--- title: IRIS Classification Lambda emoji: 🏢 colorFrom: indigo colorTo: blue sdk: gradio sdk_version: 5.5.0 app_file: app.py pinned: false short_description: IRIS Classification Lambda --- # IRIS classification task with AWS Lambda Workflow: use of AWS lambda function for deployment ## Local development ### Training the model: bash > python train.py ### Building the docker image: bash > docker build -t iris-classification-lambda . ### Running the docker container locally: bash > docker run --name iris-classification-lambda-cont -p 8080:8080 iris-classification-lambda ### Testing locally: Example of a prediction request bash > curl -X POST "http://localhost:8080/2015-03-31/functions/function/invocations" -H "Content-Type: application/json" -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}' python > python3 inference_api.py --url http://localhost:8080/2015-03-31/functions/function/invocations -d '{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}' ## Deployment to AWS ### Pushing the docker container to AWS ECR Steps: - Create new ECR Repository via aws console Example: ```iris-classification-lambda``` - Optional for aws cli configuration (to run above commands): > aws configure - Authenticate Docker client to the Amazon ECR registry > aws ecr get-login-password --region | docker login --username AWS --password-stdin .dkr.ecr..amazonaws.com - Tag local docker image with the Amazon ECR registry and repository > docker tag iris-classification-lambda:latest .dkr.ecr..amazonaws.com/iris-classification-lambda:latest - Push docker image to ECR > docker push .dkr.ecr..amazonaws.com/iris-classification-lambda:latest [Link to AWS Documention](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html) ### Creating and testing a Lambda function Steps: - Create function from container image Example name: ```iris-classification``` - Notes: the API endpoint will use the ```lambda_function.py``` file and ```lambda_hander``` function - Test the lambda via the AWS console Example JSON object: ``` { "features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]] } ``` Advanced notes: - Steps to update the Lambda function with latest container via aws cli: > aws lambda update-function-code --function-name iris-classification --image-uri .dkr.ecr..amazonaws.com/iris-classification-lambda:latest ### Creating an API via API Gateway Steps: - Create a new ```Rest API``` (e.g. ```iris-classification-api```) - Add a new resource to the API (e.g. ```/classify```) - Add a ```POST``` method to the resource - Integrate the Lambda function to the API - Notes: using proxy integration option unchecked - Deploy API with a specific stage (e.g. ```test``` stage) Example API Endpoint URL: https://.execute-api..amazonaws.com/test/classify