.partition, + "gpus_per_node": cfg.launcher.gpus_per_node, + "tasks_per_node": cfg.launcher.gpus_per_node, # one task per GPU + "cpus_per_task": submitit_conf.cpus_per_task, + "nodes": cfg.launcher.num_nodes, + "slurm_additional_parameters": { + "exclude": " ".join(submitit_conf.get("exclude_nodes", [])), + }, + } + if "include_nodes" in submitit_conf: + assert ( + len(submitit_conf["include_nodes"]) >= cfg.launcher.num_nodes + ), "Not enough nodes" + job_kwargs["slurm_additional_parameters"]["nodelist"] = " ".join( + submitit_conf["include_nodes"] + ) + if submitit_conf.account is not None: + job_kwargs["slurm_additional_parameters"]["account"] = submitit_conf.account + if submitit_conf.qos is not None: + job_kwargs["slurm_additional_parameters"]["qos"] = submitit_conf.qos + + if submitit_conf.get("mem_gb", None) is not None: + job_kwargs["mem_gb"] = submitit_conf.mem_gb + elif submitit_conf.get("mem", None) is not None: + job_kwargs["slurm_mem"] = submitit_conf.mem + + if submitit_conf.get("constraints", None) is not None: + job_kwargs["slurm_constraint"] = submitit_conf.constraints + + if submitit_conf.get("comment", None) is not None: + job_kwargs["slurm_comment"] = submitit_conf.comment + + # Supports only cpu-bind option within srun_args. New options can be added here + if submitit_conf.get("srun_args", None) is not None: + job_kwargs["slurm_srun_args"] = [] + if submitit_conf.srun_args.get("cpu_bind", None) is not None: + job_kwargs["slurm_srun_args"].extend( + ["--cpu-bind", submitit_conf.srun_args.cpu_bind] + ) + + print("###################### SLURM Config ####################") + print(job_kwargs) + print("##########################################") + executor.update_parameters(**job_kwargs) + + main_port = random.randint( + submitit_conf.port_range[0], submitit_conf.port_range[1] + ) + runner = SubmititRunner(main_port, cfg) + job = executor.submit(runner) + print(f"Submitit Job ID: {job.job_id}") + runner.setup_job_info(job.job_id, rank=0) + else: + cfg.launcher.num_nodes = 1 + main_port = random.randint( + submitit_conf.port_range[0], submitit_conf.port_range[1] + ) + single_node_runner(cfg, main_port) + + +if __name__ == "__main__": + + initialize_config_module("sam2", version_base="1.2") + parser = ArgumentParser() + parser.add_argument( + "-c", + "--config", + required=True, + type=str, + help="path to config file (e.g. configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml)", + ) + parser.add_argument( + "--use-cluster", + type=int, + default=None, + help="whether to launch on a cluster, 0: run locally, 1: run on a cluster", + ) + parser.add_argument("--partition", type=str, default=None, help="SLURM partition") + parser.add_argument("--account", type=str, default=None, help="SLURM account") + parser.add_argument("--qos", type=str, default=None, help="SLURM qos") + parser.add_argument( + "--num-gpus", type=int, default=None, help="number of GPUS per node" + ) + parser.add_argument("--num-nodes", type=int, default=None, help="Number of nodes") + args = parser.parse_args() + args.use_cluster = bool(args.use_cluster) if args.use_cluster is not None else None + register_omegaconf_resolvers() + main(args) diff --git a/third_party/sam2/training/trainer.py b/third_party/sam2/training/trainer.py new file mode 100644 index 0000000000000000000000000000000000000000..2b7c27b5145e2c03848331345ac246296accbc1d --- /dev/null +++ b/third_party/sam2/training/trainer.py @@ -0,0 +1,1113 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import gc +import json +import logging +import math +import os +import time +from collections import OrderedDict +from dataclasses import dataclass, field +from typing import Any, Dict, List, Mapping, Optional + +import numpy as np + +import torch +import torch.distributed as dist +import torch.nn as nn +from hydra.utils import instantiate +from iopath.common.file_io import g_pathmgr + +from training.optimizer import construct_optimizer + +from training.utils.checkpoint_utils import ( + assert_skipped_parameters_are_frozen, + exclude_params_matching_unix_pattern, + load_state_dict_into_model, + with_check_parameter_frozen, +) +from training.utils.data_utils import BatchedVideoDatapoint +from training.utils.distributed import all_reduce_max, barrier, get_rank + +from training.utils.logger import Logger, setup_logging + +from training.utils.train_utils import ( + AverageMeter, + collect_dict_keys, + DurationMeter, + get_amp_type, + get_machine_local_and_dist_rank, + get_resume_checkpoint, + human_readable_time, + is_dist_avail_and_initialized, + log_env_variables, + makedir, + MemMeter, + Phase, + ProgressMeter, + set_seeds, + setup_distributed_backend, +) + + +CORE_LOSS_KEY = "core_loss" + + +def unwrap_ddp_if_wrapped(model): + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + return model.module + return model + + +@dataclass +class OptimAMPConf: + enabled: bool = False + amp_dtype: str = "float16" + + +@dataclass +class OptimConf: + optimizer: torch.optim.Optimizer = None + options: Optional[Dict[str, Any]] = None + param_group_modifiers: Optional[List] = None + amp: Optional[Dict[str, Any]] = None + gradient_clip: Any = None + gradient_logger: Any = None + + def __post_init__(self): + # amp + if not isinstance(self.amp, OptimAMPConf): + if self.amp is None: + self.amp = {} + assert isinstance(self.amp, Mapping) + self.amp = OptimAMPConf(**self.amp) + + +@dataclass +class DistributedConf: + backend: Optional[str] = None # inferred from accelerator type + comms_dtype: Optional[str] = None + find_unused_parameters: bool = False + timeout_mins: int = 30 + + +@dataclass +class CudaConf: + cudnn_deterministic: bool = False + cudnn_benchmark: bool = True + allow_tf32: bool = False + # if not None, `matmul_allow_tf32` key will override `allow_tf32` for matmul + matmul_allow_tf32: Optional[bool] = None + # if not None, `cudnn_allow_tf32` key will override `allow_tf32` for cudnn + cudnn_allow_tf32: Optional[bool] = None + + +@dataclass +class CheckpointConf: + save_dir: str + save_freq: int + save_list: List[int] = field(default_factory=list) + model_weight_initializer: Any = None + save_best_meters: List[str] = None + skip_saving_parameters: List[str] = field(default_factory=list) + initialize_after_preemption: Optional[bool] = None + # if not None, training will be resumed from this checkpoint + resume_from: Optional[str] = None + + def infer_missing(self): + if self.initialize_after_preemption is None: + with_skip_saving = len(self.skip_saving_parameters) > 0 + self.initialize_after_preemption = with_skip_saving + return self + + +@dataclass +class LoggingConf: + log_dir: str + log_freq: int # In iterations + tensorboard_writer: Any + log_level_primary: str = "INFO" + log_level_secondary: str = "ERROR" + log_scalar_frequency: int = 100 + log_visual_frequency: int = 100 + scalar_keys_to_log: Optional[Dict[str, Any]] = None + log_batch_stats: bool = False + + +class Trainer: + """ + Trainer supporting the DDP training strategies. + """ + + EPSILON = 1e-8 + + def __init__( + self, + *, # the order of these args can change at any time, so they are keyword-only + data: Dict[str, Any], + model: Dict[str, Any], + logging: Dict[str, Any], + checkpoint: Dict[str, Any], + max_epochs: int, + mode: str = "train", + accelerator: str = "cuda", + seed_value: int = 123, + val_epoch_freq: int = 1, + distributed: Dict[str, bool] = None, + cuda: Dict[str, bool] = None, + env_variables: Optional[Dict[str, Any]] = None, + optim: Optional[Dict[str, Any]] = None, + optim_overrides: Optional[List[Dict[str, Any]]] = None, + meters: Optional[Dict[str, Any]] = None, + loss: Optional[Dict[str, Any]] = None, + ): + + self._setup_env_variables(env_variables) + self._setup_timers() + + self.data_conf = data + self.model_conf = model + self.logging_conf = LoggingConf(**logging) + self.checkpoint_conf = CheckpointConf(**checkpoint).infer_missing() + self.max_epochs = max_epochs + self.mode = mode + self.val_epoch_freq = val_epoch_freq + self.optim_conf = OptimConf(**optim) if optim is not None else None + self.meters_conf = meters + self.loss_conf = loss + distributed = DistributedConf(**distributed or {}) + cuda = CudaConf(**cuda or {}) + self.where = 0.0 + + self._infer_distributed_backend_if_none(distributed, accelerator) + + self._setup_device(accelerator) + + self._setup_torch_dist_and_backend(cuda, distributed) + + makedir(self.logging_conf.log_dir) + setup_logging( + __name__, + output_dir=self.logging_conf.log_dir, + rank=self.rank, + log_level_primary=self.logging_conf.log_level_primary, + log_level_secondary=self.logging_conf.log_level_secondary, + ) + + set_seeds(seed_value, self.max_epochs, self.distributed_rank) + log_env_variables() + + assert ( + is_dist_avail_and_initialized() + ), "Torch distributed needs to be initialized before calling the trainer." + + self._setup_components() # Except Optimizer everything is setup here. + self._move_to_device() + self._construct_optimizers() + self._setup_dataloaders() + + self.time_elapsed_meter = DurationMeter("Time Elapsed", self.device, ":.2f") + + if self.checkpoint_conf.resume_from is not None: + assert os.path.exists( + self.checkpoint_conf.resume_from + ), f"The 'resume_from' checkpoint {self.checkpoint_conf.resume_from} does not exist!" + dst = os.path.join(self.checkpoint_conf.save_dir, "checkpoint.pt") + if self.distributed_rank == 0 and not os.path.exists(dst): + # Copy the "resume_from" checkpoint to the checkpoint folder + # if there is not a checkpoint to resume from already there + makedir(self.checkpoint_conf.save_dir) + g_pathmgr.copy(self.checkpoint_conf.resume_from, dst) + barrier() + + self.load_checkpoint() + self._setup_ddp_distributed_training(distributed, accelerator) + barrier() + + def _setup_timers(self): + """ + Initializes counters for elapsed time and eta. + """ + self.start_time = time.time() + self.ckpt_time_elapsed = 0 + self.est_epoch_time = dict.fromkeys([Phase.TRAIN, Phase.VAL], 0) + + def _get_meters(self, phase_filters=None): + if self.meters is None: + return {} + meters = {} + for phase, phase_meters in self.meters.items(): + if phase_filters is not None and phase not in phase_filters: + continue + for key, key_meters in phase_meters.items(): + if key_meters is None: + continue + for name, meter in key_meters.items(): + meters[f"{phase}_{key}/{name}"] = meter + return meters + + def _infer_distributed_backend_if_none(self, distributed_conf, accelerator): + if distributed_conf.backend is None: + distributed_conf.backend = "nccl" if accelerator == "cuda" else "gloo" + + def _setup_env_variables(self, env_variables_conf) -> None: + if env_variables_conf is not None: + for variable_name, value in env_variables_conf.items(): + os.environ[variable_name] = value + + def _setup_torch_dist_and_backend(self, cuda_conf, distributed_conf) -> None: + if torch.cuda.is_available(): + torch.backends.cudnn.deterministic = cuda_conf.cudnn_deterministic + torch.backends.cudnn.benchmark = cuda_conf.cudnn_benchmark + torch.backends.cuda.matmul.allow_tf32 = ( + cuda_conf.matmul_allow_tf32 + if cuda_conf.matmul_allow_tf32 is not None + else cuda_conf.allow_tf32 + ) + torch.backends.cudnn.allow_tf32 = ( + cuda_conf.cudnn_allow_tf32 + if cuda_conf.cudnn_allow_tf32 is not None + else cuda_conf.allow_tf32 + ) + + self.rank = setup_distributed_backend( + distributed_conf.backend, distributed_conf.timeout_mins + ) + + def _setup_device(self, accelerator): + self.local_rank, self.distributed_rank = get_machine_local_and_dist_rank() + if accelerator == "cuda": + self.device = torch.device("cuda", self.local_rank) + torch.cuda.set_device(self.local_rank) + elif accelerator == "cpu": + self.device = torch.device("cpu") + else: + raise ValueError(f"Unsupported accelerator: {accelerator}") + + def _setup_ddp_distributed_training(self, distributed_conf, accelerator): + + assert isinstance(self.model, torch.nn.Module) + + self.model = nn.parallel.DistributedDataParallel( + self.model, + device_ids=[self.local_rank] if accelerator == "cuda" else [], + find_unused_parameters=distributed_conf.find_unused_parameters, + ) + if distributed_conf.comms_dtype is not None: # noqa + from torch.distributed.algorithms import ddp_comm_hooks + + amp_type = get_amp_type(distributed_conf.comms_dtype) + if amp_type == torch.bfloat16: + hook = ddp_comm_hooks.default_hooks.bf16_compress_hook + logging.info("Enabling bfloat16 grad communication") + else: + hook = ddp_comm_hooks.default_hooks.fp16_compress_hook + logging.info("Enabling fp16 grad communication") + process_group = None + self.model.register_comm_hook(process_group, hook) + + def _move_to_device(self): + logging.info( + f"Moving components to device {self.device} and local rank {self.local_rank}." + ) + + self.model.to(self.device) + + logging.info( + f"Done moving components to device {self.device} and local rank {self.local_rank}." + ) + + def save_checkpoint(self, epoch, checkpoint_names=None): + checkpoint_folder = self.checkpoint_conf.save_dir + makedir(checkpoint_folder) + if checkpoint_names is None: + checkpoint_names = ["checkpoint"] + if ( + self.checkpoint_conf.save_freq > 0 + and (int(epoch) % self.checkpoint_conf.save_freq == 0) + ) or int(epoch) in self.checkpoint_conf.save_list: + checkpoint_names.append(f"checkpoint_{int(epoch)}") + + checkpoint_paths = [] + for ckpt_name in checkpoint_names: + checkpoint_paths.append(os.path.join(checkpoint_folder, f"{ckpt_name}.pt")) + + state_dict = unwrap_ddp_if_wrapped(self.model).state_dict() + state_dict = exclude_params_matching_unix_pattern( + patterns=self.checkpoint_conf.skip_saving_parameters, state_dict=state_dict + ) + + checkpoint = { + "model": state_dict, + "optimizer": self.optim.optimizer.state_dict(), + "epoch": epoch, + "loss": self.loss.state_dict(), + "steps": self.steps, + "time_elapsed": self.time_elapsed_meter.val, + "best_meter_values": self.best_meter_values, + } + if self.optim_conf.amp.enabled: + checkpoint["scaler"] = self.scaler.state_dict() + + # DDP checkpoints are only saved on rank 0 (all workers are identical) + if self.distributed_rank != 0: + return + + for checkpoint_path in checkpoint_paths: + self._save_checkpoint(checkpoint, checkpoint_path) + + def _save_checkpoint(self, checkpoint, checkpoint_path): + """ + Save a checkpoint while guarding against the job being killed in the middle + of checkpoint saving (which corrupts the checkpoint file and ruins the + entire training since usually only the last checkpoint is kept per run). + + We first save the new checkpoint to a temp file (with a '.tmp' suffix), and + and move it to overwrite the old checkpoint_path. + """ + checkpoint_path_tmp = f"{checkpoint_path}.tmp" + with g_pathmgr.open(checkpoint_path_tmp, "wb") as f: + torch.save(checkpoint, f) + # after torch.save is completed, replace the old checkpoint with the new one + if g_pathmgr.exists(checkpoint_path): + # remove the old checkpoint_path file first (otherwise g_pathmgr.mv fails) + g_pathmgr.rm(checkpoint_path) + success = g_pathmgr.mv(checkpoint_path_tmp, checkpoint_path) + assert success + + def load_checkpoint(self): + ckpt_path = get_resume_checkpoint(self.checkpoint_conf.save_dir) + if ckpt_path is None: + self._init_model_state() + else: + if self.checkpoint_conf.initialize_after_preemption: + self._call_model_initializer() + self._load_resuming_checkpoint(ckpt_path) + + def _init_model_state(self): + # Checking that parameters that won't be saved are indeed frozen + # We do this check here before even saving the model to catch errors + # are early as possible and not at the end of the first epoch + assert_skipped_parameters_are_frozen( + patterns=self.checkpoint_conf.skip_saving_parameters, + model=self.model, + ) + + # Checking that parameters that won't be saved are initialized from + # within the model definition, unless `initialize_after_preemption` + # is explicitly set to `True`. If not, this is a bug, and after + # preemption, the `skip_saving_parameters` will have random values + allow_init_skip_parameters = self.checkpoint_conf.initialize_after_preemption + with with_check_parameter_frozen( + patterns=self.checkpoint_conf.skip_saving_parameters, + model=self.model, + disabled=allow_init_skip_parameters, + ): + self._call_model_initializer() + + def _call_model_initializer(self): + model_weight_initializer = instantiate( + self.checkpoint_conf.model_weight_initializer + ) + if model_weight_initializer is not None: + logging.info( + f"Loading pretrained checkpoint from {self.checkpoint_conf.model_weight_initializer}" + ) + self.model = model_weight_initializer(model=self.model) + + def _load_resuming_checkpoint(self, ckpt_path: str): + logging.info(f"Resuming training from {ckpt_path}") + + with g_pathmgr.open(ckpt_path, "rb") as f: + checkpoint = torch.load(f, map_location="cpu") + load_state_dict_into_model( + model=self.model, + state_dict=checkpoint["model"], + ignore_missing_keys=self.checkpoint_conf.skip_saving_parameters, + ) + + self.optim.optimizer.load_state_dict(checkpoint["optimizer"]) + self.loss.load_state_dict(checkpoint["loss"], strict=True) + self.epoch = checkpoint["epoch"] + self.steps = checkpoint["steps"] + self.ckpt_time_elapsed = checkpoint.get("time_elapsed") + + if self.optim_conf.amp.enabled and "scaler" in checkpoint: + self.scaler.load_state_dict(checkpoint["scaler"]) + + self.best_meter_values = checkpoint.get("best_meter_values", {}) + + if "train_dataset" in checkpoint and self.train_dataset is not None: + self.train_dataset.load_checkpoint_state(checkpoint["train_dataset"]) + + def is_intermediate_val_epoch(self, epoch): + return epoch % self.val_epoch_freq == 0 and epoch < self.max_epochs - 1 + + def _step( + self, + batch: BatchedVideoDatapoint, + model: nn.Module, + phase: str, + ): + + outputs = model(batch) + targets = batch.masks + batch_size = len(batch.img_batch) + + key = batch.dict_key # key for dataset + loss = self.loss[key](outputs, targets) + loss_str = f"Losses/{phase}_{key}_loss" + + loss_log_str = os.path.join("Step_Losses", loss_str) + + # loss contains multiple sub-components we wish to log + step_losses = {} + if isinstance(loss, dict): + step_losses.update( + {f"Losses/{phase}_{key}_{k}": v for k, v in loss.items()} + ) + loss = self._log_loss_detailed_and_return_core_loss( + loss, loss_log_str, self.steps[phase] + ) + + if self.steps[phase] % self.logging_conf.log_scalar_frequency == 0: + self.logger.log( + loss_log_str, + loss, + self.steps[phase], + ) + + self.steps[phase] += 1 + + ret_tuple = {loss_str: loss}, batch_size, step_losses + + if phase in self.meters and key in self.meters[phase]: + meters_dict = self.meters[phase][key] + if meters_dict is not None: + for _, meter in meters_dict.items(): + meter.update( + find_stages=outputs, + find_metadatas=batch.metadata, + ) + + return ret_tuple + + def run(self): + assert self.mode in ["train", "train_only", "val"] + if self.mode == "train": + if self.epoch > 0: + logging.info(f"Resuming training from epoch: {self.epoch}") + # resuming from a checkpoint + if self.is_intermediate_val_epoch(self.epoch - 1): + logging.info("Running previous val epoch") + self.epoch -= 1 + self.run_val() + self.epoch += 1 + self.run_train() + self.run_val() + elif self.mode == "val": + self.run_val() + elif self.mode == "train_only": + self.run_train() + + def _setup_dataloaders(self): + self.train_dataset = None + self.val_dataset = None + + if self.mode in ["train", "val"]: + self.val_dataset = instantiate(self.data_conf.get(Phase.VAL, None)) + + if self.mode in ["train", "train_only"]: + self.train_dataset = instantiate(self.data_conf.train) + + def run_train(self): + + while self.epoch < self.max_epochs: + dataloader = self.train_dataset.get_loader(epoch=int(self.epoch)) + barrier() + outs = self.train_epoch(dataloader) + self.logger.log_dict(outs, self.epoch) # Logged only on rank 0 + + # log train to text file. + if self.distributed_rank == 0: + with g_pathmgr.open( + os.path.join(self.logging_conf.log_dir, "train_stats.json"), + "a", + ) as f: + f.write(json.dumps(outs) + "\n") + + # Save checkpoint before validating + self.save_checkpoint(self.epoch + 1) + + del dataloader + gc.collect() + + # Run val, not running on last epoch since will run after the + # loop anyway + if self.is_intermediate_val_epoch(self.epoch): + self.run_val() + + if self.distributed_rank == 0: + self.best_meter_values.update(self._get_trainer_state("train")) + with g_pathmgr.open( + os.path.join(self.logging_conf.log_dir, "best_stats.json"), + "a", + ) as f: + f.write(json.dumps(self.best_meter_values) + "\n") + + self.epoch += 1 + # epoch was incremented in the loop but the val step runs out of the loop + self.epoch -= 1 + + def run_val(self): + if not self.val_dataset: + return + + dataloader = self.val_dataset.get_loader(epoch=int(self.epoch)) + outs = self.val_epoch(dataloader, phase=Phase.VAL) + del dataloader + gc.collect() + self.logger.log_dict(outs, self.epoch) # Logged only on rank 0 + + if self.distributed_rank == 0: + with g_pathmgr.open( + os.path.join(self.logging_conf.log_dir, "val_stats.json"), + "a", + ) as f: + f.write(json.dumps(outs) + "\n") + + def val_epoch(self, val_loader, phase): + batch_time = AverageMeter("Batch Time", self.device, ":.2f") + data_time = AverageMeter("Data Time", self.device, ":.2f") + mem = MemMeter("Mem (GB)", self.device, ":.2f") + + iters_per_epoch = len(val_loader) + + curr_phases = [phase] + curr_models = [self.model] + + loss_names = [] + for p in curr_phases: + for key in self.loss.keys(): + loss_names.append(f"Losses/{p}_{key}_loss") + + loss_mts = OrderedDict( + [(name, AverageMeter(name, self.device, ":.2e")) for name in loss_names] + ) + extra_loss_mts = {} + + for model in curr_models: + model.eval() + if hasattr(unwrap_ddp_if_wrapped(model), "on_validation_epoch_start"): + unwrap_ddp_if_wrapped(model).on_validation_epoch_start() + + progress = ProgressMeter( + iters_per_epoch, + [batch_time, data_time, mem, self.time_elapsed_meter, *loss_mts.values()], + self._get_meters(curr_phases), + prefix="Val Epoch: [{}]".format(self.epoch), + ) + + end = time.time() + + for data_iter, batch in enumerate(val_loader): + + # measure data loading time + data_time.update(time.time() - end) + + batch = batch.to(self.device, non_blocking=True) + + # compute output + with torch.no_grad(): + with torch.cuda.amp.autocast( + enabled=(self.optim_conf.amp.enabled if self.optim_conf else False), + dtype=( + get_amp_type(self.optim_conf.amp.amp_dtype) + if self.optim_conf + else None + ), + ): + for phase, model in zip(curr_phases, curr_models): + loss_dict, batch_size, extra_losses = self._step( + batch, + model, + phase, + ) + + assert len(loss_dict) == 1 + loss_key, loss = loss_dict.popitem() + + loss_mts[loss_key].update(loss.item(), batch_size) + + for k, v in extra_losses.items(): + if k not in extra_loss_mts: + extra_loss_mts[k] = AverageMeter(k, self.device, ":.2e") + extra_loss_mts[k].update(v.item(), batch_size) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + self.time_elapsed_meter.update( + time.time() - self.start_time + self.ckpt_time_elapsed + ) + + if torch.cuda.is_available(): + mem.update(reset_peak_usage=True) + + if data_iter % self.logging_conf.log_freq == 0: + progress.display(data_iter) + + if data_iter % self.logging_conf.log_scalar_frequency == 0: + # Log progress meters. + for progress_meter in progress.meters: + self.logger.log( + os.path.join("Step_Stats", phase, progress_meter.name), + progress_meter.val, + self.steps[Phase.VAL], + ) + + if data_iter % 10 == 0: + dist.barrier() + + self.est_epoch_time[phase] = batch_time.avg * iters_per_epoch + self._log_timers(phase) + for model in curr_models: + if hasattr(unwrap_ddp_if_wrapped(model), "on_validation_epoch_end"): + unwrap_ddp_if_wrapped(model).on_validation_epoch_end() + + out_dict = self._log_meters_and_save_best_ckpts(curr_phases) + + for k, v in loss_mts.items(): + out_dict[k] = v.avg + for k, v in extra_loss_mts.items(): + out_dict[k] = v.avg + + for phase in curr_phases: + out_dict.update(self._get_trainer_state(phase)) + self._reset_meters(curr_phases) + logging.info(f"Meters: {out_dict}") + return out_dict + + def _get_trainer_state(self, phase): + return { + "Trainer/where": self.where, + "Trainer/epoch": self.epoch, + f"Trainer/steps_{phase}": self.steps[phase], + } + + def train_epoch(self, train_loader): + + # Init stat meters + batch_time_meter = AverageMeter("Batch Time", self.device, ":.2f") + data_time_meter = AverageMeter("Data Time", self.device, ":.2f") + mem_meter = MemMeter("Mem (GB)", self.device, ":.2f") + data_times = [] + phase = Phase.TRAIN + + iters_per_epoch = len(train_loader) + + loss_names = [] + for batch_key in self.loss.keys(): + loss_names.append(f"Losses/{phase}_{batch_key}_loss") + + loss_mts = OrderedDict( + [(name, AverageMeter(name, self.device, ":.2e")) for name in loss_names] + ) + extra_loss_mts = {} + + progress = ProgressMeter( + iters_per_epoch, + [ + batch_time_meter, + data_time_meter, + mem_meter, + self.time_elapsed_meter, + *loss_mts.values(), + ], + self._get_meters([phase]), + prefix="Train Epoch: [{}]".format(self.epoch), + ) + + # Model training loop + self.model.train() + end = time.time() + + for data_iter, batch in enumerate(train_loader): + # measure data loading time + data_time_meter.update(time.time() - end) + data_times.append(data_time_meter.val) + batch = batch.to( + self.device, non_blocking=True + ) # move tensors in a tensorclass + + try: + self._run_step(batch, phase, loss_mts, extra_loss_mts) + + # compute gradient and do optim step + exact_epoch = self.epoch + float(data_iter) / iters_per_epoch + self.where = float(exact_epoch) / self.max_epochs + assert self.where <= 1 + self.EPSILON + if self.where < 1.0: + self.optim.step_schedulers( + self.where, step=int(exact_epoch * iters_per_epoch) + ) + else: + logging.warning( + f"Skipping scheduler update since the training is at the end, i.e, {self.where} of [0,1]." + ) + + # Log schedulers + if data_iter % self.logging_conf.log_scalar_frequency == 0: + for j, param_group in enumerate(self.optim.optimizer.param_groups): + for option in self.optim.schedulers[j]: + optim_prefix = ( + "" + f"{j}_" + if len(self.optim.optimizer.param_groups) > 1 + else "" + ) + self.logger.log( + os.path.join("Optim", f"{optim_prefix}", option), + param_group[option], + self.steps[phase], + ) + + # Clipping gradients and detecting diverging gradients + if self.gradient_clipper is not None: + self.scaler.unscale_(self.optim.optimizer) + self.gradient_clipper(model=self.model) + + if self.gradient_logger is not None: + self.gradient_logger( + self.model, rank=self.distributed_rank, where=self.where + ) + + # Optimizer step: the scaler will make sure gradients are not + # applied if the gradients are infinite + self.scaler.step(self.optim.optimizer) + self.scaler.update() + + # measure elapsed time + batch_time_meter.update(time.time() - end) + end = time.time() + + self.time_elapsed_meter.update( + time.time() - self.start_time + self.ckpt_time_elapsed + ) + + mem_meter.update(reset_peak_usage=True) + if data_iter % self.logging_conf.log_freq == 0: + progress.display(data_iter) + + if data_iter % self.logging_conf.log_scalar_frequency == 0: + # Log progress meters. + for progress_meter in progress.meters: + self.logger.log( + os.path.join("Step_Stats", phase, progress_meter.name), + progress_meter.val, + self.steps[phase], + ) + + # Catching NaN/Inf errors in the loss + except FloatingPointError as e: + raise e + + self.est_epoch_time[Phase.TRAIN] = batch_time_meter.avg * iters_per_epoch + self._log_timers(Phase.TRAIN) + self._log_sync_data_times(Phase.TRAIN, data_times) + + out_dict = self._log_meters_and_save_best_ckpts([Phase.TRAIN]) + + for k, v in loss_mts.items(): + out_dict[k] = v.avg + for k, v in extra_loss_mts.items(): + out_dict[k] = v.avg + out_dict.update(self._get_trainer_state(phase)) + logging.info(f"Losses and meters: {out_dict}") + self._reset_meters([phase]) + return out_dict + + def _log_sync_data_times(self, phase, data_times): + data_times = all_reduce_max(torch.tensor(data_times)).tolist() + steps = range(self.steps[phase] - len(data_times), self.steps[phase]) + for step, data_time in zip(steps, data_times): + if step % self.logging_conf.log_scalar_frequency == 0: + self.logger.log( + os.path.join("Step_Stats", phase, "Data Time Synced"), + data_time, + step, + ) + + def _run_step( + self, + batch: BatchedVideoDatapoint, + phase: str, + loss_mts: Dict[str, AverageMeter], + extra_loss_mts: Dict[str, AverageMeter], + raise_on_error: bool = True, + ): + """ + Run the forward / backward + """ + + # it's important to set grads to None, especially with Adam since 0 + # grads will also update a model even if the step doesn't produce + # gradients + self.optim.zero_grad(set_to_none=True) + with torch.cuda.amp.autocast( + enabled=self.optim_conf.amp.enabled, + dtype=get_amp_type(self.optim_conf.amp.amp_dtype), + ): + loss_dict, batch_size, extra_losses = self._step( + batch, + self.model, + phase, + ) + + assert len(loss_dict) == 1 + loss_key, loss = loss_dict.popitem() + + if not math.isfinite(loss.item()): + error_msg = f"Loss is {loss.item()}, attempting to stop training" + logging.error(error_msg) + if raise_on_error: + raise FloatingPointError(error_msg) + else: + return + + self.scaler.scale(loss).backward() + loss_mts[loss_key].update(loss.item(), batch_size) + for extra_loss_key, extra_loss in extra_losses.items(): + if extra_loss_key not in extra_loss_mts: + extra_loss_mts[extra_loss_key] = AverageMeter( + extra_loss_key, self.device, ":.2e" + ) + extra_loss_mts[extra_loss_key].update(extra_loss.item(), batch_size) + + def _log_meters_and_save_best_ckpts(self, phases: List[str]): + logging.info("Synchronizing meters") + out_dict = {} + checkpoint_save_keys = [] + for key, meter in self._get_meters(phases).items(): + meter_output = meter.compute_synced() + is_better_check = getattr(meter, "is_better", None) + + for meter_subkey, meter_value in meter_output.items(): + out_dict[os.path.join("Meters_train", key, meter_subkey)] = meter_value + + if is_better_check is None: + continue + + tracked_meter_key = os.path.join(key, meter_subkey) + if tracked_meter_key not in self.best_meter_values or is_better_check( + meter_value, + self.best_meter_values[tracked_meter_key], + ): + self.best_meter_values[tracked_meter_key] = meter_value + + if ( + self.checkpoint_conf.save_best_meters is not None + and key in self.checkpoint_conf.save_best_meters + ): + checkpoint_save_keys.append(tracked_meter_key.replace("/", "_")) + + if len(checkpoint_save_keys) > 0: + self.save_checkpoint(self.epoch + 1, checkpoint_save_keys) + + return out_dict + + def _log_timers(self, phase): + time_remaining = 0 + epochs_remaining = self.max_epochs - self.epoch - 1 + val_epochs_remaining = sum( + n % self.val_epoch_freq == 0 for n in range(self.epoch, self.max_epochs) + ) + + # Adding the guaranteed val run at the end if val_epoch_freq doesn't coincide with + # the end epoch. + if (self.max_epochs - 1) % self.val_epoch_freq != 0: + val_epochs_remaining += 1 + + # Remove the current val run from estimate + if phase == Phase.VAL: + val_epochs_remaining -= 1 + + time_remaining += ( + epochs_remaining * self.est_epoch_time[Phase.TRAIN] + + val_epochs_remaining * self.est_epoch_time[Phase.VAL] + ) + + self.logger.log( + os.path.join("Step_Stats", phase, self.time_elapsed_meter.name), + self.time_elapsed_meter.val, + self.steps[phase], + ) + + logging.info(f"Estimated time remaining: {human_readable_time(time_remaining)}") + + def _reset_meters(self, phases: str) -> None: + for meter in self._get_meters(phases).values(): + meter.reset() + + def _check_val_key_match(self, val_keys, phase): + if val_keys is not None: + # Check if there are any duplicates + assert len(val_keys) == len( + set(val_keys) + ), f"Duplicate keys in val datasets, keys: {val_keys}" + + # Check that the keys match the meter keys + if self.meters_conf is not None and phase in self.meters_conf: + assert