Spaces:
Sleeping
Sleeping
File size: 26,206 Bytes
ff09573 bd86a2f ff09573 3fb8480 bd86a2f 2b88ac2 bd86a2f 8c6ebfd 951dff8 795546c 319229a c9f8787 b33c7b0 04f15f9 8c6ebfd 3904f21 d51f1af bd86a2f 3904f21 2b88ac2 bd86a2f ff09573 da7c345 ff09573 da7c345 ff09573 06e8d82 ff09573 2476270 a3a987c ab4b958 a3a987c 8c252e8 ab4b958 3904f21 ab4b958 795546c 684cb9a 2b88ac2 ff09573 2b88ac2 ab4b958 bd86a2f ff09573 795546c ff09573 d51f1af 795546c d51f1af ff09573 75003b4 ff09573 970159f 2b88ac2 970159f 75003b4 ff09573 970159f 2b88ac2 970159f bd86a2f d51f1af 795546c ff09573 da7c345 2b88ac2 795546c ff09573 2b88ac2 795546c ab4b958 795546c 970159f d51f1af 970159f d51f1af 970159f d51f1af 970159f d51f1af 970159f a3a987c 3904f21 a3a987c 4f0d8cb d51f1af 2b88ac2 d51f1af 2b88ac2 bd86a2f 4f0d8cb da7c345 4f0d8cb 951dff8 d51f1af 2b88ac2 d51f1af 2b88ac2 d51f1af 2476270 a3a987c 795546c a3a987c 951dff8 b4d5d45 951dff8 3f3c7f0 d51f1af 3f3c7f0 795546c 3f3c7f0 c8edb35 3f3c7f0 951dff8 795546c 951dff8 b8299c5 bd86a2f 795546c 3f3c7f0 d51f1af 3904f21 b4d5d45 c8edb35 d51f1af 951dff8 4f0d8cb 3f3c7f0 951dff8 e499029 795546c 4f0d8cb 795546c 951dff8 b8299c5 795546c 3f3c7f0 b8299c5 c8edb35 3f3c7f0 951dff8 795546c 951dff8 b8299c5 a3a987c 04f15f9 3904f21 04f15f9 d51f1af 04f15f9 2b88ac2 c8edb35 04f15f9 d51f1af 04f15f9 d51f1af 2b88ac2 d51f1af 04f15f9 d51f1af 04f15f9 d51f1af 04f15f9 75003b4 3904f21 75003b4 319229a d51f1af 970159f 319229a c9f8787 d51f1af c9f8787 3904f21 c9f8787 b33c7b0 d51f1af 319229a 684cb9a 75003b4 3904f21 75003b4 d51f1af da7c345 75003b4 2b88ac2 75003b4 a3a987c 3904f21 a3a987c d51f1af 970159f ab4b958 2b88ac2 d51f1af 2b88ac2 970159f d51f1af 970159f d51f1af 970159f 04f15f9 d51f1af 04f15f9 3904f21 d51f1af 2b88ac2 970159f d51f1af 3904f21 d51f1af 3904f21 d51f1af 970159f 2b88ac2 d51f1af 3904f21 d51f1af 3904f21 d51f1af 75003b4 c8c480c 06e8d82 d51f1af 06e8d82 da7c345 2b88ac2 d51f1af 970159f 2b88ac2 970159f 2b88ac2 970159f 2b88ac2 970159f 2b88ac2 d51f1af da7c345 d51f1af 970159f d51f1af 970159f c8edb35 04f15f9 c8edb35 970159f 2b88ac2 970159f d51f1af 3904f21 970159f 2b88ac2 d51f1af c8c480c 3904f21 970159f ab4b958 970159f d51f1af 970159f d51f1af 970159f 3904f21 970159f 3904f21 795546c 3904f21 d51f1af 3904f21 d51f1af 795546c 8c6ebfd 3904f21 795546c 8c252e8 d51f1af 3904f21 795546c 8c6ebfd ab4b958 8c252e8 d51f1af 3904f21 75003b4 d51f1af 3904f21 c8c480c 3904f21 d51f1af 3904f21 d51f1af 3904f21 d51f1af 3904f21 d51f1af 3904f21 d51f1af bd86a2f d51f1af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
# app.py
import json
import re
import tempfile
from datetime import datetime, timedelta
from dateutil import tz
import logging
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates
import folium
from matplotlib import cm
import branca.colormap as bcm
import folium.plugins as plugins
from matplotlib.patches import Wedge, Rectangle, FancyArrowPatch
# -------- grafanalib(可選;未安裝則降級) --------
try:
from grafanalib.core import (
Dashboard, Graph, Row, Target, YAxis, YAxes, Time, BarGauge
)
GRAFANA_AVAILABLE = True
except Exception:
GRAFANA_AVAILABLE = False
# 日誌
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
TAIPEI = tz.gettz("Asia/Taipei")
# -----------------------------
# Google Drive 連結處理
# -----------------------------
DRIVE_PRESETS = [
