""" Copied from https://github.com/lucidrains/flamingo-pytorch/blob/main/flamingo_pytorch/flamingo_pytorch.py """ import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops_exts import rearrange_many, repeat_many def exists(val): return val is not None def FeedForward(dim, mult = 4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias = False), nn.GELU(), nn.Linear(inner_dim, dim, bias = False) ) class PerceiverAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8 ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.norm_media = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x, latents): """ einstein notation b - batch t - time n - sequence d - dimension """ x = self.norm_media(x) latents = self.norm_latents(latents) b, m, h = *x.shape[:2], self.heads q = self.to_q(latents) # the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to kv_input = torch.cat((x, latents), dim = -2) k, v = self.to_kv(kv_input).chunk(2, dim = -1) q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h = h) q = q * self.scale # attention sim = einsum('... i d, ... j d -> ... i j', q, k) sim = sim - sim.amax(dim = -1, keepdim = True).detach() attn = sim.softmax(dim = -1) out = einsum('... i j, ... j d -> ... i d', attn, v) out = rearrange(out, 'b h t n d -> b t n (h d)', h = h) return self.to_out(out) class PerceiverResampler(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, num_latents = 64, num_media_embeds = 4, ff_mult = 4 ): super().__init__() self.latents = nn.Parameter(torch.randn(num_latents, dim)) self.media_pos_emb = nn.Parameter(torch.randn(num_media_embeds, 1, dim)) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) self.norm = nn.LayerNorm(dim) def forward(self, x): if x.ndim == 3: x = rearrange(x, 'b n d -> b 1 n d') times = x.shape[1] x = x + self.media_pos_emb[:times] latents = repeat(self.latents, 'n d -> b m n d', b = x.shape[0], m = x.shape[1]) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents res = self.norm(latents) if res.ndim == 4: res = res.squeeze(1) return res