# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output. import gradio as gr import numpy as np import pandas as pd from phasehunter.model import Onset_picker, Updated_onset_picker from phasehunter.data_preparation import prepare_waveform import torch from scipy.stats import gaussian_kde from bmi_topography import Topography import earthpy.spatial as es import obspy from obspy.clients.fdsn import Client from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException from obspy.geodetics.base import locations2degrees from obspy.taup import TauPyModel from obspy.taup.helper_classes import SlownessModelError from obspy.clients.fdsn.header import URL_MAPPINGS import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.colors import LightSource from glob import glob def make_prediction(waveform): waveform = np.load(waveform) processed_input = prepare_waveform(waveform) # Make prediction with torch.no_grad(): output = model(processed_input) p_phase = output[:, 0] s_phase = output[:, 1] return processed_input, p_phase, s_phase def mark_phases(waveform, uploaded_file): if uploaded_file is not None: waveform = uploaded_file.name processed_input, p_phase, s_phase = make_prediction(waveform) # Create a plot of the waveform with the phases marked if sum(processed_input[0][2] == 0): #if input is 1C fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True) ax[0].plot(processed_input[0][0], color='black', lw=1) ax[0].set_ylabel('Norm. Ampl.') else: #if input is 3C fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True) ax[0].plot(processed_input[0][0], color='black', lw=1) ax[1].plot(processed_input[0][1], color='black', lw=1) ax[2].plot(processed_input[0][2], color='black', lw=1) ax[0].set_ylabel('Z') ax[1].set_ylabel('N') ax[2].set_ylabel('E') p_phase_plot = p_phase*processed_input.shape[-1] p_kde = gaussian_kde(p_phase_plot) p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 ) ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r') s_phase_plot = s_phase*processed_input.shape[-1] s_kde = gaussian_kde(s_phase_plot) s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 ) ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b') for a in ax: a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P') a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S') ax[-1].set_xlabel('Time, samples') ax[-1].set_ylabel('Uncert.') ax[-1].legend() plt.subplots_adjust(hspace=0., wspace=0.) # Convert the plot to an image and return it fig.canvas.draw() image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image def bin_distances(distances, bin_size=10): # Bin the distances into groups of `bin_size` kilometers binned_distances = {} for i, distance in enumerate(distances): bin_index = distance // bin_size if bin_index not in binned_distances: binned_distances[bin_index] = (distance, i) elif i < binned_distances[bin_index][1]: binned_distances[bin_index] = (distance, i) # Select the first distance in each bin and its index first_distances = [] for bin_index in binned_distances: first_distance, first_distance_index = binned_distances[bin_index] first_distances.append(first_distance_index) return first_distances def variance_coefficient(residuals): # calculate the variance of the residuals var = residuals.var() # scale the variance to a coefficient between 0 and 1 coeff = 1 - (var / (residuals.max() - residuals.min())) return coeff def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms): distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], [] taup_model = TauPyModel(model=velocity_model) client = Client(client_name) window = radius_km / 111.2 max_waveforms = int(max_waveforms) assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds" assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds" starttime = obspy.UTCDateTime(timestamp) endtime = starttime + 120 try: print('Starting to download inventory') inv = client.get_stations(network="*", station="*", location="*", channel="*H*", starttime=starttime, endtime=endtime, minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window), minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), level='station') print('Finished downloading inventory') except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException): fig, ax = plt.subplots() ax.text(0.5,0.5,'Something is wrong with the data provider, try another') fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image waveforms = [] cached_waveforms = glob("data/cached/*.mseed") for network in inv: # Skip the SYntetic networks if network.code == 'SY': continue for station in network: print(f"Processing {network.code}.{station.code}...") distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude) arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, distance_in_degree=distance, phase_list=["P", "S"]) if len(arrivals) > 0: starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15 endtime = starttime + 60 try: if f"data/cached/{network.code}_{station.code}_{starttime}.mseed" not in cached_waveforms: print('Downloading waveform') waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*", starttime=starttime, endtime=endtime) waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED") print('Finished downloading and caching waveform') else: print('Reading cached waveform') waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed") except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException): print(f'Skipping {network.code}_{station.code}_{starttime}') continue waveform = waveform.select(channel="H[BH][ZNE]") waveform = waveform.merge(fill_value=0) waveform = waveform[:3] len_check = [len(x.data) for x in waveform] if len(set(len_check)) > 1: continue if len(waveform) == 3: try: waveform = prepare_waveform(np.stack([x.data for x in waveform])) distances.append(distance) t0s.append(starttime) st_lats.append(station.latitude) st_lons.append(station.longitude) waveforms.append(waveform) names.append(f"{network.code}.