from typing import Optional, Tuple from dataclasses import dataclass import math import torch from torch import nn import torch.nn.functional as F import clip from timm.models.vision_transformer import Block import fairscale.nn.model_parallel.initialize as fs_init from fairscale.nn.model_parallel.layers import ( ParallelEmbedding, RowParallelLinear, ColumnParallelLinear, ) @dataclass class ModelArgs: dim: int = 512 n_layers: int = 8 n_heads: int = 8 vocab_size: int = -1 # defined later by tokenizer multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 norm_eps: float = 1e-5 max_batch_size: int = 32 max_seq_len: int = 2048 adapter_len: int = 10 adapter_layer: int = 30 cap_adapter_len: int = 10 cap_adapter_layer: int = 30 cap_vision_model: str = "ViT-L/14" cap_vision_dim: int = 512 cap_vision_block: int = 2 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) # type: ignore freqs = torch.outer(t, freqs).float() # type: ignore freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size() self.head_dim = args.dim // args.n_heads self.wq = ColumnParallelLinear( args.dim, args.n_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wk = ColumnParallelLinear( args.dim, args.n_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wv = ColumnParallelLinear( args.dim, args.n_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wo = RowParallelLinear( args.n_heads * self.head_dim, args.dim, bias=False, input_is_parallel=True, init_method=lambda x: x, ) self.cache_k = torch.zeros( (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) ).cuda() self.cache_v = torch.zeros( (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) ).cuda() self.gate = torch.nn.Parameter(torch.zeros(1)) self.cap_gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1)) def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'): if mode == 'instruct': return self.forward_instruct(x, start_pos, freqs_cis, mask, adapter) elif mode == 'caption': return self.forward_caption(x, start_pos, freqs_cis, mask, adapter) def forward_instruct(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] if adapter is not None: adapter_len = adapter.shape[1] adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1) adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1) adapter_k = adapter_k.transpose(1, 2) adapter_v = adapter_v.transpose(1, 2) xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) if adapter is not None: adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim) adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq) output = output + torch.matmul(adapter_scores, adapter_v) output = output.transpose( 1, 2 ).contiguous().view(bsz, seqlen, -1) return self.wo(output) def forward_caption(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] if adapter is not None: adapter_len = adapter.shape[1] adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) adapter_k = adapter_k.transpose(1, 2) adapter_v = adapter_v.transpose(1, 2) xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) if adapter is not None: adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim) adapter_scores = self.cap_gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq) output = output + torch.matmul(adapter_scores, adapter_v) output = output.transpose( 1, 2 ).contiguous().view(bsz, seqlen, -1) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ): super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = ColumnParallelLinear( dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x ) self.w2 = RowParallelLinear( hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x ) self.w3 = ColumnParallelLinear( dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x ) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class TransformerBlock(nn.Module): def __init__(self, layer_id: int, args: ModelArgs): super().__init__() self.n_heads = args.n_heads self.dim = args.dim self.head_dim = args.dim // args.n_heads self.attention = Attention(args) self.feed_forward = FeedForward( dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of ) self.layer_id = layer_id self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'): h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, adapter, mode=mode) out = h + self.feed_forward.forward(self.ffn_norm(h)) return out class Transformer(nn.Module): def __init__(self, params: ModelArgs): super().__init__() self.params = params self.vocab_size = params.vocab_size self.n_layers = params.n_layers self.tok_embeddings = ParallelEmbedding( params.vocab_size, params.dim, init_method=lambda x: x ) self.layers = torch.nn.ModuleList() for layer_id in range(params.n_layers): self.layers.append(TransformerBlock(layer_id, params)) self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output = ColumnParallelLinear( params.dim, params.vocab_size, bias=False, init_method=lambda x: x ) self.freqs_cis = precompute_freqs_cis( self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 ) # Note: this is only a preview of multimodal LLaMA-Adapter # and requires more efforts to decouple LLaMA-Adapter from LLaMA. # instruct model self.adapter_query = nn.Embedding(params.adapter_len * params.adapter_layer, params.dim) self.adapter_len = params.adapter_len self.adapter_layer = params.adapter_layer # caption model self.cap_adapter_query = nn.Embedding(params.cap_adapter_len * params.cap_adapter_layer, params.dim) self.cap_adapter_len = params.cap_adapter_len self.cap_adapter_layer = params.cap_adapter_layer @torch.inference_mode() def forward(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode: str = 'instruct'): if mode == 'instruct': return self.forward_instruct(tokens, start_pos, mode) elif mode == 'caption': return self.forward_caption(tokens, start_pos, visual_tokens, mode) def forward_instruct(self, tokens: torch.Tensor, start_pos: int, mode=None): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) self.freqs_cis = self.freqs_cis.to(h.device) freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen] adapter = self.adapter_query.weight.reshape(self.params.adapter_layer, self.params.adapter_len, self.params.dim).unsqueeze(1) mask = None if seqlen > 1: mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) for layer in self.layers[: -1 * self.params.adapter_layer]: h = layer(h, start_pos, freqs_cis, mask) layer_index = 0 for layer in self.layers[-1 * self.params.adapter_layer:]: h = layer(h, start_pos, freqs_cis, mask, adapter[layer_index], mode=mode) layer_index = layer_index + 1 h = self.norm(h) output = self.output(h[:, -1, :]) # only compute last logits return output.float() def forward_caption(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode=None): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) self.freqs_cis = self.freqs_cis.to(h.device) freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen] adapter = self.cap_adapter_query.weight.reshape(self.params.cap_adapter_layer, self.params.cap_adapter_len, self.params.dim).unsqueeze(1) mask = None if seqlen > 1: mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) for layer in self.layers[: -1 * self.params.cap_adapter_layer]: h = layer(h, start_pos, freqs_cis, mask) layer_index = 0 for layer in self.layers[-1 * self.params.cap_adapter_layer:]: adapter_per_layer = adapter[layer_index] if visual_tokens is not None: adapter_per_layer = adapter_per_layer + visual_tokens h = layer(h, start_pos, freqs_cis, mask, adapter_per_layer, mode=mode) layer_index = layer_index + 1 h = self.norm(h) output = self.output(h[:, -1, :]) # only compute last logits return output.float() class VisionModel(nn.Module): def __init__(self, params: ModelArgs): super().__init__() self.params = params self.clip, self.clip_transform = clip.load(params.cap_vision_model) self.clip.float() for param in self.clip.parameters(): param.requires_grad = False self.clip_proj = nn.Linear(self.clip.visual.output_dim, params.cap_vision_dim) self.clip_proj_norm = nn.LayerNorm(params.cap_vision_dim) self.visual_query = nn.Embedding(params.cap_adapter_len, params.cap_vision_dim) self.visual_blocks = nn.ModuleList([ Block(params.cap_vision_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm) for i in range(params.cap_vision_block)]) self.visual_proj = nn.Linear(params.cap_vision_dim, params.dim) self.visual_proj_norm = nn.LayerNorm(params.dim) def clip_encode_image(self, x): x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.clip.visual.positional_embedding.to(x.dtype) x = self.clip.visual.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.clip.visual.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.clip.visual.ln_post(x[:, :, :]) if self.clip.visual.proj is not None: x = x @ self.clip.visual.proj return x def forward(self, imgs): x = [self.clip_transform(img) for img in imgs] x = torch.stack(x, dim=0).to(self.visual_query.weight.device) _bsz = x.shape[0] visual_feats = self.clip_encode_image(x).half() visual_feats = self.clip_proj_norm(self.clip_proj(visual_feats)) visual_query = self.visual_query.weight.unsqueeze(0).repeat(_bsz, 1, 1) visual_query = torch.cat([visual_query, visual_feats], dim=1) for block in self.visual_blocks: visual_query = block(visual_query) visual_query = visual_query[:, :self.params.cap_adapter_len, :] visual_query = self.visual_proj(visual_query) visual_query = self.visual_proj_norm(visual_query) return visual_query