"https://drive.google.com/file/d/15yZ4QicICKZCnX6vjcD9JNXjnJmMFJD4/view?usp=drivesdk",
"https://drive.google.com/file/d/1dqazYh_YzNNMbkUpgLRKSE9Y3ioPhtFu/view?usp=drivesdk",
"https://drive.google.com/file/d/1A23f4q8DXHpoRIN5UQsDd6eM8jJ_Ruf8/view?usp=drivesdk",
]
def normalize_drive_url(url: str) -> str:
if not isinstance(url, str) or not url.strip():
raise ValueError("請提供有效的 Google 連結")
url = url.strip()
m = re.search(r"https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)", url)
if m:
sheet_id = m.group(1)
return f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv"
m = re.search(r"https://drive\.google\.com/file/d/([a-zA-Z0-9-_]+)/", url)
if m:
file_id = m.group(1)
return f"https://drive.google.com/uc?export=download&id={file_id}"
return url
# -----------------------------
# Demo / Data loading with dynamic update
# -----------------------------
def make_demo_dataframe(last_time=None) -> tuple[pd.DataFrame, datetime]:
if last_time is None:
last_time = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
else:
last_time = last_time + timedelta(minutes=1)
times = [last_time + timedelta(minutes=i) for i in range(61)]
amp = np.random.rand(len(times))
cnt = np.random.randint(0, 11, size=len(times))
lats = np.random.uniform(21.8, 25.3, size=len(times))
lons = np.random.uniform(120.0, 122.0, size=len(times))
df = pd.DataFrame({"time": times, "amplitude": amp, "count": cnt, "lat": lats, "lon": lons})
df["pid"] = np.arange(len(df))
logger.debug(f"Generated new data with last_time: {last_time}")
return df, last_time
def _finalize_time(df: pd.DataFrame) -> pd.DataFrame:
time_col = next((c for c in ["time", "timestamp", "datetime", "date"] if c in df.columns), None)
if time_col is None:
raise ValueError("資料需包含時間欄位(time/timestamp/datetime/date 其一)")
df[time_col] = pd.to_datetime(df[time_col], errors="coerce")
if df[time_col].isna().all():
raise ValueError("時間欄位解析失敗,請確認格式")
df = df.rename(columns={time_col: "time"})
try:
if df["time"].dt.tz is None:
df["time"] = df["time"].dt.tz_localize(TAIPEI)
else:
df["time"] = df["time"].dt.tz_convert(TAIPEI)
except Exception:
def _to_tpe(t):
if t.tzinfo is None:
return t.tz_localize(TAIPEI)
return t.tz_convert(TAIPEI)
df["time"] = df["time"].apply(_to_tpe)
return df.sort_values("time").reset_index(drop=True)
def load_csv(file: gr.File | None) -> pd.DataFrame:
try:
df = pd.read_csv(file.name)
return _finalize_time(df)
except Exception as e:
raise ValueError(f"CSV 載入失敗:{str(e)}")
def load_drive_csv(sheet_or_file_url: str) -> pd.DataFrame:
try:
url = normalize_drive_url(sheet_or_file_url)
df = pd.read_csv(url)
return _finalize_time(df)
except Exception as e:
raise ValueError(f"Google 連結載入失敗:{str(e)}")
def load_data(source: str, file: gr.File | None = None, sheet_url: str = "", last_time=None) -> tuple[pd.DataFrame, datetime | None]:
if source == "drive":
if not sheet_url:
raise ValueError("請選擇 Google 連結")
return load_drive_csv(sheet_url), None
elif source == "upload":
if file is None:
raise ValueError("請上傳 CSV 檔")
return load_csv(file), None
else:
return make_demo_dataframe(last_time)
# -----------------------------
# 資料過濾(時區安全)
# -----------------------------
def _to_taipei(dt_like):
ts = pd.to_datetime(dt_like, errors="coerce")
if pd.isna(ts):
