import whisper from .compute_vps_score import compute_vps_score # Ensure this path is correct def main(): # 🔧 Set your input audio file path here audio_path = r"D:\Intern\shankh\audio_samples\obama_short.wav" # 🔧 Choose Whisper model (tiny, base, small, medium, large) model_size = "base" print(f"Loading Whisper model: {model_size}") whisper_model = whisper.load_model(model_size) print(f"Analyzing audio: {audio_path}") try: vps_result = compute_vps_score(audio_path, whisper_model) print("\n--- Voice Pacing Score (VPS) ---") print(f"VPS Score: {vps_result['VPS']:.2f}") print(f" - SRS (Speech Rate Stability): {vps_result['SRS']:.2f}") print(f" - PAS (Pause Appropriateness): {vps_result['PAS']:.2f}") print(f" - NPP: {vps_result['NPP']:.2f}") print(f" - AFW: {vps_result['AFW']:.2f}") print(f" - RCS (Rhythm Consistency): {vps_result['RCS']:.2f}") print(f" - STR: {vps_result['STR']:.2f}") print(f" - STW: {vps_result['STW']:.2f}") print("\nTranscript:") print(vps_result["transcript"]) except Exception as e: print(f"[Error] {e}") if __name__ == "__main__": main()