import os os.system('pip install streamlit_analytics') import streamlit as st import streamlit_analytics try: streamlit_analytics.track(load_from_json="demand.json") except: pass # Tickers to choose from # Updated crypto tickers tickers = ['BTC-USD', 'ETH-USD', 'BNB-USD', 'XRP-USD', 'ADA-USD', 'DOT-USD', 'DOGE-USD', 'SOL-USD'] # Image options for each crypto ticker image_options = { 'BTC-USD': 'BTC-USD.jpg', 'ETH-USD': 'ETH-USD.jpg', 'BNB-USD': 'BNB-USD.jpg', 'XRP-USD': 'XRP-USD.jpg', 'ADA-USD': 'ADA-USD.jpg', 'DOT-USD': 'DOT-USD.jpg', 'DOGE-USD': 'DOGE-USD.jpg', 'SOL-USD': 'SOL-USD.jpg', 'DOT-USD': 'DOT-USD.jpg', } # Crypto names for each ticker stock_names = { 'BTC-USD': 'Bitcoin', 'ETH-USD': 'Ethereum', 'BNB-USD': 'Binance Coin', 'XRP-USD': 'XRP', 'ADA-USD': 'Cardano', 'DOT-USD': 'Polkadot', 'DOGE-USD': 'Dogecoin', 'SOL-USD': 'Solana', 'DOT-USD': 'Polkadot', } st.title("Crypto Forecaster") # Create a dropdown to select a ticker with streamlit_analytics.track(save_to_json="demand.json"): selected_ticker = st.selectbox("Select a ticker:", tickers) # Display the image for the selected ticker if selected_ticker: image_path = image_options[selected_ticker] image = st.image(image_path) # Display the stock name for the selected ticker stock_name = stock_names[selected_ticker] st.write(f"Crypto name: {stock_name}") st.markdown(":warning: The content of this website is for educational purposes and is not a financial advice") st.markdown(":information_source: This model has been trained on the past 6 years of data until November 22nd, 2023 for each of the selected stocks. For a more comprehensive analysis with a different date range, access to thousands of stocks, hundreds of cryptocurrencies, and more up-to-date predictions, please visit our website: https://crypto.quu.fr")