return None
if ts.tzinfo is None:
return ts.tz_localize(TAIPEI)
return ts.tz_convert(TAIPEI)
def filter_data(df: pd.DataFrame, start_time: str, end_time: str) -> pd.DataFrame:
if start_time:
st = _to_taipei(start_time)
if st is not None:
df = df[df["time"] >= st]
if end_time:
et = _to_taipei(end_time)
if et is not None:
df = df[df["time"] <= et]
return df
# -----------------------------
# grafanalib JSON(可降級)
# -----------------------------
def build_grafanalib_dashboard(series_columns: list[str], dual_axis: bool, rolling_window: int) -> dict:
if not GRAFANA_AVAILABLE:
return {
"error": "grafanalib 未安裝。如需啟用,請在 requirements.txt 加入:grafanalib",
"series": series_columns,
"dual_axis": bool(dual_axis),
"rolling_window": int(rolling_window),
}
panels = [
Graph(
title=f"{series_columns[0]}",
dataSource="(example)",
targets=[Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])],
lines=True, bars=False, points=False,
yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
),
]
if len(series_columns) > 1:
targets = [Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])]
lines, bars, title = False, True, f"{series_columns[1]} (bar)"
if dual_axis:
targets.append(Target(expr=f"{series_columns[0]}", legendFormat=f"{series_columns[0]} (line)"))
lines, bars = True, True
title = f"{series_columns[1]} (bar) + {series_columns[0]} (line)"
panels.append(
Graph(
title=title,
dataSource="(example)",
targets=targets,
lines=lines, bars=bars, points=False,
yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
)
)
panels.extend([
Graph(
title=f"{series_columns[0]} rolling({rolling_window})",
dataSource="(example)",
targets=[Target(expr=f"{series_columns[0]}_rolling{rolling_window}",
legendFormat=f"{series_columns[0]}_rolling{rolling_window}")],
lines=True, bars=False, points=False,
yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
),
BarGauge(
title=f"Latest {series_columns[0]}",
dataSource="(example)",
targets=[Target(expr=f"last({series_columns[0]})", legendFormat=series_columns[0])]
),
])
return Dashboard(
title="Grafana-like Demo (grafanalib + Gradio)",
rows=[Row(panels=panels)],
timezone="browser",
time=Time("now-1h", "now")
).to_json_data()
# -----------------------------
# Matplotlib helpers
# -----------------------------
def _style_time_axis(ax):
locator = mdates.AutoDateLocator(minticks=3, maxticks=6)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.tick_params(axis="x", labelrotation=20, labelsize=9)
ax.tick_params(axis="y", labelsize=9)
ax.grid(True, which="major", alpha=0.25)
plt.margins(x=0.02, y=0.05)
def _normalize_times(series: pd.Series) -> pd.Series:
s = series.copy()
try:
if s.dt.tz is not None:
s = s.dt.tz_convert("UTC").dt.tz_localize(None)
except Exception:
s = pd.to_datetime(s, errors="coerce").dt.tz_convert("UTC").dt.tz_localize(None)
return s
def render_line(df, col):
times = _normalize_times(df["time"])
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(times, df[col], linewidth=1.6)
ax.set_title(col, fontsize=12, pad=8)
ax.set_xlabel("Time")
ax.set_ylabel(col)
_style_time_axis(ax)
fig.tight_layout()
return fig
def render_bar_or_dual(df, second_col, first_col, dual_axis):
times = _normalize_times(df["time"])
if len(times) >= 2:
delta_sec = pd.to_timedelta(times.diff(), errors="coerce").dt.total_seconds().median()
if pd.isna(delta_sec) or delta_sec <= 0:
delta_sec = 60.0
else:
delta_sec = 60.0
width_days = max(10.0, float(delta_sec) * 0.8) / 86400.0
x = mdates.date2num(times.dt.to_pydatetime().tolist())
fig, ax = plt.subplots(figsize=(6, 3))
ax.bar(x, df[second_col], width=width_days, align="center", label=second_col)
title = f"{second_col} (bar)"
if dual_axis:
ax2 = ax.twinx()
ax2.plot(times, df[first_col], linewidth=1.6, label=f"{first_col} (line)")
title = f"{second_col} (bar) + {first_col} (line)"
h1, l1 = ax.get_legend_handles_labels()
h2, l2 = ax2.get_legend_handles_labels()
ax.legend(h1 + h2, l1 + l2, loc="upper left")
else:
ax.legend(loc="upper left")
ax.set_title(title, fontsize=12, pad=8)
_style_time_axis(ax)
fig.tight_layout()
return fig
def render_rolling(df, col, window=5):
times = _normalize_times(df["time"])
roll_col = f"{col}_rolling{window}"
if roll_col not in df.columns:
df[roll_col] = df[col].rolling(window=window, min_periods=1).mean()
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(times, df[roll_col], linewidth=1.6)
ax.set_title(f"{col} rolling({window})", fontsize=12, pad=8)
ax.set_xlabel("Time")
ax.set_ylabel(roll_col)
_style_time_axis(ax)
fig.tight_layout()
return fig, df
# -----------------------------
# Gauge
# -----------------------------
def degree_range(n):
start = np.linspace(0, 180, n + 1, endpoint=True)[0:-1]
end = np.linspace(0, 180, n + 1, endpoint=True)[1:]
mid_points = start + ((end - start) / 2.)
return np.c_[start, end], mid_points
def rot_text(ang):
rotation = np.degrees(np.radians(ang) * np.pi / np.pi - np.radians(90))
return rotation
def render_gauge(df, col):
if df.empty:
value = 0.0
min_val, max_val = 0.0, 1.0
else:
value = float(df[col].iloc[-1])
min_val, max_val = float(df[col].min()), float(df[col].max())
normalized = (value - min_val) / (max_val - min_val + 1e-9) if max_val > min_val else 0.0
labels = ['LOW', 'MEDIUM', 'HIGH']
N = len(labels)
colors = ['#007A00', '#FFCC00', '#ED1C24']
arrow = 1 if normalized < 0.33 else 2 if normalized < 0.66 else 3
fig, ax = plt.subplots(figsize=(5, 3.5))
ang_range, mid_points = degree_range(N)
labels = labels[::-1]
patches = [Wedge((0., 0.), .4, *ang, facecolor='w', lw=2) for ang in ang_range] + \
[Wedge((0., 0.), .4, *ang, width=0.10, facecolor=c, lw=2, alpha=0.5) for ang, c in zip(ang_range, colors)]
for p in patches:
ax.add_patch(p)
for mid, lab in zip(mid_points, labels):
ax.text(0.35 * np.cos(np.radians(mid)), 0.35 * np.sin(np.radians(mid)),
lab, ha='center', va='center', fontsize=12, fontweight='bold', rotation=rot_text(mid))
ax.add_patch(Rectangle((-0.4, -0.1), 0.8, 0.1, facecolor='w', lw=2))
ax.text(0, -0.05, f"Latest {col}: {value:.2f}", ha='center', va='center', fontsize=12, fontweight='bold')
pos = mid_points[abs(arrow - N)]
ax.arrow(0, 0, 0.225 * np.cos(np.radians(pos)), 0.225 * np.sin(np.radians(pos)),
width=0.04, head_width=0.09, head_length=0.1, fc='k', ec='k')
ax.add_patch(FancyArrowPatch((0, 0), (0.01 * np.cos(np.radians(pos)), 0.01 * np.sin(np.radians(pos))),
mutation_scale=10, fc='k', ec='k'))
ax.set_frame_on(False)
ax.set_xticks([])
ax.set_yticks([])
ax.axis('equal')
plt.tight_layout()
return fig
