""" taken from: https://github.com/karpathy/minGPT/ GPT model: - the initial stem consists of a combination of token encoding and a positional encoding - the meat of it is a uniform sequence of Transformer blocks - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - all blocks feed into a central residual pathway similar to resnets - the final decoder is a linear projection into a vanilla Softmax classifier """ import math import logging import torch import torch.nn as nn from torch.nn import functional as F from transformers import top_k_top_p_filtering logger = logging.getLogger(__name__) class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, vocab_size, block_size, **kwargs): self.vocab_size = vocab_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) class GPT1Config(GPTConfig): """ GPT-1 like network roughly 125M params """ n_layer = 12 n_head = 12 n_embd = 768 class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence mask = torch.tril(torch.ones(config.block_size, config.block_size)) if hasattr(config, "n_unmasked"): mask[:config.n_unmasked, :config.n_unmasked] = 1 self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) present = torch.stack((k, v)) if layer_past is not None: past_key, past_value = layer_past k = torch.cat((past_key, k), dim=-2) v = torch.cat((past_value, v), dim=-2) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) if layer_past is None: att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y, present # TODO: check that this does not break anything class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), # nice nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x, layer_past=None, return_present=False): # TODO: check that training still works if return_present: assert not self.training # layer past: tuple of length two with B, nh, T, hs attn, present = self.attn(self.ln1(x), layer_past=layer_past) x = x + attn x = x + self.mlp(self.ln2(x)) if layer_past is not None or return_present: return x, present return x class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): super().__init__() config = GPTConfig(vocab_size=vocab_size, block_size=block_size, embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, n_layer=n_layer, n_head=n_head, n_embd=n_embd, n_unmasked=n_unmasked) # input embedding stem self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) self.config = config logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx, embeddings=None, targets=None): # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if embeddings is not None: # prepend explicit embeddings token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) t = token_embeddings.shape[1] assert t <= self.block_size, "Cannot forward, model block size is exhausted." position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): # inference only assert not self.training token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if embeddings is not None: # prepend explicit embeddings token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) if past is not None: assert past_length is not None past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head past_shape = list(past.shape) expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector else: position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] x = self.drop(token_embeddings + position_embeddings) presents = [] # accumulate over layers for i, block in enumerate(self.blocks): x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) presents.append(present) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head class DummyGPT(nn.Module): # for debugging def __init__(self, add_value=1): super().__init__() self.add_value = add_value def forward(self, idx): return idx + self.add_value, None class CodeGPT(nn.Module): """Takes in semi-embeddings""" def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): super().__init__() config = GPTConfig(vocab_size=vocab_size, block_size=block_size, embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, n_layer=n_layer, n_head=n_head, n_embd=n_embd, n_unmasked=n_unmasked) # input embedding stem self.tok_emb = nn.Linear(in_channels, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) self.config = config logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx, embeddings=None, targets=None): # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if embeddings is not None: # prepend explicit embeddings token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) t = token_embeddings.shape[1] assert t <= self.block_size, "Cannot forward, model block size is exhausted." position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.taming_cinln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss #### sampling utils def top_k_logits(logits, k): v, ix = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float('Inf') return out @torch.no_grad() def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() for k in range(steps): x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed logits, _ = model(x_cond) # pluck the logits at the final step and scale by temperature logits = logits[:, -1, :] / temperature # optionally crop probabilities to only the top k options if top_k is not None: logits = top_k_logits(logits, top_k) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix), dim=1) return x @torch.no_grad() def sample_with_past(x, model, steps, temperature=1., sample_logits=True, top_k=None, top_p=None, callback=None): # x is conditioning sample = x cond_len = x.shape[1] past = None for n in range(steps): if callback is not None: callback(n) logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) if past is None: past = [present] else: past.append(present) logits = logits[:, -1, :] / temperature if top_k is not None: logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = F.softmax(logits, dim=-1) if not sample_logits: _, x = torch.topk(probs, k=1, dim=-1) else: x = torch.multinomial(probs, num_samples=1) # append to the sequence and continue sample = torch.cat((sample, x), dim=1) del past sample = sample[:, cond_len:] # cut conditioning off return sample #### clustering utils class KMeans(nn.Module): def __init__(self, ncluster=512, nc=3, niter=10): super().__init__() self.ncluster = ncluster self.nc = nc self.niter = niter self.shape = (3,32,32) self.register_buffer("C", torch.zeros(self.ncluster,nc)) self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) def is_initialized(self): return self.initialized.item() == 1 @torch.no_grad() def initialize(self, x): N, D = x.shape assert D == self.nc, D c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random for i in range(self.niter): # assign all pixels to the closest codebook element a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) # move each codebook element to be the mean of the pixels that assigned to it c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) # re-assign any poorly positioned codebook elements nanix = torch.any(torch.isnan(c), dim=1) ndead = nanix.sum().item() print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters self.C.copy_(c) self.initialized.fill_(1) def forward(self, x, reverse=False, shape=None): if not reverse: # flatten bs,c,h,w = x.shape assert c == self.nc x = x.reshape(bs,c,h*w,1) C = self.C.permute(1,0) C = C.reshape(1,c,1,self.ncluster) a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices return a else: # flatten bs, HW = x.shape """ c = self.C.reshape( 1, self.nc, 1, self.ncluster) c = c[bs*[0],:,:,:] c = c[:,:,HW*[0],:] x = x.reshape(bs, 1, HW, 1) x = x[:,3*[0],:,:] x = torch.gather(c, dim=3, index=x) """ x = self.C[x] x = x.permute(0,2,1) shape = shape if shape is not None else self.shape x = x.reshape(bs, *shape) return x