# -*- coding: utf-8 -*- import cv2 import os.path as osp import torch import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import numpy as np import logging logging.getLogger('modelscope').disabled = True from cnstd import CnStd from utils.utils_transocr import get_alphabet from utils.yolo_ocr_xloc import get_yolo_ocr_xloc from ultralytics import YOLO from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from networks import * import warnings warnings.filterwarnings('ignore') from modelscope import snapshot_download ########################################################################################## ###############Text Restoration Model revised by xiaoming li ########################################################################################## alphabet_path = './models/benchmark_cvpr23.txt' CommonWordsForOCR = get_alphabet(alphabet_path) CommonWords = CommonWordsForOCR[2:-1] def str2idx(text): idx = [] for t in text: idx.append(CommonWords.index(t) if t in CommonWords else 3484) #3955 return idx def get_parameter_details(net): num_params = 0 for param in net.parameters(): num_params += param.numel() return num_params / 1e6 def tensor2numpy(tensor): tensor = tensor * 0.5 + 0.5 tensor = tensor.squeeze(0).permute(1, 2, 0).flip(2) return np.clip(tensor.float().cpu().numpy(), 0, 1) * 255.0 class MARCONetPlus(object): def __init__(self, WEncoderPath=None, PriorModelPath=None, SRModelPath=None, YoloPath=None, device='cuda'): self.device = device modelscope_dir = snapshot_download('damo/cv_convnextTiny_ocr-recognition-general_damo', cache_dir='./checkpoints/modelscope_ocr') self.modelscope_ocr_recognition = pipeline(Tasks.ocr_recognition, model=modelscope_dir) self.yolo_character = YOLO(YoloPath) self.modelWEncoder = PSPEncoder() # WEncoder() self.modelWEncoder.load_state_dict(torch.load(WEncoderPath)['params'], strict=True) self.modelWEncoder.eval() self.modelWEncoder.to(device) self.modelPrior = TextPriorModel() self.modelPrior.load_state_dict(torch.load(PriorModelPath)['params'], strict=True) self.modelPrior.eval() self.modelPrior.to(device) self.modelSR = SRNet() self.modelSR.load_state_dict(torch.load(SRModelPath)['params'], strict=True) self.modelSR.eval() self.modelSR.to(device) print('='*128) print('{:>25s} : {:.2f} M Parameters'.format('modelWEncoder', get_parameter_details(self.modelWEncoder))) print('{:>25s} : {:.2f} M Parameters'.format('modelPrior', get_parameter_details(self.modelPrior))) print('{:>25s} : {:.2f} M Parameters'.format('modelSR', get_parameter_details(self.modelSR))) print('='*128) torch.cuda.empty_cache() self.cnstd = CnStd(model_name='db_resnet34',rotated_bbox=True, model_backend='pytorch', box_score_thresh=0.3, min_box_size=10, context=device) self.insize = 32 def handle_texts(self, img, bg=None, sf=4, is_aligned=False, lq_label=None): ''' Parameters: img: RGB 0~255. ''' height, width = img.shape[:2] bg_height, bg_width = bg.shape[:2] print(' ' * 25 + f' ... The input->output image size is {bg_height//sf}*{bg_width//sf}->{bg_height}*{bg_width}') full_mask_blur = np.zeros(bg.shape, dtype=np.float32) full_mask_noblur = np.zeros(bg.shape, dtype=np.float32) full_text_img = np.zeros(bg.shape, dtype=np.float32) #+255 orig_texts, enhanced_texts, debug_texts, pred_texts = [], [], [], [] ocr_scores = [] if not is_aligned: box_infos = self.cnstd.detect(img) for iix, box_info in enumerate(box_infos['detected_texts']): box = box_info['box'].astype(int)# left top, right top, right bottom, left bottom, [width, height] score = box_info['score'] if score < 0.5: continue extend_box = box.copy() w = int(np.linalg.norm(box[0] - box[1])) h = int(np.linalg.norm(box[0] - box[3])) # extend the bounding box extend_lr = 0.15 * h extend_tb = 0.05 * h vec_w = (box[1] - box[0]) / w vec_h = (box[3] - box[0]) / h extend_box[0] = box[0] - vec_w * extend_lr - vec_h * extend_tb extend_box[1] = box[1] + vec_w * extend_lr - vec_h * extend_tb extend_box[2] = box[2] + vec_w * extend_lr + vec_h * extend_tb extend_box[3] = box[3] - vec_w * extend_lr + vec_h * extend_tb extend_box = extend_box.astype(int) w = int(np.linalg.norm(extend_box[0] - extend_box[1])) h = int(np.linalg.norm(extend_box[0] - extend_box[3])) if w > h: ref_h = self.insize ref_w = int(ref_h * w / h) else: print(' ' * 25 + ' ... Can not handle vertical text temporarily') continue ref_point = np.float32([[0,0], [ref_w, 0], [ref_w, ref_h], [0, ref_h]]) det_point = np.float32(extend_box) matrix = cv2.getPerspectiveTransform(det_point, ref_point) inv_matrix = cv2.getPerspectiveTransform(ref_point*sf, det_point*sf) cropped_img = cv2.warpPerspective(img, matrix, (ref_w, ref_h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_LINEAR) in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(cropped_img) if in_img is None: continue h_crop, w_crop = cropped_img.shape[:2] SQ = cv2.resize(SQ, (w_crop * sf, h_crop * sf), interpolation=cv2.INTER_LINEAR) debug_texts.append(save_debug) orig_texts.append(in_img) enhanced_texts.append(SQ) pred_texts.append(''.join(pred_text)) tmp_mask = np.ones(SQ.shape).astype(float) warp_mask = cv2.warpPerspective(tmp_mask, inv_matrix, (bg_width, bg_height), flags=3) warp_img = cv2.warpPerspective(SQ, inv_matrix, (bg_width, bg_height), flags=3) # erode and blur based on the height of text region blur_pad = int(h // 6) if blur_pad % 2 == 0: blur_pad += 1 blur_radius = (blur_pad - 1) // 2 erode_radius = blur_radius + 1 erode_pad = 2 * erode_radius + 1 kernel_erode = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (erode_pad, erode_pad)) warp_mask_erode = cv2.erode(warp_mask, kernel_erode, iterations=1) # warp_mask_blur = cv2.GaussianBlur(warp_mask_erode, (blur_pad, blur_pad), 0) warp_mask_blur = cv2.blur(warp_mask_erode, (blur_pad, blur_pad)) full_text_img = full_text_img + warp_img full_mask_blur = full_mask_blur + warp_mask_blur full_mask_noblur = full_mask_noblur + warp_mask ocr_scores.append(score) index = full_mask_noblur > 0 full_text_img[index] = full_text_img[index]/full_mask_noblur[index] full_mask_blur = np.clip(full_mask_blur, 0, 1) # fuse the text region back to the background final_img = full_text_img * full_mask_blur + bg * (1 - full_mask_blur) return final_img, orig_texts, enhanced_texts, debug_texts, pred_texts #, ocr_scores else: #aligned in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(img) if in_img is not None: debug_texts.append(save_debug) orig_texts.append(in_img) enhanced_texts.append(SQ) pred_texts.append(''.join(pred_text)) return img, orig_texts, enhanced_texts, debug_texts, pred_texts #, preds_locs_txt def _process_text_line(self, img): """ Process a single text line region for text enhancement. Args: img: Input text image """ height, width = img.shape[:2] if height > width: print(' ' * 25 + ' ... Can not handle vertical text temporarily') return (None,) * 5 w_norm = int(self.insize * width / height) // 4 * 4 h_norm = self.insize img = cv2.resize(img, (w_norm*4, h_norm*4), interpolation=cv2.INTER_LINEAR) in_img = cv2.resize(img, (w_norm, h_norm), interpolation=cv2.INTER_LINEAR) ShowLQ = img[:,:,::-1] LQ_HeightNorm = transforms.ToTensor()(in_img) LQ_HeightNorm = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ_HeightNorm).unsqueeze(0).to(self.device) ''' Step 1: Predicting the character labels, bounding boxes. ''' recognized_boxes, pred_text, char_x_centers = get_yolo_ocr_xloc( img, # input image, RGB 0~255 yolo_model=self.yolo_character, # YOLO model instance for character detection ocr_pipeline=self.modelscope_ocr_recognition, # OCR pipeline/model for character recognition num_cropped_boxes=5, # Number of adjacent character boxes to include in each cropped segment (window size) expand_px=1, # Number of pixels to expand each crop region on all sides (except first/last) expand_px_for_first_last_cha=12, # Number of pixels to expand the crop region for the first and last character (left/right respectively) yolo_iou=0.1, # IOU threshold for YOLO non-max suppression (NMS) yolo_conf=0.07 # Confidence threshold for YOLO detection ) print('{:>25s} ... Recognized chars: {}'.format(' ', ''.join(pred_text))) loc_sr = torch.tensor(char_x_centers, device=self.device).unsqueeze(0) # show character location pad = 1 ShowPredLoc = ShowLQ.copy() for l in range(len(pred_text)): center_pred_w = int(loc_sr[0][l].item()) if center_pred_w > 0: ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), :] = 0 ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), 1] = 255 ''' Step 2: Character Prior Generation ''' with torch.no_grad(): w = self.modelWEncoder(LQ_HeightNorm, loc_sr) predict_characters128 = [] predict_characters64 = [] predict_characters32 = [] for b in range(w.size(0)): w0 = w[b,...].clone() #16*512 pred_label = str2idx(pred_text) pred_label = torch.Tensor(pred_label).type(torch.LongTensor).view(-1, 1)#.to(device) with torch.no_grad(): prior_cha, prior_fea64, prior_fea32 = self.modelPrior(styles=w0[:len(pred_text),:], labels=pred_label, noise=None) #b *n * w * h predict_characters128.append(prior_cha) predict_characters64.append(prior_fea64) predict_characters32.append(prior_fea32) ''' Step 3: Character SR ''' with torch.no_grad(): extend_right_width = extend_left_width = h_norm // 2 LQ_HeightNorm_WidthExtend = F.pad(LQ_HeightNorm, (extend_left_width, extend_right_width, 0, 0), mode='replicate') preds_locs_txt = '' loc_for_extend_sr = loc_sr.clone() for i in range(len(pred_text)): preds_locs_txt += str(int(loc_for_extend_sr[0][i].cpu().item()))+'_' loc_for_extend_sr[0][i] = loc_for_extend_sr[0][i] + extend_left_width * 4 SR = self.modelSR(LQ_HeightNorm_WidthExtend, predict_characters64, predict_characters32, loc_for_extend_sr) SR = tensor2numpy(SR)[:, extend_left_width * 4:extend_left_width * 4 + w_norm*4, ::-1] # reduce color inconsistency,use ab channel from in_img # sr_lab = cv2.cvtColor(SR.astype(np.uint8), cv2.COLOR_BGR2LAB) # target_size = (SR.shape[1], SR.shape[0]) # in_img_resize = cv2.resize(in_img, target_size, interpolation=cv2.INTER_LINEAR) # in_img_lab = cv2.cvtColor(in_img_resize.astype(np.uint8), cv2.COLOR_BGR2LAB) # sr_lab[:,:,1:] = in_img_lab[:,:,1:] # SR = cv2.cvtColor(sr_lab, cv2.COLOR_LAB2BGR) prior128 = [] pad = 2 for prior in predict_characters128: for ii, p in enumerate(prior): prior128.append(p) prior128 = torch.cat(prior128, dim=2) prior128 = prior128 * 0.5 + 0.5 prior128 = prior128.permute(1, 2, 0).flip(2) prior128 = np.clip(prior128.float().cpu().numpy(), 0, 1) * 255.0 prior128 = np.repeat(prior128, 3, axis=2) ShowPrior = cv2.resize(prior128, (SR.shape[1], int(128 * SR.shape[1] / prior128.shape[1])), interpolation=cv2.INTER_LINEAR) #--------Fuse the structure prior to the LR input to show the details of alignment-------------- fusion_bg = np.zeros_like(SR, dtype=np.float32) w4 = w_norm * 4 for iii, c in enumerate(loc_sr[0].int()): current_prior = prior128[:, iii*128:(iii+1)*128, :] center_loc = c.item() x1 = max(center_loc - 64, 0) x2 = min(center_loc + 64, w4) y1 = max(64 - center_loc, 0) y2 = y1 + (x2 - x1) try: fusion_bg[:, x1:x2, :] += current_prior[:, y1:y2, :] except: return (None,) * 5 mask = fusion_bg / 255.0 fusion_bg[:,:,0] = 0 fusion_bg[:,:,2] = 0 ShowLQ = ShowLQ[:,:,::-1] fusion_bg = fusion_bg.astype(ShowLQ.dtype) fusion_bg = fusion_bg * 0.3 * mask + ShowLQ * 0.7 * mask + (1-mask) * ShowLQ ShowPrior = cv2.normalize(ShowPrior, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) save_debug = np.vstack((ShowLQ, ShowPredLoc[:,:,::-1], SR, ShowPrior, fusion_bg)) return in_img, SR, save_debug, pred_text, preds_locs_txt if __name__ == '__main__': print('Test')