import numpy as np from pytorch_grad_cam.base_cam import BaseCAM from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection # https://ieeexplore.ieee.org/document/9462463 class LayerCAM(BaseCAM): def __init__( self, model, target_layers, use_cuda=False, reshape_transform=None): super( LayerCAM, self).__init__( model, target_layers, use_cuda, reshape_transform) def get_cam_image(self, input_tensor, target_layer, target_category, activations, grads, eigen_smooth): spatial_weighted_activations = np.maximum(grads, 0) * activations if eigen_smooth: cam = get_2d_projection(spatial_weighted_activations) else: cam = spatial_weighted_activations.sum(axis=1) return cam