# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math def adjust_learning_rate(optimizer, it, args): """Decay the learning rate with half-cycle cosine after warmup""" if it < args.warmup_iters: # 1) linear warmup for warmup_iters steps lr = args.lr * it / args.warmup_iters elif it > args.lr_decay_iters: # 2) if it > lr_decay_iters, return min learning rate lr = args.min_lr else: # 3) in between, use cosine decay down to min learning rate decay_ratio = (it - args.warmup_iters) / (args.lr_decay_iters - args.warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 lr = args.min_lr + (args.lr - args.min_lr) * coeff for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr def adjust_learning_rate_epoch(optimizer, epoch, args): """Decay the learning rate with half-cycle cosine after warmup""" if epoch < args.warmup_epochs: lr = args.lr * epoch / args.warmup_epochs else: lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr