from typing import Dict, List, Union import datasets as ds import evaluate import numpy as np import numpy.typing as npt _DESCRIPTION = r"""\ Computes the non-flatness of regions that text elements are solely put on, referring to CGL-GAN. Computes the ratio of valid underlay elements to total underlay elements used in PosterLayout. Intuitively, underlay should be placed under other non-underlay elements. - strict: scoring the underlay as: - 1: there is a non-underlay element completely inside - 0: otherwise - loose: Calcurate (ai/a2). """ _KWARGS_DESCRIPTION = """\ FIXME """ _CITATION = """\ @inproceedings{hsu2023posterlayout, title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={6018--6026}, year={2023} } """ class LayoutUnderlayEffectiveness(evaluate.Metric): def __init__( self, canvas_width: int, canvas_height: int, text_label_index: int = 1, decoration_label_index: int = 3, **kwargs, ) -> None: super().__init__(**kwargs) self.canvas_width = canvas_width self.canvas_height = canvas_height self.text_label_index = text_label_index self.decoration_label_index = decoration_label_index def _info(self) -> evaluate.EvaluationModuleInfo: return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=ds.Features( { "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), } ), codebase_urls=[ "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L224-L252", "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L265-L292", ], ) def get_rid_of_invalid( self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] ) -> npt.NDArray[np.int64]: assert len(predictions) == len(gold_labels) w = self.canvas_width / 100 h = self.canvas_height / 100 for i, prediction in enumerate(predictions): for j, b in enumerate(prediction): xl, yl, xr, yr = b xl = max(0, xl) yl = max(0, yl) xr = min(self.canvas_width, xr) yr = min(self.canvas_height, yr) if abs((xr - xl) * (yr - yl)) < w * h * 10: if gold_labels[i, j]: gold_labels[i, j] = 0 return gold_labels def metrics_inter_oneside(self, bb1, bb2): xl_1, yl_1, xr_1, yr_1 = bb1 xl_2, yl_2, xr_2, yr_2 = bb2 # w_1 = xr_1 - xl_1 w_2 = xr_2 - xl_2 # h_1 = yr_1 - yl_1 h_2 = yr_2 - yl_2 w_inter = min(xr_1, xr_2) - max(xl_1, xl_2) h_inter = min(yr_1, yr_2) - max(yl_1, yl_2) # a_1 = w_1 * h_1 a_2 = w_2 * h_2 a_inter = w_inter * h_inter if w_inter <= 0 or h_inter <= 0: a_inter = 0 return a_inter / a_2 def _compute_und_l( self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] ) -> float: metrics, avali = 0.0, 0 for gold_label, prediction in zip(gold_labels, predictions): und = 0 mask_deco = (gold_label == 3).reshape(-1) mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) box_deco = prediction[mask_deco] box_other = prediction[mask_other] n1, n2 = len(box_deco), len(box_other) if not n1: continue avali += 1 for i in range(n1): max_ios = 0 bb1 = box_deco[i] for j in range(n2): bb2 = box_other[j] ios = self.metrics_inter_oneside(bb1, bb2) max_ios = max(max_ios, ios) und += max_ios metrics += und / n1 return metrics / avali if avali > 0 else 0.0 def _compute_und_s( self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] ) -> float: def is_contain(bb1, bb2): xl_1, yl_1, xr_1, yr_1 = bb1 xl_2, yl_2, xr_2, yr_2 = bb2 c1 = xl_1 <= xl_2 c2 = yl_1 <= yl_2 c3 = xr_2 >= xr_2 c4 = yr_1 >= yr_2 return c1 and c2 and c3 and c4 metrics, avali = 0.0, 0 for gold_label, prediction in zip(gold_labels, predictions): und = 0 mask_deco = (gold_label == 3).reshape(-1) mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) box_deco = prediction[mask_deco] box_other = prediction[mask_other] n1, n2 = len(box_deco), len(box_other) if not n1: continue avali += 1 for i in range(n1): bb1 = box_deco[i] for j in range(n2): bb2 = box_other[j] if is_contain(bb1, bb2): und += 1 break metrics += und / n1 return metrics / avali if avali > 0 else 0.0 def _compute( self, *, predictions: Union[npt.NDArray[np.float64], List[List[float]]], gold_labels: Union[npt.NDArray[np.int64], List[int]], ) -> Dict[str, float]: predictions = np.array(predictions) gold_labels = np.array(gold_labels) predictions[:, :, ::2] *= self.canvas_width predictions[:, :, 1::2] *= self.canvas_height gold_labels = self.get_rid_of_invalid( predictions=predictions, gold_labels=gold_labels ) return { "und_l": self._compute_und_l( predictions=predictions, gold_labels=gold_labels ), "und_s": self._compute_und_s( predictions=predictions, gold_labels=gold_labels ), }