{station.code}") print(f"Added {network.code}.{station.code} to the list of waveforms") except: continue # If there are no waveforms, return an empty plot if len(waveforms) == 0: fig, ax = plt.subplots() ax.text(0.5,0.5,'No waveforms found') fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image first_distances = bin_distances(distances, bin_size=10/111.2) # Edge case when there are way too many waveforms to process selection_indexes = np.random.choice(first_distances, np.min([len(first_distances), max_waveforms]), replace=False) waveforms = np.array(waveforms)[selection_indexes] distances = np.array(distances)[selection_indexes] t0s = np.array(t0s)[selection_indexes] st_lats = np.array(st_lats)[selection_indexes] st_lons = np.array(st_lons)[selection_indexes] names = np.array(names)[selection_indexes] waveforms = [torch.tensor(waveform) for waveform in waveforms] print('Starting to run predictions') with torch.no_grad(): waveforms_torch = torch.vstack(waveforms) output = model(waveforms_torch) p_phases = output[:, 0] s_phases = output[:, 1] # Max confidence - min variance p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))]) s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))]) print(f"Starting plotting {len(waveforms)} waveforms") fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(10, 3)) # Plot topography print('Fetching topography') params = Topography.DEFAULT.copy() extra_window = 0.5 params["south"] = np.min([st_lats.min(), eq_lat])-extra_window params["north"] = np.max([st_lats.max(), eq_lat])+extra_window params["west"] = np.min([st_lons.min(), eq_lon])-extra_window params["east"] = np.max([st_lons.max(), eq_lon])+extra_window topo_map = Topography(**params) topo_map.fetch() topo_map.load() print('Plotting topo') hillshade = es.hillshade(topo_map.da[0], altitude=10) topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False) topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False) ax[1].imshow(hillshade, cmap="Greys", alpha=0.5) output_picks = pd.DataFrame({'station_name' : [], 'starttime' : [], 'p_phase' : [], 'p_uncertainty' : [], 's_phase' : [], 's_uncertainty' : [], 'velocity_p' : [], 'velocity_s' : []}) for i in range(len(waveforms)): print(f"Plotting waveform {i+1}/{len(waveforms)}") current_P = p_phases[i::len(waveforms)] current_S = s_phases[i::len(waveforms)] x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)] x = mdates.date2num(x) # Normalize confidence for the plot p_conf = 1/(current_P.std()/p_max_confidence).item() s_conf = 1/(current_S.std()/s_max_confidence).item() ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1) ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|') ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|') ax[0].set_ylabel('Z') ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20)) delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item() velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item() print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}") output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'starttime' : [str(t0s[i])], 'p_phase' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty' : [current_P.std().item()*60], 's_phase' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty' : [current_S.std().item()*60], 'velocity_p' : [velocity_p], 'velocity_s' : [velocity_s]})) # Generate an array from st_lat to eq_lat and from st_lon to eq_lon x = np.linspace(st_lons[i], eq_lon, 50) y = np.linspace(st_lats[i], eq_lat, 50) # Plot the array ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.5, vmin=0, vmax=8) ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.5, vmin=0, vmax=8) # Add legend ax[0].scatter(None, None, color='r', marker='|', label='P') ax[0].scatter(None, None, color='b', marker='|', label='S') ax[0].legend() print('Plotting stations') for i in range(1,3): ax[i].scatter(st_lons, st_lats, color='b', label='Stations') ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake') # Generate colorbar for the velocity plot cbar = plt.colorbar(ax[1].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), ax=ax[1]) cbar.set_label('P Velocity (km/s)') ax[1].set_title('P Velocity') cbar = plt.colorbar(ax[2].scatter(None, None, c=velocity_s, alpha=0.5, vmin=0, vmax=8), ax=ax[2]) cbar.set_label('S Velocity (km/s)') ax[2].set_title('S Velocity') plt.subplots_adjust(hspace=0., wspace=0.5) fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image, output_picks model = Onset_picker.load_from_checkpoint("./weights.ckpt", picker=Updated_onset_picker(), learning_rate=3e-4) model.eval() with gr.Blocks() as demo: gr.HTML("""