# -----------------------------
# Folium map
# -----------------------------
def _to_hex_color(value: float, cmap=cm.viridis) -> str:
rgba = cmap(value)
return "#{:02x}{:02x}{:02x}".format(int(rgba[0]*255), int(rgba[1]*255), int(rgba[2]*255))
def render_map_folium(df: pd.DataFrame, value_col: str = "amplitude", size_col: str = "count",
cmap_name: str = "viridis", tiles: str = "OpenStreetMap", show_heatmap: bool = False) -> str:
if df.empty:
return "<p>無資料可顯示地圖</p>"
center_lat, center_lon = df["lat"].mean(), df["lon"].mean()
m = folium.Map(location=[center_lat, center_lon], zoom_start=7, tiles=tiles)
vmin, vmax = float(df[value_col].min()), float(df[value_col].max())
cmap = getattr(cm, cmap_name)
colormap = bcm.LinearColormap([_to_hex_color(i, cmap) for i in np.linspace(0, 1, 128)], vmin=vmin, vmax=vmax)
colormap.caption = f"{value_col} (color scale)"
colormap.add_to(m)
if show_heatmap:
heat_data = [[row["lat"], row["lon"], row[value_col]] for _, row in df.iterrows()]
plugins.HeatMap(heat_data, radius=15, blur=10).add_to(m)
else:
for _, row in df.iterrows():
norm_val = (row[value_col] - vmin) / (vmax - vmin + 1e-9) if vmax > vmin else 0.0
popup_html = (
f"<b>#ID:</b> {int(row['pid'])}"
f"<br><b>time:</b> {pd.to_datetime(row['time']).strftime('%Y-%m-%d %H:%M:%S')}"
f"<br><b>{value_col}:</b> {row[value_col]:.4f}"
f"<br><b>{size_col}:</b> {int(row[size_col]) if size_col in row else ''}"
f"<br><b>lat/lon:</b> {row['lat']:.5f}, {row['lon']:.5f}"
)
folium.CircleMarker(
location=[row["lat"], row["lon"]],
radius=(int(row[size_col]) if size_col in row else 3) + 3,
color="black", weight=1, fill=True, fill_opacity=0.7,
fill_color=_to_hex_color(norm_val, cmap),
popup=folium.Popup(popup_html, max_width=300)
).add_to(m)
return m._repr_html_()
# -----------------------------
# 點位詳情 helpers
# -----------------------------
def make_point_choices(df: pd.DataFrame) -> list[str]:
choices = []
for _, r in df.iterrows():
amp = r.get('amplitude', np.nan)
cnt = r.get('count', np.nan)
amp_str = f"{amp:.3f}" if pd.notna(amp) else "NA"
cnt_str = f"{int(cnt)}" if pd.notna(cnt) else "NA"
choices.append(f"#{int(r['pid'])} | {pd.to_datetime(r['time']).strftime('%H:%M:%S')} | amp={amp_str} cnt={cnt_str}")
return choices
def pick_detail(df: pd.DataFrame, choice: str) -> pd.DataFrame:
if not choice:
return pd.DataFrame()
try:
pid = int(choice.split("|")[0].strip().lstrip("#"))
return df[df["pid"] == pid].reset_index(drop=True)
except Exception:
return pd.DataFrame()
# -----------------------------
# Main pipeline
# -----------------------------
def pipeline(source, file, sheet_url, series_choice, dual_axis, rolling_window,
cmap_choice, tiles_choice, start_time, end_time, show_heatmap, last_time=None):
try:
df, new_last_time = load_data(source, file, sheet_url, last_time)
df = filter_data(df, start_time, end_time)
numeric_cols = [c for c in df.columns
if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols] or numeric_cols[:2] or []
if not chosen:
raise ValueError("無有效數值欄位可視覺化")
dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
f.write(dash_json_str)
json_path = f.name
fig1 = render_line(df, chosen[0])
fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else plt.figure()
fig3, df_with_roll = render_rolling(df.copy(), chosen[0], int(rolling_window))
