import json import os import random import copy from PIL import Image import cv2 import numpy as np import torch import torch.nn.functional as F from transformers import CLIPImageProcessor from transformers import OwlViTProcessor from VisualSearch.model.llava import conversation as conversation_lib from VisualSearch.utils.utils import box_xyxy_to_cxcywh, expand2square from VisualSearch.utils.utils import DEFAULT_IMAGE_TOKEN def preprocess_multimodal(source, mm_use_im_start_end): for sentence in source: if DEFAULT_IMAGE_TOKEN in sentence["value"]: sentence["value"] = ( sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() ) sentence["value"] = DEFAULT_IMAGE_TOKEN + "[LOC]"+"\n" + sentence["value"] # sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] sentence["value"] = sentence["value"].strip() if "mmtag" in conversation_lib.default_conversation.version: sentence["value"] = sentence["value"].replace( DEFAULT_IMAGE_TOKEN, "" + DEFAULT_IMAGE_TOKEN + "" ) return source class VQADataset(torch.utils.data.Dataset): pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) img_size = 1024 ignore_label = 255 def __init__( self, base_image_dir, tokenizer, vision_tower, samples_per_epoch=500 * 8 * 2 * 10, precision: str = "fp32", num_classes_per_sample: int = 3, exclude_val=False, vqa_data="possible_locations_conv_86k||llava_instruct_150k", vqa_sample_rate=[2,1], ): self.exclude_val = exclude_val self.samples_per_epoch = samples_per_epoch self.num_classes_per_sample = num_classes_per_sample self.base_image_dir = base_image_dir self.tokenizer = tokenizer self.precision = precision self.transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16") self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower) DATA_DIR = os.path.join(base_image_dir, "vsm_vqa_data") self.vqa_image_root = os.path.join(base_image_dir, "coco2017/train2017") vqa_datas = vqa_data.split("||") self.vqa_datas = [] for data in vqa_datas: with open(os.path.join(DATA_DIR, "{}.json".format(data))) as f: data = json.load(f) self.vqa_datas.append(data) sample_rate = np.array(vqa_sample_rate) self.sample_rate = sample_rate / sample_rate.sum() def __len__(self): return self.samples_per_epoch def preprocess(self, x: torch.Tensor) -> torch.Tensor: """Normalize pixel values and pad to a square input.""" # Normalize colors x = (x - self.pixel_mean) / self.pixel_std # Pad h, w = x.shape[-2:] padh = self.img_size - h padw = self.img_size - w x = F.pad(x, (0, padw, 0, padh)) return x def __getitem__(self, idx): ds = np.random.choice(list(range(len(self.vqa_datas))), p=self.sample_rate) ds = self.vqa_datas[ds] idx = random.randint(0, len(ds) - 1) item = ds[idx] image_path = os.path.join(self.vqa_image_root, item["image"]) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) ori_size = image.shape[:2] image_clip = self.clip_image_processor.preprocess( expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt")["pixel_values"][0] image = self.transform(images=image, return_tensors="pt")['pixel_values'][0] resize = image.shape[:2] conv = conversation_lib.default_conversation.copy() source = item["conversations"] source = preprocess_multimodal( copy.deepcopy(source), mm_use_im_start_end=conv.sep_style == conversation_lib.SeparatorStyle.TWO, ) roles = {"human": conv.roles[0], "gpt": conv.roles[1]} conversations = [] if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{j}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) questions = conversations sampled_classes = conversations masks = torch.rand(1, *ori_size) label = torch.ones(ori_size) * self.ignore_label bboxes_labels = [torch.tensor([[0.5,0.5,1.0,1.0]])] bboxes_valid = [0] masks_valid = [0] return ( image_path, image, image_clip, conversations, masks, label, bboxes_labels, bboxes_valid, masks_valid, resize, questions, sampled_classes, )