set(val_keys) == set(self.meters_conf[phase].keys()), ( + f"Keys in val datasets do not match the keys in meters." + f"\nMissing in meters: {set(val_keys) - set(self.meters_conf[phase].keys())}" + f"\nMissing in val datasets: {set(self.meters_conf[phase].keys()) - set(val_keys)}" + ) + + if self.loss_conf is not None: + loss_keys = set(self.loss_conf.keys()) - set(["all"]) + assert all([k in loss_keys for k in val_keys]), ( + f"Keys in val datasets do not match the keys in losses." + f"\nMissing in losses: {set(val_keys) - loss_keys}" + f"\nMissing in val datasets: {loss_keys - set(val_keys)}" + ) + + def _setup_components(self): + + # Get the keys for all the val datasets, if any + val_phase = Phase.VAL + val_keys = None + if self.data_conf.get(val_phase, None) is not None: + val_keys = collect_dict_keys(self.data_conf[val_phase]) + # Additional checks on the sanity of the config for val datasets + self._check_val_key_match(val_keys, phase=val_phase) + + logging.info("Setting up components: Model, loss, optim, meters etc.") + self.epoch = 0 + self.steps = {Phase.TRAIN: 0, Phase.VAL: 0} + + self.logger = Logger(self.logging_conf) + + self.model = instantiate(self.model_conf, _convert_="all") + print_model_summary(self.model) + + self.loss = None + if self.loss_conf: + self.loss = { + key: el # wrap_base_loss(el) + for (key, el) in instantiate(self.loss_conf, _convert_="all").items() + } + self.loss = nn.ModuleDict(self.loss) + + self.meters = {} + self.best_meter_values = {} + if self.meters_conf: + self.meters = instantiate(self.meters_conf, _convert_="all") + + self.scaler = torch.amp.GradScaler( + self.device, + enabled=self.optim_conf.amp.enabled if self.optim_conf else False, + ) + + self.gradient_clipper = ( + instantiate(self.optim_conf.gradient_clip) if self.optim_conf else None + ) + self.gradient_logger = ( + instantiate(self.optim_conf.gradient_logger) if self.optim_conf else None + ) + + logging.info("Finished setting up components: Model, loss, optim, meters etc.") + + def _construct_optimizers(self): + self.optim = construct_optimizer( + self.model, + self.optim_conf.optimizer, + self.optim_conf.options, + self.optim_conf.param_group_modifiers, + ) + + def _log_loss_detailed_and_return_core_loss(self, loss, loss_str, step): + core_loss = loss.pop(CORE_LOSS_KEY) + if step % self.logging_conf.log_scalar_frequency == 0: + for k in loss: + log_str = os.path.join(loss_str, k) + self.logger.log(log_str, loss[k], step) + return core_loss + + +def print_model_summary(model: torch.nn.Module, log_dir: str = ""): + """ + Prints the model and the number of parameters in the model. + # Multiple packages provide this info in a nice table format + # However, they need us to provide an `input` (as they also write down the output sizes) + # Our models are complex, and a single input is restrictive. + # https://github.com/sksq96/pytorch-summary + # https://github.com/nmhkahn/torchsummaryX + """ + if get_rank() != 0: + return + param_kwargs = {} + trainable_parameters = sum( + p.numel() for p in model.parameters(**param_kwargs) if p.requires_grad + ) + total_parameters = sum(p.numel() for p in model.parameters(**param_kwargs)) + non_trainable_parameters = total_parameters - trainable_parameters + logging.info("==" * 10) + logging.info(f"Summary for model {type(model)}") + logging.info(f"Model is {model}") + logging.info(f"\tTotal parameters {get_human_readable_count(total_parameters)}") + logging.info( + f"\tTrainable parameters {get_human_readable_count(trainable_parameters)}" + ) + logging.info( + f"\tNon-Trainable parameters {get_human_readable_count(non_trainable_parameters)}" + ) + logging.info("==" * 10) + + if log_dir: + output_fpath = os.path.join(log_dir, "model.txt") + with g_pathmgr.open(output_fpath, "w") as f: + print(model, file=f) + + +PARAMETER_NUM_UNITS = [" ", "K", "M", "B", "T"] + + +def get_human_readable_count(number: int) -> str: + """ + Abbreviates an integer number with K, M, B, T for thousands, millions, + billions and trillions, respectively. + Examples: + >>> get_human_readable_count(123) + '123 ' + >>> get_human_readable_count(1234) # (one thousand) + '1.2 K' + >>> get_human_readable_count(2e6) # (two million) + '2.0 M' + >>> get_human_readable_count(3e9) # (three billion) + '3.0 B' + >>> get_human_readable_count(4e14) # (four hundred trillion) + '400 T' + >>> get_human_readable_count(5e15) # (more than trillion) + '5,000 T' + Args: + number: a positive integer number + Return: + A string formatted according to the pattern described above. + """ + assert number >= 0 + labels = PARAMETER_NUM_UNITS + num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) + num_groups = int(np.ceil(num_digits / 3)) + num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions + shift = -3 * (num_groups - 1) + number = number * (10**shift) + index = num_groups - 1 + if index < 1 or number >= 100: + return f"{int(number):,d} {labels[index]}" + else: + return f"{number:,.1f} {labels[index]}" diff --git a/third_party/sam2/training/utils/__init__.py b/third_party/sam2/training/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/third_party/sam2/training/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/third_party/sam2/training/utils/checkpoint_utils.py b/third_party/sam2/training/utils/checkpoint_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..f76689f341dedc485c0c32d096fb5b2e8337bea9 --- /dev/null +++ b/third_party/sam2/training/utils/checkpoint_utils.py @@ -0,0 +1,361 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import contextlib +import fnmatch +import logging +from typing import ( + Any, + Callable, + Dict, + List, + Mapping, + Optional, + Sequence, + Set, + Tuple, + Union, +) + +import numpy as np +import torch +import torch.nn as nn +from iopath.common.file_io import g_pathmgr +from torch.jit._script import RecursiveScriptModule + + +def unix_pattern_to_parameter_names( + constraints: List[str], all_parameter_names: Sequence[str] +) -> Union[None, Set[str]]: + """ + Go through the list of parameter names and select those that match + any of the provided constraints + """ + parameter_names = [] + for param_name in constraints: + matching_parameters = set(fnmatch.filter(all_parameter_names, param_name)) + assert ( + len(matching_parameters) > 0 + ), f"param_names {param_name} don't match any param in the given names." + parameter_names.append(matching_parameters) + return set.union(*parameter_names) + + +def filter_params_matching_unix_pattern( + patterns: List[str], state_dict: Dict[str, torch.Tensor] +) -> Dict[str, torch.Tensor]: + """ + Remove from the state dictionary the parameters matching the provided unix patterns + + Args: + patterns: the list of unix patterns to exclude + state_dict: the dictionary to filter + + Returns: + A new state dictionary + """ + if len(patterns) == 0: + return {} + + all_keys = list(state_dict.keys()) + included_keys = unix_pattern_to_parameter_names(patterns, all_keys) + return {k: state_dict[k] for k in included_keys} + + +def exclude_params_matching_unix_pattern( + patterns: List[str], state_dict: Dict[str, torch.Tensor] +) -> Dict[str, torch.Tensor]: + """ + Remove from the state dictionary the parameters matching the provided unix patterns + + Args: + patterns: the list of unix patterns to exclude + state_dict: the dictionary to filter + + Returns: + A new state dictionary + """ + if len(patterns) == 0: + return state_dict + + all_keys = list(state_dict.keys()) + excluded_keys = unix_pattern_to_parameter_names(patterns, all_keys) + return {k: v for k, v in state_dict.items() if k not in excluded_keys} + + +def _get_state_dict_summary(state_dict: Dict[str, torch.Tensor]): + keys = [] + trace = [] + for k, v in state_dict.items(): + keys.append(k) + trace.append(v.sum().item()) + trace = np.array(trace)[np.argsort(keys)] + return trace + + +def assert_skipped_parameters_are_frozen(model: nn.Module, patterns: List[str]): + """ + Verifies that all the parameters matching the provided patterns + are frozen - this acts as a safeguard when ignoring parameter + when saving checkpoints - if the parameters are in fact trainable + """ + if not patterns: + return + + frozen_state_dict = filter_params_matching_unix_pattern( + patterns=patterns, state_dict=model.state_dict() + ) + non_frozen_keys = { + n + for n, p in model.named_parameters() + if n in frozen_state_dict and p.requires_grad + } + if non_frozen_keys: + raise ValueError( + f"Parameters excluded with `skip_saving_parameters` should be frozen: {non_frozen_keys}" + ) + + +@contextlib.contextmanager +def with_check_parameter_frozen( + model: nn.Module, patterns: List[str], disabled: bool = True +): + """ + Context manager that inspects a model surrounding a piece of code + and verifies if the model has been updated by this piece of code + + The function will raise an exception if the model has been updated + on at least one of the parameter that matches one of the pattern + + Args: + model: the model that might have been updated + patterns: for the parameters we want to observe + allowed: + """ + if not patterns or disabled: + yield + return + + frozen_state_dict = filter_params_matching_unix_pattern( + patterns=patterns, state_dict=model.state_dict() + ) + summary_before = _get_state_dict_summary(frozen_state_dict) + + yield + + frozen_state_dict = filter_params_matching_unix_pattern( + patterns=patterns, state_dict=model.state_dict() + ) + summary_after = _get_state_dict_summary(frozen_state_dict) + + if not np.allclose(summary_before, summary_after, atol=1e-6): + raise ValueError( + f""" + The `model_weight_initializer` has initialized parameters frozen with `skip_saving_parameters`. + You can resolve this error by either initializing those parameters from within the model definition + or using the flag `trainer.checkpoint.initialize_after_preemption` to True. + """ + ) + + +class CkptExcludeKernel: + """ + Removes the keys from the given model state_dict that match the key_pattern. + + Args: + key_pattern: Patterns used to select the keys in the state_dict + that are eligible for this kernel. + """ + + def __init__(self, key_pattern: List[str]): + self.key_pattern = key_pattern + + def __call__(self, state_dict: Dict): + """ + Args: + state_dict: A dictionary representing the given checkpoint's state dict. + """ + if len(self.key_pattern) == 0: + return state_dict + exclude_keys = unix_pattern_to_parameter_names( + self.key_pattern, state_dict.keys() + ) + return {k: v for k, v in state_dict.items() if k not in exclude_keys} + + +def load_checkpoint( + path_list: List[str], + pick_recursive_keys: Optional[List[str]] = None, + map_location: str = "cpu", +) -> Any: + """ + Loads a checkpoint from the specified