fig4 = render_gauge(df, chosen[0])
size_col = chosen[1] if len(chosen) > 1 else ("count" if "count" in df.columns else chosen[0])
map_html = render_map_folium(df, value_col=chosen[0], size_col=size_col,
cmap_name=cmap_choice, tiles=tiles_choice, show_heatmap=bool(show_heatmap))
point_choices = [] if show_heatmap else make_point_choices(df)
default_choice = None if show_heatmap else (point_choices[0] if point_choices else None)
detail_df = pick_detail(df, default_choice) if default_choice else pd.DataFrame()
demo_df = make_demo_dataframe()[0]
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
demo_df.to_csv(f, index=False)
demo_csv_path = f.name
# 新增:資料概況
info = f"資料筆數:**{len(df)}** .時間範圍:**{df['time'].min().strftime('%Y-%m-%d %H:%M:%S')} ~ {df['time'].max().strftime('%Y-%m-%d %H:%M:%S')}**(台北時區)"
# 熱圖模式下停用點位下拉選單
point_selector_update = gr.update(
choices=point_choices,
value=default_choice,
interactive=not bool(show_heatmap),
label="選擇點位(*熱圖模式停用*)" if show_heatmap else "選擇點位"
)
return (
fig1, fig2, fig3, fig4,
map_html,
dash_json_str, json_path,
df_with_roll, demo_csv_path,
point_selector_update,
detail_df,
"", # error
new_last_time,
info # data summary
)
except Exception as e:
logger.error(f"Pipeline error: {str(e)}")
return (
None, None, None, None,
"<p>錯誤:無資料顯示</p>",
"", None,
pd.DataFrame(), None,
gr.update(choices=[], value=None, interactive=False),
pd.DataFrame(),
str(e),
last_time,
"(無資料)"
)
def update_detail(df: pd.DataFrame, choice: str):
return pick_detail(df, choice)
# -----------------------------
# UI
# -----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## 動態時間序列 - Grafana-like Demo + Folium Map")
last_time_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
source_radio = gr.Radio(["upload", "drive", "demo"], label="資料來源", value="demo")
file_in = gr.File(label="上傳 CSV", file_types=[".csv"])
preset_dd = gr.Dropdown(label="Google 預設來源", choices=DRIVE_PRESETS, value=DRIVE_PRESETS[0])
with gr.Row():
start_time_in = gr.Textbox(label="開始時間", placeholder="2023-01-01 00:00:00")
end_time_in = gr.Textbox(label="結束時間", placeholder="2023-12-31 23:59:59")
with gr.Column(scale=1):
series_multiselect = gr.CheckboxGroup(label="數值欄位", choices=[])
dual_axis_chk = gr.Checkbox(label="第二面板雙軸", value=False)
rolling_dd = gr.Dropdown(label="Rolling window", choices=["3", "5", "10", "20"], value="5")
cmap_dd = gr.Dropdown(label="地圖配色", choices=["viridis", "plasma", "inferno", "magma", "cividis", "coolwarm"], value="viridis")
tiles_dd = gr.Dropdown(label="地圖底圖", choices=["OpenStreetMap", "Stamen Terrain", "Stamen Toner", "CartoDB positron", "CartoDB dark_matter"], value="OpenStreetMap")
heatmap_chk = gr.Checkbox(label="顯示熱圖", value=False)
with gr.Row():
run_btn = gr.Button("產生 Dashboard", scale=1)
update_btn = gr.Button("手動更新數據", scale=1, elem_id="update_btn")
interval = gr.Slider(5, 60, value=10, step=5, label="自動更新間隔 (秒)", elem_id="interval_slider")
error_msg = gr.Markdown(value="", label="錯誤訊息", visible=True)
with gr.Tabs():
with gr.Tab("圖表"):
with gr.Row():
with gr.Column(scale=1):
plot1 = gr.Plot(label="1:Line")
with gr.Column(scale=1):
plot2 = gr.Plot(label="2:Bar / Dual Axis")
with gr.Row():
with gr.Column(scale=1):
plot3 = gr.Plot(label="3:Rolling Mean")
