import gradio as gr from fastai import * from fastai.vision.all import * import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('Pickle_SD_Model.pkl') labels = learn.dls.vocab set_label = gr.outputs.Textbox(label="Predicted Class") set_prob = gr.outputs.Label(num_top_classes=4, label="Predicted Probability Per Class") def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Tomato Disease Classifier" description = "Classify Tomato Disease from leaf" interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(256,256)), outputs=gr.outputs.Label(num_top_classes=4) ).launch(share=True)