path. + + Args: + path_list: A list of paths which contain the checkpoint. Each element + is tried (in order) until a file that exists is found. That file is then + used to read the checkpoint. + pick_recursive_keys: Picks sub dicts from the loaded checkpoint if not None. + For pick_recursive_keys = ["a", "b"], will return checkpoint_dict["a"]["b"] + map_location (str): a function, torch.device, string or a dict specifying how to + remap storage locations + + Returns: Model with the matchin pre-trained weights loaded. + """ + path_exists = False + for path in path_list: + if g_pathmgr.exists(path): + path_exists = True + break + + if not path_exists: + raise ValueError(f"No path exists in {path_list}") + + with g_pathmgr.open(path, "rb") as f: + checkpoint = torch.load(f, map_location=map_location) + + logging.info(f"Loaded checkpoint from {path}") + if pick_recursive_keys is not None: + for key in pick_recursive_keys: + checkpoint = checkpoint[key] + return checkpoint + + +def get_state_dict(checkpoint, ckpt_state_dict_keys): + if isinstance(checkpoint, RecursiveScriptModule): + # This is a torchscript JIT model + return checkpoint.state_dict() + pre_train_dict = checkpoint + for i, key in enumerate(ckpt_state_dict_keys): + if (isinstance(pre_train_dict, Mapping) and key not in pre_train_dict) or ( + isinstance(pre_train_dict, Sequence) and key >= len(pre_train_dict) + ): + key_str = ( + '["' + '"]["'.join(list(map(ckpt_state_dict_keys[:i], str))) + '"]' + ) + raise KeyError( + f"'{key}' not found in checkpoint{key_str} " + f"with keys: {pre_train_dict.keys()}" + ) + pre_train_dict = pre_train_dict[key] + return pre_train_dict + + +def load_checkpoint_and_apply_kernels( + checkpoint_path: str, + checkpoint_kernels: List[Callable] = None, + ckpt_state_dict_keys: Tuple[str] = ("state_dict",), + map_location: str = "cpu", +) -> nn.Module: + """ + Performs checkpoint loading with a variety of pre-processing kernel applied in + sequence. + + Args: + checkpoint_path (str): Path to the checkpoint. + checkpoint_kernels List(Callable): A list of checkpoint processing kernels + to apply in the specified order. Supported kernels include `CkptIncludeKernel`, + `CkptExcludeKernel`, etc. These kernels are applied in the + given order. + ckpt_state_dict_keys (str): Keys containing the model state dict. + map_location (str): a function, torch.device, string or a dict specifying how to + remap storage locations + + Returns: Model with the matchin pre-trained weights loaded. + """ + assert g_pathmgr.exists(checkpoint_path), "Checkpoint '{}' not found".format( + checkpoint_path + ) + + # Load the checkpoint on CPU to avoid GPU mem spike. + with g_pathmgr.open(checkpoint_path, "rb") as f: + checkpoint = torch.load(f, map_location=map_location) + + pre_train_dict = get_state_dict(checkpoint, ckpt_state_dict_keys) + + # Not logging into info etc since it's a huge log + logging.debug( + "Loaded Checkpoint State Dict pre-kernel application: %s" + % str(", ".join(list(pre_train_dict.keys()))) + ) + # Apply kernels + if checkpoint_kernels is not None: + for f in checkpoint_kernels: + pre_train_dict = f(state_dict=pre_train_dict) + + logging.debug( + "Loaded Checkpoint State Dict Post-kernel application %s" + % str(", ".join(list(pre_train_dict.keys()))) + ) + + return pre_train_dict + + +def check_load_state_dict_errors( + missing_keys, + unexpected_keys, + strict: bool, + ignore_missing_keys: List[str] = None, + ignore_unexpected_keys: List[str] = None, +): + if ignore_missing_keys is not None and len(ignore_missing_keys) > 0: + ignored_keys = unix_pattern_to_parameter_names( + ignore_missing_keys, missing_keys + ) + missing_keys = [key for key in missing_keys if key not in ignored_keys] + + if ignore_unexpected_keys is not None and len(ignore_unexpected_keys) > 0: + ignored_unexpected_keys = unix_pattern_to_parameter_names( + ignore_unexpected_keys, unexpected_keys + ) + unexpected_keys = [ + key for key in unexpected_keys if key not in ignored_unexpected_keys + ] + + err = "State key mismatch." + if unexpected_keys: + err += f" Unexpected keys: {unexpected_keys}." + if missing_keys: + err += f" Missing keys: {missing_keys}." + + if unexpected_keys or missing_keys: + logging.warning(err) + if unexpected_keys or strict: + raise KeyError(err) + + +def load_state_dict_into_model( + state_dict: Dict, + model: nn.Module, + strict: bool = True, + ignore_missing_keys: List[str] = None, + ignore_unexpected_keys: List[str] = None, + checkpoint_kernels: List[Callable] = None, +): + """ + Loads a state dict into the given model. + + Args: + state_dict: A dictionary containing the model's + state dict, or a subset if strict is False + model: Model to load the checkpoint weights into + strict: raise if the state_dict has missing state keys + ignore_missing_keys: unix pattern of keys to ignore + """ + # Apply kernels + if checkpoint_kernels is not None: + for f in checkpoint_kernels: + state_dict = f(state_dict=state_dict) + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + + check_load_state_dict_errors( + missing_keys, + unexpected_keys, + strict=strict, + ignore_missing_keys=ignore_missing_keys, + ignore_unexpected_keys=ignore_unexpected_keys, + ) + return model diff --git a/third_party/sam2/training/utils/data_utils.py b/third_party/sam2/training/utils/data_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..fbd0115355c97a27c601a833985466e558063b91 --- /dev/null +++ b/third_party/sam2/training/utils/data_utils.py @@ -0,0 +1,179 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +""" +Misc functions, including distributed helpers. + +Mostly copy-paste from torchvision references. +""" + +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch + +from PIL import Image as PILImage +from tensordict import tensorclass + + +@tensorclass +class BatchedVideoMetaData: + """ + This class represents metadata about a batch of videos. + Attributes: + unique_objects_identifier: A tensor of shape Bx3 containing unique identifiers for each object in the batch. Index consists of (video_id, obj_id, frame_id) + frame_orig_size: A tensor of shape Bx2 containing the original size of each frame in the batch. + """ + + unique_objects_identifier: torch.LongTensor + frame_orig_size: torch.LongTensor + + +@tensorclass +class BatchedVideoDatapoint: + """ + This class represents a batch of videos with associated annotations and metadata. + Attributes: + img_batch: A [TxBxCxHxW] tensor containing the image data for each frame in the batch, where T is the number of frames per video, and B is the number of videos in the batch. + obj_to_frame_idx: A [TxOx2] tensor containing the image_batch index which the object belongs to. O is the number of objects in the batch. + masks: A [TxOxHxW] tensor containing binary masks for each object in the batch. + metadata: An instance of BatchedVideoMetaData containing metadata about the batch. + dict_key: A string key used to identify the batch. + """ + + img_batch: torch.FloatTensor + obj_to_frame_idx: torch.IntTensor + masks: torch.BoolTensor + metadata: BatchedVideoMetaData + + dict_key: str + + def pin_memory(self, device=None): + return self.apply(torch.Tensor.pin_memory, device=device) + + @property + def num_frames(self) -> int: + """ + Returns the number of frames per video. + """ + return self.batch_size[0] + + @property + def num_videos(self) -> int: + """ + Returns the number of videos in the batch. + """ + return self.img_batch.shape[1] + + @property + def flat_obj_to_img_idx(self) -> torch.IntTensor: + """ + Returns a flattened tensor containing the object to img index. + The flat index can be used to access a flattened img_batch of shape [(T*B)xCxHxW] + """ + frame_idx, video_idx = self.obj_to_frame_idx.unbind(dim=-1) + flat_idx = video_idx * self.num_frames + frame_idx + return flat_idx + + @property + def flat_img_batch(self) -> torch.FloatTensor: + """ + Returns a flattened img_batch_tensor of shape [(B*T)xCxHxW] + """ + + return self.img_batch.transpose(0, 1).flatten(0, 1) + + +@dataclass +class Object: + # Id of the object in the media + object_id: int + # Index of the frame in the media (0 if single image) + frame_index: int + segment: Union[torch.Tensor, dict] # RLE dict or binary mask + + +@dataclass +class Frame: + data: Union[torch.Tensor, PILImage.Image] + objects: List[Object] + + +@dataclass +class VideoDatapoint: + """Refers to an image/video and all its annotations""" + + frames: List[Frame] + video_id: int + size: Tuple[int, int] + + +def collate_fn( + batch: List[VideoDatapoint], + dict_key, +) -> BatchedVideoDatapoint: + """ + Args: + batch: A list of VideoDatapoint instances. + dict_key (str): A string key used to identify the batch. + """ + img_batch = [] + for video in batch: + img_batch += [torch.stack([frame.data for frame in video.frames], dim=0)] + + img_batch = torch.stack(img_batch, dim=0).permute((1, 0, 2, 3, 4)) + T = img_batch.shape[0] + # Prepare data structures for sequential processing. Per-frame processing but batched across videos. + step_t_objects_identifier = [[] for _ in range(T)] + step_t_frame_orig_size = [[] for _ in range(T)] + + step_t_masks = [[] for _ in range(T)] + step_t_obj_to_frame_idx = [ + [] for _ in range(T) + ] # List to store frame indices for each time step + + for video_idx, video in enumerate(batch): + orig_video_id = video.video_id + orig_frame_size = video.size + for t, frame in enumerate(video.frames): + objects = frame.objects + for obj in objects: + orig_obj_id = obj.object_id + orig_frame_idx = obj.frame_index + step_t_obj_to_frame_idx[t].append( + torch.tensor([t, video_idx], dtype=torch.int) + ) + step_t_masks[t].append(obj.segment.to(torch.bool)) + step_t_objects_identifier[t].append( + torch.tensor([orig_video_id, orig_obj_id, orig_frame_idx]) + ) + step_t_frame_orig_size[t].append(torch.tensor(orig_frame_size)) + + obj_to_frame_idx = torch.stack( + [ + torch.stack(obj_to_frame_idx, dim=0) + for obj_to_frame_idx in step_t_obj_to_frame_idx + ], + dim=0, + ) + masks = torch.stack([torch.stack(masks, dim=0) for masks in step_t_masks], dim=0) + objects_identifier = torch.stack( + [torch.stack(id, dim=0) for id in step_t_objects_identifier], dim=0 + ) + frame_orig_size = torch.stack( + [torch.stack(id, dim=0) for id in step_t_frame_orig_size], dim=0 + ) + return BatchedVideoDatapoint( + img_batch=img_batch, + obj_to_frame_idx=obj_to_frame_idx, + masks=masks, + metadata=BatchedVideoMetaData( + unique_objects_identifier=objects_identifier, + frame_orig_size=frame_orig_size, + ), + dict_key=dict_key, + batch_size=[T], + ) diff --git a/third_party/sam2/training/utils/distributed.py b/third_party/sam2/training/utils/distributed.py new file mode 