with gr.Column(scale=1):
plot4 = gr.Plot(label="4:Gauge")
with gr.Tab("地圖"):
map_out = gr.HTML(label="5:Geo Map")
with gr.Tab("JSON & 檔案"):
json_box = gr.Code(label="grafanalib Dashboard JSON", language="json")
json_file = gr.File(label="下載 dashboard.json")
demo_csv_file = gr.File(label="下載示範資料 demo.csv")
with gr.Tab("資料預覽"):
df_view = gr.Dataframe(label="資料預覽")
data_info = gr.Markdown("") # 新增:資料概況
with gr.Tab("點位詳情"):
gr.Markdown("### 點位詳情")
point_selector = gr.Dropdown(label="選擇點位", choices=[], value=None)
detail_view = gr.Dataframe(label="選取點詳細資料")
# 欄位探測
def probe_columns(source, file, preset_url, start_time, end_time):
sheet_url = preset_url if source == "drive" else ""
try:
df, _ = load_data(source, file, sheet_url)
df = filter_data(df, start_time, end_time)
numeric_cols = [c for c in df.columns
if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
return gr.update(choices=numeric_cols, value=numeric_cols[:2]), df, ""
except Exception as e:
return gr.update(choices=[], value=[]), pd.DataFrame(), str(e)
source_radio.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
file_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
preset_dd.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
start_time_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
end_time_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
# 初次載入:改用 demo(避免 Drive 權限問題造成「無資料」)
demo.load(
fn=lambda: pipeline("demo", None, "", [], False, "5",
"viridis", "OpenStreetMap", "", "", False, None),
outputs=[
plot1, plot2, plot3, plot4,
map_out,
json_box, json_file,
df_view, demo_csv_file,
point_selector, detail_view,
error_msg,
last_time_state,
data_info
]
)
# 產生與更新
run_btn.click(
fn=pipeline,
inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd,
cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, last_time_state],
outputs=[plot1, plot2, plot3, plot4,
map_out, json_box, json_file,
df_view, demo_csv_file,
point_selector, detail_view,
error_msg,
last_time_state,
data_info]
)
update_btn.click(
fn=pipeline,
inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd,
cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, last_time_state],
outputs=[plot1, plot2, plot3, plot4,
map_out, json_box, json_file,
df_view, demo_csv_file,
point_selector, detail_view,
error_msg,
last_time_state,
data_info]
)
# 點位詳情
point_selector.change(fn=update_detail, inputs=[df_view, point_selector], outputs=[detail_view])
# 自動更新(以 elem_id 綁定,避免 aria-label 變動)
gr.HTML("""
<script>
(function () {
function getSliderEl() {
const container = document.getElementById("interval_slider");
if (!container) return null;
return container.querySelector('input[type="range"]');
}
function getUpdateBtn() {
const container = document.getElementById("update_btn");
if (!container) return null;
return container.querySelector("button") || container;
}
let timer = null;
function start() {
const slider = getSliderEl();
const btn = getUpdateBtn();
if (!slider || !btn) { setTimeout(start, 800); return; }
const setTimer = () => {
if (timer) clearInterval(timer);
timer = setInterval(() => btn.click(), parseInt(slider.value) * 1000);
};
setTimer();
slider.addEventListener("input", setTimer);
}
start();
})();
</script>
""")
if __name__ == "__main__":
demo.launch() |