import os import numpy as np import cv2 import albumentations from PIL import Image from torch.utils.data import Dataset class SegmentationBase(Dataset): def __init__(self, data_csv, data_root, segmentation_root, size=None, random_crop=False, interpolation="bicubic", n_labels=182, shift_segmentation=False, ): self.n_labels = n_labels self.shift_segmentation = shift_segmentation self.data_csv = data_csv self.data_root = data_root self.segmentation_root = segmentation_root with open(self.data_csv, "r") as f: self.image_paths = f.read().splitlines() self._length = len(self.image_paths) self.labels = { "relative_file_path_": [l for l in self.image_paths], "file_path_": [os.path.join(self.data_root, l) for l in self.image_paths], "segmentation_path_": [os.path.join(self.segmentation_root, l.replace(".jpg", ".png")) for l in self.image_paths] } size = None if size is not None and size<=0 else size self.size = size if self.size is not None: self.interpolation = interpolation self.interpolation = { "nearest": cv2.INTER_NEAREST, "bilinear": cv2.INTER_LINEAR, "bicubic": cv2.INTER_CUBIC, "area": cv2.INTER_AREA, "lanczos": cv2.INTER_LANCZOS4}[self.interpolation] self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, interpolation=self.interpolation) self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, interpolation=cv2.INTER_NEAREST) self.center_crop = not random_crop if self.center_crop: self.cropper = albumentations.CenterCrop(height=self.size, width=self.size) else: self.cropper = albumentations.RandomCrop(height=self.size, width=self.size) self.preprocessor = self.cropper def __len__(self): return self._length def __getitem__(self, i): example = dict((k, self.labels[k][i]) for k in self.labels) image = Image.open(example["file_path_"]) if not image.mode == "RGB": image = image.convert("RGB") image = np.array(image).astype(np.uint8) if self.size is not None: image = self.image_rescaler(image=image)["image"] segmentation = Image.open(example["segmentation_path_"]) assert segmentation.mode == "L", segmentation.mode segmentation = np.array(segmentation).astype(np.uint8) if self.shift_segmentation: # used to support segmentations containing unlabeled==255 label segmentation = segmentation+1 if self.size is not None: segmentation = self.segmentation_rescaler(image=segmentation)["image"] if self.size is not None: processed = self.preprocessor(image=image, mask=segmentation ) else: processed = {"image": image, "mask": segmentation } example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) segmentation = processed["mask"] onehot = np.eye(self.n_labels)[segmentation] example["segmentation"] = onehot return example class Examples(SegmentationBase): def __init__(self, size=None, random_crop=False, interpolation="bicubic"): super().__init__(data_csv="data/sflckr_examples.txt", data_root="data/sflckr_images", segmentation_root="data/sflckr_segmentations", size=size, random_crop=random_crop, interpolation=interpolation)