# coding=utf-8 import os import librosa import base64 import io import gradio as gr import re import numpy as np import torch import torchaudio import spaces from funasr import AutoModel model = "FunAudioLLM/SenseVoiceSmall" model = AutoModel(model=model, vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", vad_kwargs={"max_single_segment_time": 30000}, hub="hf", device="cuda" ) import re emo_dict = { "<|HAPPY|>": "😊", "<|SAD|>": "😔", "<|ANGRY|>": "😡", "<|NEUTRAL|>": "", "<|FEARFUL|>": "😰", "<|DISGUSTED|>": "🤢", "<|SURPRISED|>": "😮", } event_dict = { "<|BGM|>": "🎼", "<|Speech|>": "", "<|Applause|>": "👏", "<|Laughter|>": "😀", "<|Cry|>": "😭", "<|Sneeze|>": "🤧", "<|Breath|>": "", "<|Cough|>": "🤧", } emoji_dict = { "<|nospeech|><|Event_UNK|>": "❓", "<|zh|>": "", "<|en|>": "", "<|yue|>": "", "<|ja|>": "", "<|ko|>": "", "<|nospeech|>": "", "<|HAPPY|>": "😊", "<|SAD|>": "😔", "<|ANGRY|>": "😡", "<|NEUTRAL|>": "", "<|BGM|>": "🎼", "<|Speech|>": "", "<|Applause|>": "👏", "<|Laughter|>": "😀", "<|FEARFUL|>": "😰", "<|DISGUSTED|>": "🤢", "<|SURPRISED|>": "😮", "<|Cry|>": "😭", "<|EMO_UNKNOWN|>": "", "<|Sneeze|>": "🤧", "<|Breath|>": "", "<|Cough|>": "😷", "<|Sing|>": "", "<|Speech_Noise|>": "", "<|withitn|>": "", "<|woitn|>": "", "<|GBG|>": "", "<|Event_UNK|>": "", } lang_dict = { "<|zh|>": "<|lang|>", "<|en|>": "<|lang|>", "<|yue|>": "<|lang|>", "<|ja|>": "<|lang|>", "<|ko|>": "<|lang|>", "<|nospeech|>": "<|lang|>", } emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"} event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷",} def format_str(s): for sptk in emoji_dict: s = s.replace(sptk, emoji_dict[sptk]) return s def format_str_v2(s): sptk_dict = {} for sptk in emoji_dict: sptk_dict[sptk] = s.count(sptk) s = s.replace(sptk, "") emo = "<|NEUTRAL|>" for e in emo_dict: if sptk_dict[e] > sptk_dict[emo]: emo = e for e in event_dict: if sptk_dict[e] > 0: s = event_dict[e] + s s = s + emo_dict[emo] for emoji in emo_set.union(event_set): s = s.replace(" " + emoji, emoji) s = s.replace(emoji + " ", emoji) return s.strip() def format_str_v3(s): def get_emo(s): return s[-1] if s[-1] in emo_set else None def get_event(s): return s[0] if s[0] in event_set else None s = s.replace("<|nospeech|><|Event_UNK|>", "❓") for lang in lang_dict: s = s.replace(lang, "<|lang|>") s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")] new_s = " " + s_list[0] cur_ent_event = get_event(new_s) for i in range(1, len(s_list)): if len(s_list[i]) == 0: continue if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None: s_list[i] = s_list[i][1:] #else: cur_ent_event = get_event(s_list[i]) if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s): new_s = new_s[:-1] new_s += s_list[i].strip().lstrip() new_s = new_s.replace("The.", " ") return new_s.strip() @spaces.GPU def model_inference(input_wav, language, fs=16000): # task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")} language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko", "nospeech": "nospeech"} # task = "Speech Recognition" if task is None else task language = "auto" if len(language) < 1 else language selected_language = language_abbr[language] # selected_task = task_abbr.get(task) # print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}") if isinstance(input_wav, tuple): fs, input_wav = input_wav input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max if len(input_wav.shape) > 1: input_wav = input_wav.mean(-1) if fs != 16000: print(f"audio_fs: {fs}") resampler = torchaudio.transforms.Resample(fs, 16000) input_wav_t = torch.from_numpy(input_wav).to(torch.float32) input_wav = resampler(input_wav_t[None, :])[0, :].numpy() merge_vad = True #False if selected_task == "ASR" else True print(f"language: {language}, merge_vad: {merge_vad}") text = model.generate(input=input_wav, cache={}, language=language, use_itn=True, batch_size_s=500, merge_vad=merge_vad) print(text) text = text[0]["text"] text = format_str_v3(text) print(text) return text audio_examples = [ ["example/zh.mp3", "zh"], ["example/yue.mp3", "yue"], ["example/en.mp3", "en"], ["example/ja.mp3", "ja"], ["example/ko.mp3", "ko"], ["example/emo_1.wav", "auto"], ["example/emo_2.wav", "auto"], ["example/emo_3.wav", "auto"], ["example/rich_1.wav", "auto"], ["example/rich_2.wav", "auto"], ["example/longwav_1.wav", "auto"], ["example/longwav_2.wav", "auto"], ["example/longwav_3.wav", "auto"], ] html_content = """

Voice Understanding Model: SenseVoice-Small

SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.

Usage

Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (😊 happy, 😡 angry/exicting, 😔 sad) and types of sound events (😀 laughter, 🎼 music, 👏 applause, 🤧 cough&sneeze, 😭 cry). The event labels are placed in the front of the text and the emotion are in the back of the text.

Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.

Repo

SenseVoice: multilingual speech understanding model

FunASR: fundamental speech recognition toolkit

CosyVoice: high-quality multilingual TTS model

""" def launch(): with gr.Blocks(theme=gr.themes.Soft()) as demo: # gr.Markdown(description) gr.HTML(html_content) with gr.Row(): with gr.Column(): audio_inputs = gr.Audio(label="Upload audio or use the microphone") with gr.Accordion("Configuration"): language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"], value="auto", label="Language") fn_button = gr.Button("Start", variant="primary") text_outputs = gr.Textbox(label="Results") gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20) fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs) demo.launch() if __name__ == "__main__": # iface.launch() launch()