100644 index 0000000000000000000000000000000000000000..f614b40427f40350c4df9e695cd327cb4d6a96f6 --- /dev/null +++ b/third_party/sam2/training/utils/distributed.py @@ -0,0 +1,576 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import datetime +import functools +import io +import logging +import os +import random +import tempfile +import time +from typing import Any, Callable, List, Tuple + +import torch +import torch.autograd as autograd +import torch.distributed as dist + + +# Default to GPU 0 +_cuda_device_index: int = 0 + +# Setting _cuda_device_index to -1 internally implies that we should use CPU +_CPU_DEVICE_INDEX = -1 +_PRIMARY_RANK = 0 + + +@functools.lru_cache() +def _get_global_gloo_group(): + """ + Return a process group based on gloo backend, containing all the ranks + The result is cached. + """ + + if dist.get_backend() == "nccl": + # Increase timeout from 1800 sec to 43200 sec (12 hr) to avoid some processes + # being much slower than others causing a timeout (which can happen in relation + # or LVIS class mAP evaluation). + timeout = 43200 + return dist.new_group( + backend="gloo", + timeout=datetime.timedelta(seconds=timeout), + ) + + return dist.group.WORLD + + +def is_main_process(): + """Return true if the current process is the main one""" + return get_rank() == 0 + + +def all_gather_via_filesys(data, filesys_save_dir=None, gather_to_rank_0_only=False): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors), similar to + `all_gather` above, but using filesystem instead of collective ops. + + If gather_to_rank_0_only is True, only rank 0 will load the gathered object list + (and other ranks will have an empty list). + """ + world_size = get_world_size() + if world_size == 1: + return [data] + + print("gathering via files") + cpu_group = _get_global_gloo_group() + + # if unspecified, we will save to the current python file dir + if filesys_save_dir is not None: + save_dir = filesys_save_dir + elif "EXP_DIR" in os.environ: + save_dir = os.environ["EXP_DIR"] + else: + # try the same directory where the code is stored + save_dir = filesys_save_dir or os.path.dirname(__file__) + save_dir = os.path.join(save_dir, "all_gather_via_filesys") + if is_main_process(): + os.makedirs(save_dir, exist_ok=True) + + # use a timestamp and salt to distinguish different all_gather + timestamp = int(time.time()) if is_main_process() else 0 + salt = random.randint(0, 2**31 - 1) if is_main_process() else 0 + # broadcast the timestamp and salt across ranks + # (all-reduce will do the broadcasting since only rank 0 is non-zero) + timestamp_and_salt = torch.tensor([timestamp, salt], dtype=torch.long) + dist.all_reduce(timestamp_and_salt, group=cpu_group) + timestamp, salt = timestamp_and_salt.tolist() + + # save the data to a file on the disk + rank_save = get_rank() + save_data_filename = f"data_to_gather_{timestamp}_{salt}_{rank_save}.pkl" + save_data_path = os.path.join(save_dir, save_data_filename) + assert not os.path.exists(save_data_path), f"{save_data_path} already exists" + torch.save(data, save_data_path) + dist.barrier(group=cpu_group) + + # read the data from the files + data_list = [] + if rank_save == 0 or not gather_to_rank_0_only: + for rank_load in range(world_size): + load_data_filename = f"data_to_gather_{timestamp}_{salt}_{rank_load}.pkl" + load_data_path = os.path.join(save_dir, load_data_filename) + assert os.path.exists(load_data_path), f"cannot read {save_data_path}" + data_list.append(torch.load(load_data_path)) + dist.barrier(group=cpu_group) + + # delete the saved file + os.remove(save_data_path) + return data_list + + +def all_gather(data, force_cpu=False, force_filesys=False, filesys_save_dir=None): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors) + Args: + data: any picklable object + Returns: + list[data]: list of data gathered from each rank + """ + + world_size = get_world_size() + if world_size == 1: + return [data] + + if os.getenv("MDETR_FILESYS_REDUCE_RANK_0_ONLY") == "1": + return all_gather_via_filesys( + data, filesys_save_dir, gather_to_rank_0_only=True + ) + + if os.getenv("MDETR_FILESYS_REDUCE") == "1" or force_filesys: + return all_gather_via_filesys(data, filesys_save_dir) + + cpu_group = None + if os.getenv("MDETR_CPU_REDUCE") == "1" or force_cpu: + cpu_group = _get_global_gloo_group() + + buffer = io.BytesIO() + torch.save(data, buffer) + data_view = buffer.getbuffer() + device = "cuda" if cpu_group is None else "cpu" + tensor = torch.ByteTensor(data_view).to(device) + + # obtain Tensor size of each rank + local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) + size_list = [ + torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size) + ] + if cpu_group is None: + dist.all_gather(size_list, local_size) + else: + print("gathering on cpu") + dist.all_gather(size_list, local_size, group=cpu_group) + size_list = [int(size.item()) for size in size_list] + max_size = max(size_list) + assert isinstance(local_size.item(), int) + local_size = int(local_size.item()) + + # receiving Tensor from all ranks + # we pad the tensor because torch all_gather does not support + # gathering tensors of different shapes + tensor_list = [] + for _ in size_list: + tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) + if local_size != max_size: + padding = torch.empty( + size=(max_size - local_size,), dtype=torch.uint8, device=device + ) + tensor = torch.cat((tensor, padding), dim=0) + if cpu_group is None: + dist.all_gather(tensor_list, tensor) + else: + dist.all_gather(tensor_list, tensor, group=cpu_group) + + data_list = [] + for size, tensor in zip(size_list, tensor_list): + tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] + buffer = io.BytesIO(tensor.cpu().numpy()) + obj = torch.load(buffer) + data_list.append(obj) + + return data_list + + +def convert_to_distributed_tensor(tensor: torch.Tensor) -> Tuple[torch.Tensor, str]: + """ + For some backends, such as NCCL, communication only works if the + tensor is on the GPU. This helper function converts to the correct + device and returns the tensor + original device. + """ + orig_device = "cpu" if not tensor.is_cuda else "gpu" + if ( + torch.distributed.is_available() + and torch.distributed.get_backend() == torch.distributed.Backend.NCCL + and not tensor.is_cuda + ): + tensor = tensor.cuda() + return (tensor, orig_device) + + +def convert_to_normal_tensor(tensor: torch.Tensor, orig_device: str) -> torch.Tensor: + """ + For some backends, such as NCCL, communication only works if the + tensor is on the GPU. This converts the tensor back to original device. + """ + if tensor.is_cuda and orig_device == "cpu": + tensor = tensor.cpu() + return tensor + + +def is_distributed_training_run() -> bool: + return ( + torch.distributed.is_available() + and torch.distributed.is_initialized() + and (torch.distributed.get_world_size() > 1) + ) + + +def is_primary() -> bool: + """ + Returns True if this is rank 0 of a distributed training job OR if it is + a single trainer job. Otherwise False. + """ + return get_rank() == _PRIMARY_RANK + + +def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor: + """ + Wrapper over torch.distributed.all_reduce for performing mean reduction + of tensor over all processes. + """ + return all_reduce_op( + tensor, + torch.distributed.ReduceOp.SUM, + lambda t: t / torch.distributed.get_world_size(), + ) + + +def all_reduce_sum(tensor: torch.Tensor) -> torch.Tensor: + """ + Wrapper over torch.distributed.all_reduce for performing sum + reduction of tensor over all processes in both distributed / + non-distributed scenarios. + """ + return all_reduce_op(tensor, torch.distributed.ReduceOp.SUM) + + +def all_reduce_min(tensor: torch.Tensor) -> torch.Tensor: + """ + Wrapper over torch.distributed.all_reduce for performing min + reduction of tensor over all processes in both distributed / + non-distributed scenarios. + """ + return all_reduce_op(tensor, torch.distributed.ReduceOp.MIN) + + +def all_reduce_max(tensor: torch.Tensor) -> torch.Tensor: + """ + Wrapper over torch.distributed.all_reduce for performing min + reduction of tensor over all processes in both distributed / + non-distributed scenarios. + """ + return all_reduce_op(tensor, torch.distributed.ReduceOp.MAX) + + +def all_reduce_op( + tensor: torch.Tensor, + op: torch.distributed.ReduceOp, + after_op_func: Callable[[torch.Tensor], torch.Tensor] = None, +) -> torch.Tensor: + """ + Wrapper over torch.distributed.all_reduce for performing + reduction of tensor over all processes in both distributed / + non-distributed scenarios. + """ + if is_distributed_training_run(): + tensor, orig_device = convert_to_distributed_tensor(tensor) + torch.distributed.all_reduce(tensor, op) + if after_op_func is not None: + tensor = after_op_func(tensor) + tensor = convert_to_normal_tensor(tensor, orig_device) + return tensor + + +def gather_tensors_from_all(tensor: torch.Tensor) -> List[torch.Tensor]: + """ + Wrapper over torch.distributed.all_gather for performing + 'gather' of 'tensor' over all processes in both distributed / + non-distributed scenarios. + """ + if tensor.ndim == 0: + # 0 dim tensors cannot be gathered. so unsqueeze + tensor = tensor.unsqueeze(0) + + if is_distributed_training_run(): + tensor, orig_device = convert_to_distributed_tensor(tensor) + gathered_tensors = [ + torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size()) + ] + torch.distributed.all_gather(gathered_tensors, tensor) + gathered_tensors = [ + convert_to_normal_tensor(_tensor, orig_device) + for _tensor in gathered_tensors + ] + else: + gathered_tensors = [tensor] + + return gathered_tensors + + +def gather_from_all(tensor: torch.Tensor) -> torch.Tensor: + gathered_tensors = gather_tensors_from_all(tensor) + gathered_tensor = torch.cat(gathered_tensors, 0) + return gathered_tensor + + +def broadcast(tensor: torch.Tensor, src: int = 0) -> torch.Tensor: + """ + Wrapper over torch.distributed.broadcast for broadcasting a tensor from the source + to all processes in both distributed / non-distributed scenarios. + """ + if is_distributed_training_run(): + tensor, orig_device = convert_to_distributed_tensor(tensor) + torch.distributed.broadcast(tensor, src) + tensor = convert_to_normal_tensor(tensor, orig_device) + return tensor + + +def barrier() -> None: + """ + Wrapper over torch.distributed.barrier, returns without waiting + if the distributed process group is not initialized instead of throwing error. + """ + if not torch.distributed.is_available() or not torch.distributed.is_initialized(): + return + torch.distributed.barrier() + + +def get_world_size() -> int: + """ + Simple wrapper for correctly getting worldsize in both distributed + / non-distributed settings + """ + return ( + torch.distributed.get_world_size() + if torch.distributed.is_available() and torch.distributed.is_initialized() + else 1 + ) + + +def get_rank() -> int: + """ + Simple wrapper for correctly getting rank in both distributed + / non-distributed settings + """ + return ( + torch.distributed.get_rank() + if torch.distributed.is_available() and torch.distributed.is_initialized() + else 0 + ) + + +def get_primary_rank() -> int: + return _PRIMARY_RANK + + +def set_cuda_device_index(idx: int) -> None: + global _cuda_device_index + _cuda_device_index = idx + torch.cuda.set_device(_cuda_device_index) + + +def set_cpu_device() -> None: + global _cuda_device_index + _cuda_device_index = _CPU_DEVICE_INDEX + + +def get_cuda_device_index() -> int: + return _cuda_device_index + + +def init_distributed_data_parallel_model( + model: torch.nn.Module, + broadcast_buffers: bool = False, + find_unused_parameters: bool = True, + bucket_cap_mb: int = 25, +) -> torch.nn.parallel.DistributedDataParallel: + global _cuda_device_index + + if _cuda_device_index == _CPU_DEVICE_INDEX: + # CPU-only model, don't specify device + return torch.nn.parallel.DistributedDataParallel( + model, + broadcast_buffers=broadcast_buffers, + find_unused_parameters=find_unused_parameters, + bucket_cap_mb=bucket_cap_mb, + ) + else: + # GPU model + return torch.nn.parallel.DistributedDataParallel( + model, + device_ids=[_cuda_device_index], + output_device=_cuda_device_index, + broadcast_buffers=broadcast_buffers, + find_unused_parameters=find_unused_parameters, + bucket_cap_mb=bucket_cap_mb, + ) + + +def broadcast_object(obj: Any, src: int = _PRIMARY_RANK, use_disk: bool = True) -> Any: + """Broadcast an object from a source to all workers. + + Args: + obj: Object to broadcast, must be serializable + src: Source rank for broadcast (default is primary) + use_disk: If enabled, removes redundant CPU memory copies by writing to + disk + """ + # Either broadcast from primary to the fleet (default), + # or use the src setting as the original rank + if get_rank() == src: + # Emit data + buffer = io.BytesIO() + torch.save(obj, buffer) + data_view = buffer.getbuffer() + length_tensor = torch.LongTensor([len(data_view)]) + length_tensor = broadcast(length_tensor, src=src) + data_tensor = torch.ByteTensor(data_view) + data_tensor = broadcast(data_tensor, src=src) + else: + # Fetch from the source + length_tensor = torch.LongTensor([0]) + length_tensor = broadcast(length_tensor, src=src) + data_tensor = torch.empty([length_tensor.item()], dtype=torch.uint8) + data_tensor = broadcast(data_tensor, src=src) + if use_disk: + with tempfile.TemporaryFile("r+b") as f: + f.write(data_tensor.numpy()) + # remove reference to the data tensor and hope that Python garbage + # collects it + del data_tensor + f.seek(0) + obj = torch.load(f) + else: + buffer = io.BytesIO(data_tensor.numpy()) + obj = torch.load(buffer) + return obj + + +def all_gather_tensor(tensor: torch.Tensor, world_size=None): + if world_size is None: + world_size = get_world_size() + # make contiguous because NCCL won't gather the tensor otherwise + assert tensor.is_contiguous(), f"{tensor.shape} is not contiguous!" + tensor, orig_device = convert_to_distributed_tensor(tensor) + tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] + dist.all_gather(tensor_all, tensor, async_op=False) # performance opt + tensor_all = [ + convert_to_normal_tensor(tensor, orig_device) for tensor in tensor_all + ] + return tensor_all + + +def all_gather_batch(tensors: List[torch.Tensor]): + """ + Performs all_gather operation on the provided tensors. + """ + # Queue the gathered tensors + world_size = get_world_size() + # There is no need for reduction in the single-proc case + if world_size == 1: + return tensors + tensor_list = [] + output_tensor = [] + for tensor in tensors: + tensor_all = all_gather_tensor(tensor, world_size) + tensor_list.append(tensor_all) + + for tensor_all in tensor_list: + output_tensor.append(torch.cat(tensor_all, dim=0)) + return output_tensor + + +class GatherLayer(autograd.Function): + """ + Gather tensors from all workers with support for backward propagation: + This implementation does not cut the gradients as torch.distributed.all_gather does. + """ + + @staticmethod + def forward(ctx, x): + output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] + dist.all_gather(output, x) + return tuple(output) + + @staticmethod + def backward(ctx, *grads): + all_gradients = torch.stack(grads) + dist.all_reduce(all_gradients) + return all_gradients[dist.get_rank()] + + +def all_gather_batch_with_grad(tensors): + """ + Performs all_gather operation on the provided tensors. + Graph remains connected for backward grad computation. + """ + # Queue the gathered tensors + world_size = get_world_size() + # There is no need for reduction in the single-proc case + if world_size == 1: + return tensors + tensor_list = [] + output_tensor = [] + + for tensor in tensors: + tensor_all = GatherLayer.apply(tensor) + tensor_list.append(tensor_all) + + for tensor_all in tensor_list: + output_tensor.append(torch.cat(tensor_all, dim=0)) + return output_tensor + + +def unwrap_ddp_if_wrapped(model): + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + return model.module + return model + + +def create_new_process_group(group_size): + """ + Creates process groups of a gives `group_size` and returns + process group that current GPU participates in. + + `group_size` must divide the total number of GPUs (world_size). + + Modified from + https://github.com/NVIDIA/apex/blob/4e1ae43f7f7ac69113ef426dd15f37123f0a2ed3/apex/parallel/__init__.py#L60 + + Args: + group_size (int): number of GPU's to collaborate for sync bn + """ + + assert group_size > 0 + + world_size = torch.distributed.get_world_size() + if world_size <= 8: + if group_size > world_size: + logging.warning( + f"Requested group size [{group_size}] > world size [{world_size}]. " + "Assuming local debug run and capping it to world size." + ) + group_size = world_size + assert world_size >= group_size + assert world_size % group_size == 0 + + group = None + for group_num in range(world_size // group_size): + group_ids = range(group_num * group_size, (group_num + 1) * group_size) + cur_group = torch.distributed.new_group(ranks=group_ids) + if torch.distributed.get_rank() // group_size == group_num: + group = cur_group + # can not drop out and return here, every process must go through creation of all subgroups + + assert group is not None + return group + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True diff --git a/third_party/sam2/training/utils/logger.py b/third_party/sam2/training/utils/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..f4b4ef0ebe359063e1ca2c3a46cb8fcc76d067c2 --- /dev/null +++ b/third_party/sam2/training/utils/logger.py @@ -0,0 +1,246 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Code borrowed from TLC - https://www.internalfb.com/code/fbsource/fbcode/pytorch/tlc/torchtlc/loggers/tensorboard.py +import atexit +import functools +import logging +import sys +import uuid +from typing import Any, Dict, Optional, Union + +from hydra.utils import instantiate + +from iopath.common.file_io import g_pathmgr +from numpy import ndarray +from torch import Tensor +from torch.utils.tensorboard import SummaryWriter + +from training.utils.train_utils import get_machine_local_and_dist_rank, makedir + +Scalar = Union[Tensor, ndarray, int, float] + + +def make_tensorboard_logger(log_dir: str, **writer_kwargs: Any): + makedir(log_dir) + summary_writer_method = SummaryWriter + return TensorBoardLogger( + path=log_dir, summary_writer_method=summary_writer_method, **writer_kwargs + ) + + +class TensorBoardWriterWrapper: + """ + A wrapper around a SummaryWriter object. + """ + + def __init__( + self, + path: str, + *args: Any, + filename_suffix: str = None, + summary_writer_method: Any = SummaryWriter, + **kwargs: Any, + ) -> None: + """Create a new TensorBoard logger. + On construction, the logger creates a new events file that logs + will be written to. If the environment variable `RANK` is defined, + logger will only log if RANK = 0. + + NOTE: If using the logger with distributed training: + - This logger can call collective operations + - Logs will be written on rank 0 only + - Logger must be constructed synchronously *after* initializing distributed process group. + + Args: + path (str): path to write logs to + *args, **kwargs: Extra arguments to pass to SummaryWriter + """ + self._writer: Optional[SummaryWriter] = None + _, self._rank = get_machine_local_and_dist_rank() + self._path: str = path + if self._rank == 0: + logging.info( + f"TensorBoard SummaryWriter instantiated. Files will be stored in: {path}" + ) + self._writer = summary_writer_method( + log_dir=path, + *args, + filename_suffix=filename_suffix or str(uuid.uuid4()), + **kwargs, + ) + else: + logging.debug( + f"Not logging meters on this host because env RANK: {self._rank} != 0" + ) + atexit.register(self.close) + + @property + def writer(self) -> Optional[SummaryWriter]: + return self._writer + + @property + def path(self) -> str: + return self._path + + def flush(self) -> None: + """Writes pending logs to disk.""" + + if not self._writer: + return + + self._writer.flush() + + def close(self) -> None: + """Close writer, flushing pending logs to disk. + Logs cannot be written after `close` is called. + """ + + if not self._writer: + return + + self._writer.close() + self._writer = None + + +class TensorBoardLogger(TensorBoardWriterWrapper): + """ + A simple logger for TensorBoard. + """ + + def log_dict(self, payload: Dict[str, Scalar], step: int) -> None: + """Add multiple scalar values to TensorBoard. + + Args: + payload (dict): dictionary of tag name and scalar value + step (int, Optional): step value to record + """ + if not self._writer: + return + for k, v in payload.items(): + self.log(k, v, step) + + def log(self, name: str, data: Scalar, step: int) -> None: + """Add scalar data to TensorBoard. + + Args: + name (string): tag name used to group scalars + data (float/int/Tensor): scalar data to log + step (int, optional): step value to record + """ + if not self._writer: + return + self._writer.add_scalar(name, data, global_step=step, new_style=True) + + def log_hparams( + self, hparams: Dict[str, Scalar], meters: Dict[str, Scalar] + ) -> None: + """Add hyperparameter data to TensorBoard. + + Args: + hparams (dict): dictionary of hyperparameter names and corresponding values + meters (dict): dictionary of name of meter and corersponding values + """ + if not self._writer: + return + self._writer.add_hparams(hparams, meters) + + +class Logger: + """ + A logger class that can interface with multiple loggers. It now supports tensorboard only for simplicity, but you can extend it with your own logger. + """ + + def __init__(self, logging_conf): + # allow turning off TensorBoard with "should_log: false" in config + tb_config = logging_conf.tensorboard_writer + tb_should_log = tb_config and tb_config.pop("should_log", True) + self.tb_logger = instantiate(tb_config) if tb_should_log else None + + def log_dict(self, payload: Dict[str, Scalar], step: int) -> None: + if self.tb_logger: + self.tb_logger.log_dict(payload, step) + + def log(self, name: str, data: Scalar, step: int) -> None: + if self.tb_logger: + self.tb_logger.log(name, data, step) + + def log_hparams( + self, hparams: Dict[str, Scalar], meters: Dict[str, Scalar] + ) -> None: + if self.tb_logger: + self.tb_logger.log_hparams(hparams, meters) + + +# cache the opened file object, so that different calls to `setup_logger` +# with the same file name can safely write to the same file. +@functools.lru_cache(maxsize=None) +def _cached_log_stream(filename): + # we tune the buffering value so that the logs are updated + # frequently. + log_buffer_kb = 10 * 1024 # 10KB + io = g_pathmgr.open(filename, mode="a", buffering=log_buffer_kb) + atexit.register(io.close) + return io + + +def setup_logging( + name, + output_dir=None, + rank=0, + log_level_primary="INFO", + log_level_secondary="ERROR", +): + """ + Setup various logging streams: stdout and file handlers. + For file handlers, we only setup for the master gpu. + """ + # get the filename if we want to log to the file as well + log_filename = None + if output_dir: + makedir(output_dir) + if rank == 0: + log_filename = f"{output_dir}/log.txt" + + logger = logging.getLogger(name) + logger.setLevel(log_level_primary) + + # create formatter + FORMAT = "%(levelname)s %(asctime)s %(filename)s:%(lineno)4d: %(message)s" + formatter = logging.Formatter(FORMAT) + + # Cleanup any existing handlers + for h in logger.handlers: + logger.removeHandler(h) + logger.root.handlers = [] + + # setup the console handler + console_handler = logging.StreamHandler(sys.stdout) + console_handler.setFormatter(formatter) + logger.addHandler(console_handler) + if rank == 0: + console_handler.setLevel(log_level_primary) + else: + console_handler.setLevel(log_level_secondary) + + # we log to file as well if user wants + if log_filename and rank == 0: + file_handler = logging.StreamHandler(_cached_log_stream(log_filename)) + file_handler.setLevel(log_level_primary) + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + + logging.root = logger + + +def shutdown_logging(): + """ + After training is done, we ensure to shut down all the logger streams. + """ + logging.info("Shutting down loggers...") + handlers = logging.root.handlers + for handler in handlers: + handler.close() diff --git a/third_party/sam2/training/utils/train_utils.py b/third_party/sam2/training/utils/train_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..91d5577d5f50c81624737d221dc572ac3c4cee56 --- /dev/null +++ b/third_party/sam2/training/utils/train_utils.py @@ -0,0 +1,288 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import math +import os +import random +import re +from datetime import timedelta +from typing import Optional + +import hydra + +import numpy as np +import omegaconf +import torch +import torch.distributed as dist +from iopath.common.file_io import g_pathmgr +from omegaconf import OmegaConf + + +def multiply_all(*args): + return np.prod(np.array(args)).item() + + +def collect_dict_keys(config): + """This function recursively iterates through a dataset configuration, and collect all the dict_key that are defined""" + val_keys = [] + # If the this config points to the collate function, then it has a key + if "_target_" in config and re.match(r".*collate_fn.*", config["_target_"]): + val_keys.append(config["dict_key"]) + else: + # Recursively proceed + for v in config.values(): + if isinstance(v, type(config)): + val_keys.extend(collect_dict_keys(v)) + elif isinstance(v, omegaconf.listconfig.ListConfig): + for item in v: + if isinstance(item, type(config)): + val_keys.extend(collect_dict_keys(item)) + return val_keys + + +class Phase: + TRAIN = "train" + VAL = "val" + + +def register_omegaconf_resolvers(): + OmegaConf.register_new_resolver("get_method", hydra.utils.get_method) + OmegaConf.register_new_resolver("get_class", hydra.utils.get_class) + OmegaConf.register_new_resolver("add", lambda x, y: x + y) + OmegaConf.register_new_resolver("times", multiply_all) + OmegaConf.register_new_resolver("divide", lambda x, y: x / y) + OmegaConf.register_new_resolver("pow", lambda x, y: x**y) + OmegaConf.register_new_resolver("subtract", lambda x, y: x - y) + OmegaConf.register_new_resolver("range", lambda x: list(range(x))) + OmegaConf.register_new_resolver("int", lambda x: int(x)) + OmegaConf.register_new_resolver("ceil_int", lambda x: int(math.ceil(x))) + OmegaConf.register_new_resolver("merge", lambda *x: OmegaConf.merge(*x)) + + +def setup_distributed_backend(backend, timeout_mins): + """ + Initialize torch.distributed and set the CUDA device. + Expects environment variables to be set as per + https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization + along with the environ variable "LOCAL_RANK" which is used to set the CUDA device. + """ + # enable TORCH_NCCL_ASYNC_ERROR_HANDLING to ensure dist nccl ops time out after timeout_mins + # of waiting + os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1" + logging.info(f"Setting up torch.distributed with a timeout of {timeout_mins} mins") + dist.init_process_group(backend=backend, timeout=timedelta(minutes=timeout_mins)) + return dist.get_rank() + + +def get_machine_local_and_dist_rank(): + """ + Get the distributed and local rank of the current gpu. + """ + local_rank = int(os.environ.get("LOCAL_RANK", None)) + distributed_rank = int(os.environ.get("RANK", None)) + assert ( + local_rank is not None and distributed_rank is not None + ), "Please the set the RANK and LOCAL_RANK environment variables." + return local_rank, distributed_rank + + +def print_cfg(cfg): + """ + Supports printing both Hydra DictConfig and also the AttrDict config + """ + logging.info("Training with config:") + logging.info(OmegaConf.to_yaml(cfg)) + + +def set_seeds(seed_value, max_epochs, dist_rank): + """ + Set the python random, numpy and torch seed for each gpu. Also set the CUDA + seeds if the CUDA is available. This ensures deterministic nature of the training. + """ + # Since in the pytorch sampler, we increment the seed by 1 for every epoch. + seed_value = (seed_value + dist_rank) * max_epochs + logging.info(f"MACHINE SEED: {seed_value}") + random.seed(seed_value) + np.random.seed(seed_value) + torch.manual_seed(seed_value) + if torch.cuda.is_available(): + torch.cuda.manual_seed_all(seed_value) + + +def makedir(dir_path): + """ + Create the directory if it does not exist. + """ + is_success = False + try: + if not g_pathmgr.exists(dir_path): + g_pathmgr.mkdirs(dir_path) + is_success = True + except BaseException: + logging.info(f"Error creating directory: {dir_path}") + return is_success + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_amp_type(amp_type: Optional[str] = None): + if amp_type is None: + return None + assert amp_type in ["bfloat16", "float16"], "Invalid Amp type." + if amp_type == "bfloat16": + return torch.bfloat16 + else: + return torch.float16 + + +def log_env_variables(): + env_keys = sorted(list(os.environ.keys())) + st = "" + for k in env_keys: + v = os.environ[k] + st += f"{k}={v}\n" + logging.info("Logging ENV_VARIABLES") + logging.info(st) + + +class AverageMeter: + """Computes and stores the average and current value""" + + def __init__(self, name, device, fmt=":f"): + self.name = name + self.fmt = fmt + self.device = device + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + self._allow_updates = True + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + def __str__(self): + fmtstr = "{name}: {val" + self.fmt + "} ({avg" + self.fmt + "})" + return fmtstr.format(**self.__dict__) + + +class MemMeter: + """Computes and stores the current, avg, and max of peak Mem usage per iteration""" + + def __init__(self, name, device, fmt=":f"): + self.name = name + self.fmt = fmt + self.device = device + self.reset() + + def reset(self): + self.val = 0 # Per iteration max usage + self.avg = 0 # Avg per iteration max usage + self.peak = 0 # Peak usage for lifetime of program + self.sum = 0 + self.count = 0 + self._allow_updates = True + + def update(self, n=1, reset_peak_usage=True): + self.val = torch.cuda.max_memory_allocated() // 1e9 + self.sum += self.val * n + self.count += n + self.avg = self.sum / self.count + self.peak = max(self.peak, self.val) + if reset_peak_usage: + torch.cuda.reset_peak_memory_stats() + + def __str__(self): + fmtstr = ( + "{name}: {val" + + self.fmt + + "} ({avg" + + self.fmt + + "}/{peak" + + self.fmt + + "})" + ) + return fmtstr.format(**self.__dict__) + + +def human_readable_time(time_seconds): + time = int(time_seconds) + minutes, seconds = divmod(time, 60) + hours, minutes = divmod(minutes, 60) + days, hours = divmod(hours, 24) + return f"{days:02}d {hours:02}h {minutes:02}m" + + +class DurationMeter: + def __init__(self, name, device, fmt=":f"): + self.name = name + self.device = device + self.fmt = fmt + self.val = 0 + + def reset(self): + self.val = 0 + + def update(self, val): + self.val = val + + def add(self, val): + self.val += val + + def __str__(self): + return f"{self.name}: {human_readable_time(self.val)}" + + +class ProgressMeter: + def __init__(self, num_batches, meters, real_meters, prefix=""): + self.batch_fmtstr = self._get_batch_fmtstr(num_batches) + self.meters = meters + self.real_meters = real_meters + self.prefix = prefix + + def display(self, batch, enable_print=False): + entries = [self.prefix + self.batch_fmtstr.format(batch)] + entries += [str(meter) for meter in self.meters] + entries += [ + " | ".join( + [ + f"{os.path.join(name, subname)}: {val:.4f}" + for subname, val in meter.compute().items() + ] + ) + for name, meter in self.real_meters.items() + ] + logging.info(" | ".join(entries)) + if enable_print: + print(" | ".join(entries)) + + def _get_batch_fmtstr(self, num_batches): + num_digits = len(str(num_batches // 1)) + fmt = "{:" + str(num_digits) + "d}" + return "[" + fmt + "/" + fmt.format(num_batches) + "]" + + +def get_resume_checkpoint(checkpoint_save_dir): + if not g_pathmgr.isdir(checkpoint_save_dir): + return None + ckpt_file = os.path.join(checkpoint_save_dir, "checkpoint.pt") + if not g_pathmgr.isfile(ckpt_file): + return None + + return ckpt_file