from typing import List, Dict import librosa import numpy as np import spacy import math from .filler_analyzer import detect_fillers def calc_srs(wpm: float, filler_count: int, long_pause_count: int, pitch_variation: float) -> float: """ Speech Rate Stability (SRS): Reflects the consistency of the speaker's pace and rhythm. """ ideal_wpm = 150 wpm_deviation = min(30, abs(wpm - ideal_wpm)) wpm_consistency = max(0, 100 - (wpm_deviation * 1.67)) filler_penalty = min(filler_count / 10, 1.0) pause_penalty = min(long_pause_count / 5, 1.0) pitch_penalty = min(pitch_variation / 3.0, 1.0) stability = (1 - ((filler_penalty + pause_penalty + pitch_penalty) / 3)) * 100 SRS = (0.45 * wpm_consistency) + (0.55 * stability) return min(100, max(0, SRS)) def calculate_pas(transcript: str, segments: List[Dict], filler_count: int, duration: float) -> Dict[str, float]: """ Calculate the Pause Appropriateness Score (PAS) and its components. """ if not transcript or not segments or duration <= 0: raise ValueError("Transcript, segments, and duration must be valid") nlp = spacy.load("en_core_web_sm") doc = nlp(transcript) words = transcript.split() total_words = len(words) if total_words == 0: raise ValueError("No words found in transcript") filler_rate = filler_count / total_words if total_words > 0 else 0.0 if filler_rate >= 0.10: afw = 0.0 elif filler_rate <= 0.0: afw = 100.0 else: afw = 100.0 - (filler_rate * 1000) afw = max(0.0, min(100.0, afw)) total_pauses = 0 natural_pauses = 0 segment_texts = [seg["text"].strip() for seg in segments] segment_starts = [seg["start"] for seg in segments] segment_ends = [seg["end"] for seg in segments] for i in range(len(segments) - 1): pause_dur = segment_starts[i + 1] - segment_ends[i] if pause_dur > 0.5: total_pauses += 1 if segment_texts[i] and segment_texts[i][-1] in ".!?,": natural_pauses += 1 if segment_starts[0] > 0.5: total_pauses += 1 if duration - segment_ends[-1] > 0.5: total_pauses += 1 if segment_texts[-1] and segment_texts[-1][-1] in ".!?": natural_pauses += 1 npp = 100.0 if total_pauses == 0 else (natural_pauses / total_pauses) * 100.0 pas = (0.4 * npp) + (0.6 * afw) return { "NPP": npp, "AFW": afw, "PAS": pas } def calculate_rcs(y: np.ndarray, sr: int, segments: List[Dict], duration: float) -> Dict[str, float]: """ Calculate the Rhythm Consistency Score (RCS) and its components. """ if y.size == 0 or sr <= 0 or duration <= 0 or not segments: raise ValueError("Audio signal, sampling rate, duration, and segments must be valid") onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=256) onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr, units='time', hop_length=256) if len(onsets) > 1: iois = np.diff(onsets) ioi_std = np.std(iois) ioi_std = min(max(ioi_std, 0.1), 0.5) str_score = 100.0 * (0.5 - ioi_std) / (0.5 - 0.1) str_score = max(0.0, min(100.0, str_score)) else: str_score = 100.0 total_transitions = 0 smooth_transitions = 0 pause_threshold = 0.3 for i in range(len(segments) - 1): gap = segments[i + 1]["start"] - segments[i]["end"] total_transitions += 1 if gap <= pause_threshold: smooth_transitions += 1 for segment in segments: words = segment["text"].strip().split() if len(words) > 1: smooth_transitions += len(words) - 1 total_transitions += len(words) - 1 stw = 100.0 if total_transitions == 0 else (smooth_transitions / total_transitions) * 100.0 rcs = (0.5 * str_score) + (0.5 * stw) return { "STR": str_score, "STW": stw, "RCS": rcs } def calculate_vps( transcript: str, segments: List[Dict], filler_count: int, duration: float, wpm: float, long_pause_count: int, pitch_variation: float, y: np.ndarray, sr: int ) -> Dict[str, float]: """ Calculate the Voice Pacing Score (VPS) and its components: - SRS: Speech Rate Stability Score - PAS: Pause Appropriateness Score - RCS: Rhythm Consistency Score - VPS = (0.5 * SRS) + (0.3 * PAS) + (0.2 * RCS) Args: transcript (str): Transcribed text. segments (List[Dict]): Whisper model segments with 'start', 'end', 'text'. filler_count (int): Number of filler words. duration (float): Audio duration (seconds). wpm (float): Words per minute. long_pause_count (int): Number of long pauses (>1.0s). pitch_variation (float): Pitch variation in semitones. y (np.ndarray): Audio signal. sr (int): Sampling rate. Returns: Dict[str, float]: Scores for SRS, PAS, RCS, VPS, and intermediates. """ # Validate inputs if not transcript or not segments or duration <= 0 or y.size == 0 or sr <= 0: raise ValueError("Invalid inputs") # Calculate SRS srs = calc_srs(wpm, filler_count, long_pause_count, pitch_variation) # Calculate PAS pas_result = calculate_pas(transcript, segments, filler_count, duration) pas = pas_result["PAS"] npp = pas_result["NPP"] afw = pas_result["AFW"] # Calculate RCS rcs_result = calculate_rcs(y, sr, segments, duration) rcs = rcs_result["RCS"] str_score = rcs_result["STR"] stw = rcs_result["STW"] # Calculate VPS vps = (0.5 * srs) + (0.3 * pas) + (0.2 * rcs) vps = max(0.0, min(100.0, vps)) return { "SRS": srs, "PAS": pas, "NPP": npp, "AFW": afw, "RCS": rcs, "STR": str_score, "STW": stw, "VPS": vps }