import copy import math from typing import List, Union import datasets as ds import evaluate import numpy as np import numpy.typing as npt _DESCRIPTION = r"""\ Computes the extent of spatial non-alignment between elements. """ _KWARGS_DESCRIPTION = """\ FIXME """ _CITATION = """\ @inproceedings{hsu2023posterlayout, title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={6018--6026}, year={2023} } @article{li2020attribute, title={Attribute-conditioned layout gan for automatic graphic design}, author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa}, journal={IEEE Transactions on Visualization and Computer Graphics}, volume={27}, number={10}, pages={4039--4048}, year={2020}, publisher={IEEE} } """ class LayoutNonAlignment(evaluate.Metric): def __init__( self, canvas_width: int, canvas_height: int, **kwargs, ) -> None: super().__init__(**kwargs) self.canvas_width = canvas_width self.canvas_height = canvas_height def _info(self) -> evaluate.EvaluationModuleInfo: return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=ds.Features( { "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), } ), codebase_urls=[ "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L306-L339" ], ) def ali_delta(self, xs: npt.NDArray[np.float64]) -> float: n = len(xs) min_delta = np.inf for i in range(n): for j in range(i + 1, n): delta = abs(xs[i] - xs[j]) min_delta = min(min_delta, delta) return min_delta def ali_g(self, x: float) -> float: return -math.log(1 - x, 10) def get_rid_of_invalid( self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] ) -> npt.NDArray[np.int64]: assert len(predictions) == len(gold_labels) w = self.canvas_width / 100 h = self.canvas_height / 100 for i, prediction in enumerate(predictions): for j, b in enumerate(prediction): xl, yl, xr, yr = b xl = max(0, xl) yl = max(0, yl) xr = min(self.canvas_width, xr) yr = min(self.canvas_height, yr) if abs((xr - xl) * (yr - yl)) < w * h * 10: if gold_labels[i, j]: gold_labels[i, j] = 0 return gold_labels def _compute( self, *, predictions: Union[npt.NDArray[np.float64], List[List[float]]], gold_labels: Union[npt.NDArray[np.int64], List[int]], ) -> float: predictions = np.array(predictions) gold_labels = np.array(gold_labels) predictions[:, :, ::2] *= self.canvas_width predictions[:, :, 1::2] *= self.canvas_height gold_labels = self.get_rid_of_invalid( predictions=predictions, gold_labels=gold_labels ) metrics: float = 0.0 for gold_label, prediction in zip(gold_labels, predictions): ali = 0.0 mask = (gold_label > 0).reshape(-1) mask_box = prediction[mask] theda = [] for mb in mask_box: pos = copy.deepcopy(mb) pos[0] /= self.canvas_width pos[2] /= self.canvas_width pos[1] /= self.canvas_height pos[3] /= self.canvas_height theda.append( [ pos[0], pos[1], (pos[0] + pos[2]) / 2, (pos[1] + pos[3]) / 2, pos[2], pos[3], ] ) theda_arr = np.array(theda) if theda_arr.shape[0] <= 1: continue n = len(mask_box) for _ in range(n): g_val = [] for j in range(6): xys = theda_arr[:, j] delta = self.ali_delta(xys) g_val.append(self.ali_g(delta)) ali += min(g_val) metrics += ali return metrics / len(gold_labels)