PhaseHunter

This app allows one to detect P and S seismic phases along with uncertainty of the detection.

  1. By selecting one of the sample waveforms.
  2. By uploading your own waveform.
  3. By selecting an earthquake from the global earthquake catalogue.

Please upload your waveform in .npy (numpy) format.

Your waveform should be sampled at 100 samples per second and have 3 (Z, N, E) or 1 (Z) channels. If your file is longer than 60 seconds, the app will only use the first 60 seconds of the waveform.

""") with gr.Tab("Try on a single station"): with gr.Row(): # Define the input and output types for Gradio inputs = gr.Dropdown( ["data/sample/sample_0.npy", "data/sample/sample_1.npy", "data/sample/sample_2.npy"], label="Sample waveform", info="Select one of the samples", value = "data/sample/sample_0.npy" ) upload = gr.File(label="Or upload your own waveform") button = gr.Button("Predict phases") outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False) button.click(mark_phases, inputs=[inputs, upload], outputs=outputs) with gr.Tab("Select earthquake from catalogue"): gr.Markdown("""Select an earthquake from the global earthquake catalogue and the app will download the waveform from the FDSN client of your choice. """) with gr.Row(): client_inputs = gr.Dropdown( choices = list(URL_MAPPINGS.keys()), label="FDSN Client", info="Select one of the available FDSN clients", value = "IRIS", interactive=True ) velocity_inputs = gr.Dropdown( choices = ['1066a', '1066b', 'ak135', 'ak135f', 'herrin', 'iasp91', 'jb', 'prem', 'pwdk'], label="1D velocity model", info="Velocity model for station selection", value = "1066a", interactive=True ) with gr.Column(scale=4): with gr.Row(): timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49', placeholder='YYYY-MM-DD HH:MM:SS', label="Timestamp", info="Timestamp of the earthquake", max_lines=1, interactive=True) eq_lat_inputs = gr.Number(value=35.766, label="Latitude", info="Latitude of the earthquake", interactive=True) eq_lon_inputs = gr.Number(value=-117.605, label="Longitude", info="Longitude of the earthquake", interactive=True) source_depth_inputs = gr.Number(value=10, label="Source depth (km)", info="Depth of the earthquake", interactive=True) with gr.Column(scale=2): with gr.Row(): radius_inputs = gr.Slider(minimum=1, maximum=150, value=50, label="Radius (km)", step=10, info="""Select the radius around the earthquake to download data from.\n Note that the larger the radius, the longer the app will take to run.""", interactive=True) max_waveforms_inputs = gr.Slider(minimum=1, maximum=100, value=10, label="Max waveforms per section", step=1, info="Maximum number of waveforms to show per section\n (to avoid long prediction times)", interactive=True, ) button = gr.Button("Predict phases") output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False) output_picks = gr.Dataframe(label='# Pick data', type='pandas', interactive=False) button.click(predict_on_section, inputs=[client_inputs, timestamp_inputs, eq_lat_inputs, eq_lon_inputs, radius_inputs, source_depth_inputs, velocity_inputs, max_waveforms_inputs], outputs=[output_image, output_picks]) demo.launch()